Spinal Excitability Changes after Transspinal and Transcortical Paired Associative Stimulation in Humans

Maria Knikou, Maria Knikou

Abstract

Paired associative stimulation (PAS) produces enduring neuroplasticity based on Hebbian associative plasticity. This study established the changes in spinal motoneuronal excitability by pairing transcortical and transspinal stimulation. Transcortical stimulation was delivered after (transspinal-transcortical PAS) or before (transcortical-transspinal PAS) transspinal stimulation. Before and after 40 minutes of each PAS protocol, spinal neural excitability was assessed based on the amplitude of the transspinal-evoked potentials (TEPs) recorded from ankle muscles of both legs at different stimulation intensities (recruitment input-output curve). Changes in TEPs amplitude in response to low-frequency stimulation and paired transspinal stimuli were also established before and after each PAS protocol. TEP recruitment input-output curves revealed a generalized depression of TEPs in most ankle muscles of both legs after both PAS protocols that coincided with an increased gain only after transcortical-transspinal PAS. Transcortical-transspinal PAS increased and transspinal-transcortical PAS decreased the low-frequency-dependent TEP depression, whereas neither PAS protocol affected the TEP depression observed upon paired transspinal stimuli. These findings support the notion that transspinal and transcortical PAS has the ability to alter concomitantly cortical and spinal synaptic activity. Transspinal and transcortical PAS may contribute to the development of rehabilitation strategies in people with bilateral increased motoneuronal excitability due to cortical or spinal lesions.

Figures

Figure 1
Figure 1
Paired associative stimulation (PAS) protocol. (a) Simplified diagram of transcranial magnetic stimulation (TMS volley) and transspinal stimulation-mediated volleys during paired stimulation. TMS motor volleys are descending, whilst transspinal stimulation produces both ascending and descending volleys. The ascending volleys are expected to reach both brain hemispheres since transspinal stimulation delivered alone evokes transspinal-evoked potentials (TEPs) in muscles of both legs. (b) Timing of PAS between transcortical and transspinal stimulation. PAS was delivered at customized interstimulus intervals for each subject during which corticospinal neurons activated via TMS arrived at the corticospinal neuron before spinal motoneurons were activated transsynaptically by the transspinal stimulation (transcortical-transspinal PAS), and during which transspinal-mediated ascending volleys arrived at the motor cortex before TMS was delivered over the left primary motor cortex leg area (transspinal-transcortical PAS).
Figure 2
Figure 2
TEPs recruitment curves before and after transcortical-transspinal PAS. Recruitment input-output curves of transspinal-evoked potentials (TEPs) recorded bilaterally from the TA, MG, SOL, and PL muscles from all subjects along with the sigmoid function fitted to the data. The abscissa shows multiples of stimulation intensities corresponding to 50% TEP max (S50). The ordinate shows TEP sizes as a percentage of the homonymous maximal TEP size obtained before transcortical-transspinal PAS. Red or blue arrows indicate statistically significant differences (decreased and increased amplitudes, resp.) before and after PAS based on 2-way repeated measures ANOVA. TA: tibialis anterior; MG: medial gastrocnemius; SOL: soleus; PL: peroneus longus.
Figure 3
Figure 3
TEPs recruitment curves before and after transspinal-transcortical PAS. Recruitment input-output curves of transspinal-evoked potentials (TEPs) recorded bilaterally from the TA, MG, SOL, and PL muscles from all subjects along with the sigmoid function fitted to the data. The abscissa shows multiples of stimulation intensities corresponding to 50% TEP max (S50). The ordinate shows TEP sizes as a percentage of the homonymous maximal TEP size obtained before transspinal-transcortical PAS. Red arrows indicate statistically significant differences (decreased amplitudes) before and after PAS based on repeated measures ANOVA. TA: tibialis anterior; MG: medial gastrocnemius; SOL: soleus; PL: peroneus longus.
Figure 4
Figure 4
Frequency-dependent depression of TEPs. (a) Nonrectified waveform averages of ankle transspinal-evoked potentials (TEPs) recorded from one representative subject at 0.2 and 1.0 Hz. (b, c) Overall percent change of TEPs recorded at 0.2 Hz from the associated TEP recorded at 1.0 Hz before and after each PAS protocol from all subjects. The abscissa shows the muscles from which TEPs were recorded. Error bars indicate SE.
Figure 5
Figure 5
Depression of TEPs in response to paired transspinal stimuli. Nonrectified waveform averages of ankle transspinal-evoked potentials (TEPs) recorded from one representative subject upon paired pulses at interstimulus intervals of 50 and 100 ms at a constant stimulation frequency of 0.2 Hz.
Figure 6
Figure 6
Depression of TEPs in response to paired transspinal stimuli before and after transspinal and transcortical PAS. Overall amplitude of TEP2 as a percentage of the mean TEP1 evoked at interstimulus intervals of 50 (a, c) and 100 ms (b, d) at a stimulation frequency of 0.2 Hz before and after each PAS protocol from all subjects. The abscissa shows the muscles from which TEPs were recorded. Error bars indicate SE. No changes in TEPs depression upon paired pulses before and after transspinal and transcortical PAS were found.

References

    1. Hawkins R. D., Kandel E. R., Siegelbaum S. A. Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annual Review of Neuroscience. 1993;16:625–665. doi: 10.1146/annurev.ne.16.030193.003205.
    1. Bunday K. L., Perez M. A. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Current Biology. 2012;22:2355–2361. doi: 10.1016/j.cub.2012.10.046.
    1. Mrachacz-Kersting N., Fong M., Murphy B. A., Sinkjaer T. Changes in excitability of the cortical projections to the human tibialis anterior after paired associative stimulation. Journal of Neurophysiology. 2007;97:1951–1958. doi: 10.1152/jn.01176.2006.
    1. Rosenkranz K., Kacar A., Rothwell J. C. Differential modulation of motor cortical plasticity and excitability in early and late phases of human motor learning. The Journal of Neuroscience. 2007;27:12058–12066. doi: 10.1523/jneurosci.2663-07.2007.
    1. Roy F. D., Norton J. A., Gorassini M. A. Role of sustained excitability of the leg motor cortex after transcranial magnetic stimulation in associative plasticity. Journal of Neurophysiology. 2007;98:657–667. doi: 10.1152/jn.00197.2007.
    1. Sale M. V., Ridding M. C., Nordstrom M. A. Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Experimental Brain Research. 2007;181:615–626. doi: 10.1007/s00221-007-0960-x.
    1. Stefan K., Kunesch E., Benecke R., Cohen L. G., Classen J. Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. The Journal of Physiology. 2002;543:699–708. doi: 10.1113/jphysiol.2002.023317.
    1. Taylor J. L., Martin P. G. Voluntary motor output is altered by spike-timing-dependent changes in the human corticospinal pathway. The Journal of Neuroscience. 2009;29:11708–11716. doi: 10.1523/jneurosci.2217-09.2009.
    1. Wolters A., Sandbrink F., Schlottmann A., et al. A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. Journal of Neurophysiology. 2003;89:2339–2345. doi: 10.1152/jn.00900.2002.
    1. Carson R. G., Kennedy N. C. Modulation of human corticospinal excitability by paired associative stimulation. Frontiers in Human Neuroscience. 2013;7:p. 823. doi: 10.3389/fnhum.2013.00823.
    1. Di Lazzaro V., Dileone M., Pilato F., et al. Associative motor cortex plasticity: direct evidence in humans. Cerebral Cortex. 2009;19:2326–2330. doi: 10.1093/cercor/bhn255.
    1. Di Lazzaro V., Dileone M., Profice P., et al. LTD-like plasticity induced by paired associative stimulation: direct evidence in humans. Experimental Brain Research. 2009;194:661–664. doi: 10.1007/s00221-009-1774-9.
    1. Lamy J. C., Russmann H., Shamim E. A., Meunier S., Hallett M. Paired associative stimulation induces change in presynaptic inhibition of Ia terminals in wrist flexors in humans. Journal of Neurophysiology. 2010;104:755–764. doi: 10.1152/jn.00761.2009.
    1. Leukel C., Taube W., Beck S., Schubert M. Pathway-specific plasticity in the human spinal cord. The European Journal of Neuroscience. 2012;35:1622–1629. doi: 10.1111/j.1460-9568.2012.08067.x.
    1. Meunier S., Russmann H., Simonetta-Moreau M., Hallett M. Changes in spinal excitability after PAS. Journal of Neurophysiology. 2007;97:3131–3135. doi: 10.1152/jn.01086.2006.
    1. Stefan K., Kunesch E., Cohen L. G., Benecke R., Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123:572–584. doi: 10.1093/brain/123.3.572.
    1. Dixon L., Ibrahim M. M., Santora D., Knikou M. Paired associative transspinal and transcortical stimulation produces plasticity in human cortical and spinal neuronal circuits. Journal of Neurophysiology. 2016;116:904–916. doi: 10.1152/jn.00259.2016.
    1. Knikou M. Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics. 2013;34:630–640. doi: 10.1002/bem.21808.
    1. Knikou M. Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output. PLoS One. 2014;9, article e102313 doi: 10.1371/journal.pone.0102313.
    1. Maruyama Y., Shimoji K., Shimizu H., Kuribayashi H., Fujioka H. Human spinal cord potentials evoked by different sources of stimulation and conduction velocities along the cord. Journal of Neurophysiology. 1982;48:1098–1107.
    1. Knikou M., Dixon L., Santora D., Ibrahim M. M. Transspinal constant-current long-lasting stimulation: a new method to induce cortical and corticospinal plasticity. Journal of Neurophysiology. 2015;114:1486–1499. doi: 10.1152/jn.00449.2015.
    1. Kasai T., Hayes K. C., Wolfe D. L., Allatt R. D. Afferent conditioning of motor evoked potentials following transcranial magnetic stimulation of motor cortex in normal subjects. Electroencephalography and Clinical Neurophysiology. 1992;85:95–101. doi: 10.1016/0168-5597(92)90074-l.
    1. Mackey A. S., Uttaro D., McDonough M. P., Krivis L. I., Knikou M. Convergence of flexor reflex and corticospinal inputs on tibialis anterior network in humans. Clinical Neurophysiology. 2016;127:706–715. doi: 10.1016/j.clinph.2015.06.011.
    1. Nielsen J., Petersen N., Fedirchuk B. Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man. The Journal of Physiology. 1997;501:473–484. doi: 10.1111/j.1469-7793.1997.473bn.x.
    1. Costa P., Deletis V. Cortical activity after stimulation of the corticospinal tract in the spinal cord. Clinical Neurophysiology. 2016;127:1726–1733. doi: 10.1016/j.clinph.2015.11.004.
    1. Rossini P. M., Burke D., Chen R., et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. committee. Clinical Neurophysiology. 2015;126:1071–1107. doi: 10.1016/j.clinph.2015.02.001.
    1. Hanna-Boutros B., Sangari S., Giboin L. S., et al. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiological Reports. 2015;3(2) doi: 10.14814/phy2.12276.
    1. Rothwell J. C., Day B. L., Berardelli A., Marsden C. D. Effects of motor cortex stimulation on spinal interneurones in intact man. Experimental Brain Research. 1984;54:382–384. doi: 10.1007/bf00236241.
    1. Hultborn H., Illert M., Nielsen J., Paul A., Ballegaard M., Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Experimental Brain Research. 1996;108:450–462. doi: 10.1007/bf00227268.
    1. Knikou M., Taglianetti C. On the methods employed to record and measure the human soleus H-reflex. Somatosensory & Motor Research. 2006;23:55–62. doi: 10.1080/08990220600702715.
    1. Klimstra M., Zehr E. P. A sigmoid function is the best fit for the ascending limb of the Hoffmann reflex recruitment curve. Experimental Brain Research. 2008;186:93–105. doi: 10.1007/s00221-007-1207-6.
    1. Nitsche M. A., Roth A., Kuo M. F., et al. Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. The Journal of Neuroscience. 2007;27:3807–3812. doi: 10.1523/jneurosci.5348-06.2007.
    1. Cortes M., Thickbroom G. W., Valls-Sole J., Pascual-Leone A., Edwards D. J. Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clinical Neurophysiology. 2011;122:2254–2259. doi: 10.1016/j.clinph.2011.02.038.
    1. Ladenbauer J., Minassian K., Hofstoetter U. S., Dimitrijevic M. R., Rattay F. Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2010;18(6):637–645. doi: 10.1109/tnsre.2010.2054112.
    1. Hunter J. P., Ashby P. Segmental effects of epidural spinal cord stimulation in humans. The Journal of Physiology. 1994;474:407–419. doi: 10.1113/jphysiol.1994.sp020032.
    1. Maertens de Noordhout A., Rothwell J. C., Thompson P. D., Day B. L., Marsden C. D. Percutaneous electrical stimulation of lumbosacral roots in man. Journal of Neurology, Neurosurgery, and Psychiatry. 1988;51:174–181. doi: 10.1136/jnnp.51.2.174.
    1. Spanne A., Jörntell H. Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS Computational Biology. 2013;9, article e1002979 doi: 10.1371/journal.pcbi.1002979.
    1. Ilić T. V., Meintzschel F., Cleff U., Ruge D., Kessler K. R., Ziemann U. Short-interval paired-pulse inhibition and facilitation of human motor cortex: the dimension of stimulus intensity. The Journal of Physiology. 2002;545:153–167. doi: 10.1113/jphysiol.2002.030122.
    1. Kumru H., Albu S., Rothwell J., et al. Modulation of motor cortex excitability by paired peripheral and transcranial magnetic stimulation. Clinical Neurophysiology. 2017;128:2043–2047. doi: 10.1016/j.clinph.2017.06.041.
    1. Elahi B., Gunraj C., Chen R. Short-interval intracortical inhibition blocks long-term potentiation induced by paired associative stimulation. Journal of Neurophysiology. 2012;107:1935–1941. doi: 10.1152/jn.00202.2011.
    1. Cash R. F. H., Jegatheeswaran G., Ni Z., Chen R. Modulation of the direction and magnitude of Hebbian plasticity in human motor cortex by stimulus intensity and concurrent inhibition. Brain Stimulation. 2017;10:83–90. doi: 10.1016/j.brs.2016.08.007.
    1. Shin H. W., Sohn Y. H. Interhemispheric transfer of paired associative stimulation-induced plasticity in the human motor cortex. Neuroreport. 2011;22:166–170. doi: 10.1097/wnr.0b013e3283439511.
    1. Conde V., Vollmann H., Taubert M., et al. Reversed timing-dependent associative plasticity in the human brain through interhemispheric interactions. Journal of Neurophysiology. 2013;109:2260–2271. doi: 10.1152/jn.01004.2012.
    1. Cavanaugh J. R., Bair W., Movshon J. A. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. Journal of Neurophysiology. 2002;88:2530–2546. doi: 10.1152/jn.00692.2001.
    1. Tadin D., Lappin J. S., Gilroy L. A., Blake R. Perceptual consequences of centre-surround antagonism in visual motion processing. Nature. 2003;424(6946):312–315. doi: 10.1038/nature01800.
    1. Feldman D. E. The spike-timing dependence of plasticity. Neuron. 2012;75:556–571. doi: 10.1016/j.neuron.2012.08.001.
    1. Froemke R. C., Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains. Nature. 2002;416:433–438. doi: 10.1038/416433a.
    1. Markram H., Lübke J., Frotscher M., Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science. 1997;275(5297):213–215. doi: 10.1126/science.275.5297.213.
    1. Sjöström P. J., Turrigiano G. G., Nelson S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 2001;32(6):1149–1164. doi: 10.1016/S0896-6273(01)00542-6.
    1. Christie B. R., Abraham W. C. L-type voltage-sensitive calcium channel antagonists block heterosynaptic long-term depression in the dentate gyrus of anaesthetized rats. Neuroscience Letters. 1994;167:41–45. doi: 10.1016/0304-3940(94)91023-5.
    1. Devanne H., Lavoie B. A., Capaday C. Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research. 1997;114:329–338. doi: 10.1007/pl00005641.
    1. Ridding M. C., Rothwell J. C. Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalography and Clinical Neurophysiology. 1997;105:340–344. doi: 10.1016/s0924-980x(97)00041-6.
    1. Hultborn H., Denton M. E., Wienecke J., Nielsen J. B. Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. The Journal of Physiology. 2003;552:945–952. doi: 10.1113/jphysiol.2003.050971.
    1. Pierrot-Deseilligny E., Burke D. The circuitry of the human spinal cord. NY, USA: Cambridge University Press; 2005.
    1. Meunier S. Modulation by corticospinal volleys of presynaptic inhibition to Ia afferents in man. Journal of Physiology, Paris. 1999;93:387–394. doi: 10.1016/s0928-4257(00)80066-2.
    1. Clair J. M., Anderson-Reid J. M., Graham C. M., Collins D. F. Postactivation depression and recovery of reflex transmission during repetitive electrical stimulation of the human tibial nerve. Journal of Neurophysiology. 2011;106:184–192. doi: 10.1152/jn.00932.2010.
    1. Lamy J. C., Wargon I., Baret M., et al. Post-activation depression in various group I spinal pathways in humans. Experimental Brain Research. 2005;166:248–262. doi: 10.1007/s00221-005-2360-4.
    1. Hunanyan A. S., Petrosyan H. A., Alessi V., Arvanian V. L. Repetitive spinal electromagnetic stimulation opens a window of synaptic plasticity in damaged spinal cord: role of NMDA receptors. Journal of Neurophysiology. 2012;107:3027–3039. doi: 10.1152/jn.00015.2012.
    1. Froemke R. C., Tsay I. A., Raad M., Long J. D., Dan Y. Contribution of individual spikes in burst-induced long-term synaptic modification. Journal of Neurophysiology. 2006;95:1620–1629. doi: 10.1152/jn.00910.2005.

Source: PubMed

3
Abonner