A randomized, controlled, double-blind, crossover trial of triheptanoin in alternating hemiplegia of childhood

Elodie Hainque, Samantha Caillet, Sandrine Leroy, Constance Flamand-Roze, Isaac Adanyeguh, Fanny Charbonnier-Beaupel, Maryvonne Retail, Benjamin Le Toullec, Mariana Atencio, Sophie Rivaud-Péchoux, Vanessa Brochard, Florence Habarou, Chris Ottolenghi, Florence Cormier, Aurélie Méneret, Marta Ruiz, Mohamed Doulazmi, Anne Roubergue, Jean-Christophe Corvol, Marie Vidailhet, Fanny Mochel, Emmanuel Roze, Elodie Hainque, Samantha Caillet, Sandrine Leroy, Constance Flamand-Roze, Isaac Adanyeguh, Fanny Charbonnier-Beaupel, Maryvonne Retail, Benjamin Le Toullec, Mariana Atencio, Sophie Rivaud-Péchoux, Vanessa Brochard, Florence Habarou, Chris Ottolenghi, Florence Cormier, Aurélie Méneret, Marta Ruiz, Mohamed Doulazmi, Anne Roubergue, Jean-Christophe Corvol, Marie Vidailhet, Fanny Mochel, Emmanuel Roze

Abstract

Background: Based on the hypothesis of a brain energy deficit, we investigated the safety and efficacy of triheptanoin on paroxysmal episodes in patients with alternating hemiplegia of childhood due to ATP1A3 mutations.

Methods: We conducted a randomized, double-blind, placebo-controlled crossover study of triheptanoin, at a target dose corresponding to 30% of daily calorie intake, in ten patients with alternating hemiplegia of childhood due to ATP1A3 mutations. Each treatment period consisted of a 12-week fixed-dose phase, separated by a 4-week washout period. The primary outcome was the total number of paroxysmal events. Secondary outcomes included the number of paroxysmal motor-epileptic events; a composite score taking into account the number, severity and duration of paroxysmal events; interictal neurological manifestations; the clinical global impression-improvement scale (CGI-I); and safety parameters. The paired non-parametric Wilcoxon test was used to analyze treatment effects.

Results: In an intention-to-treat analysis, triheptanoin failed to reduce the total number of paroxysmal events (p = 0.646), including motor-epileptic events (p = 0.585), or the composite score (p = 0.059). CGI-I score did not differ between triheptanoin and placebo periods. Triheptanoin was well tolerated.

Conclusions: Triheptanoin does not prevent paroxysmal events in Alternating hemiplegia of childhood. We show the feasibility of a randomized placebo-controlled trial in this setting.

Trial registration: The study has been registered with clinicaltrials.gov ( NCT002408354 ) the 03/24/2015.

Trial registration: ClinicalTrials.gov NCT02408354.

Keywords: Alternating hemiplegia of childhood; Crossover trial; Triheptanoin.

Conflict of interest statement

Authors’ information

Sandrine Leroy carried out the biostatistical analysis.

Ethics approval and consent to participate

The study protocol was approved by a local ethics committee (CPP Paris VI), and written informed consent was obtained from all the participants or their legal guardians. The study has been registered with clinicaltrials.gov (NCT002408354) the 03/24/2015.

Consent for publication

Not applicable (manuscript contains no individual person’s data).

Competing interests

Elodie Hainque, Samantha Caillet, Sandrine Leroy, Constance Flamand-Roze, Isaac Adanyeguh, Fanny Charbonnier-Beaupel, Maryvonne Retail, Benjamin Le Toullec, Anne Roubergue, Mariana Atencio, Sophie Rivaud-Péchoux, Vanessa Brochard, Florence Habarou, Chris Ottolenghi, Florence Cormier, Mohamed Doulazmi and Marta Ruiz declare that they have no competing interests.

Aurélie Méneret has received travel funding from Zambon.

Jean-Christophe Corvol has stock options at B&A Therapeutics; has received research grants from the French Ministry of Health, ANR, Michael J Fox Foundation, Actelion and Ipsen; participated in scientific advisory boards for BMS, Zambon, Pfizer, Amarantus, Abbvie and Clevexel; and received travel grants from Abbvie and Teva.

Fanny Mochel holds a patent on the use of triheptanoin in Huntington disease and GLUT1 deficiency syndrome. She has received research support from Ultragenyx and honorarium on advisory boards from Ultragenyx and AlfaSigma.

Marie Vidailhet has received grant from Merz and travel grants from MDS and EAN.

Emmanuel Roze has received research support from Merz-Pharma, Orkyn, Aguettant, IP santé, Ultragenix and UCB pharma; served on scientific advisory boards for Orkyn, Ultragenix, Retrophin and Merz-pharma; received speech honoraria from Orkyn, Aguettant, Merz-Pharma and Ultragenix; and received travel funding from the Dystonia Coalition, the Dystonia Medical Research Foundation, the Movement Disorders Society, and the European Academy of Neurology.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart of trial participants

References

    1. Heinzen EL, Swoboda KJ, Hitomi Y, Gurrieri F, Nicole S, de Vries B, et al. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet. 2012;44(9):1030–1034. doi: 10.1038/ng.2358.
    1. Panagiotakaki E, Gobbi G, Neville B, Ebinger F, Campistol J, Nevsímalová S, et al. Evidence of a non-progressive course of alternating hemiplegia of childhood: study of a large cohort of children and adults. Brain. 2010;133(Pt 12):3598–3610. doi: 10.1093/brain/awq295.
    1. Panagiotakaki E, De Grandis E, Stagnaro M, Heinzen EL, Fons C, Sisodiya S, et al. Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood-a study of 155 patients. Orphanet J Rare Dis. 2015;10:123. doi: 10.1186/s13023-015-0335-5.
    1. Sweney MT, Silver K, Gerard-Blanluet M, Pedespan J-M, Renault F, Arzimanoglou A, et al. Alternating hemiplegia of childhood: early characteristics and evolution of a neurodevelopmental syndrome. Pediatrics. 2009;123(3):e534–e541. doi: 10.1542/peds.2008-2027.
    1. Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmüller J, Frommolt P, et al. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol. 2012;11(9):764–773. doi: 10.1016/S1474-4422(12)70182-5.
    1. Ishii A, Saito Y, Mitsui J, Ishiura H, Yoshimura J, Arai H, et al. Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS One. 2013;8(2):e56120. doi: 10.1371/journal.pone.0056120.
    1. McGrail KM, Phillips JM, Sweadner KJ. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci. 1991;11(2):381–391.
    1. Bottger P, Tracz Z, Heuck A, Nissen P, Romero-Ramos M, Lykke-Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519(2):376–404. doi: 10.1002/cne.22524.
    1. Holm R, Toustrup-Jensen MS, Einholm AP, Schack VR, Andersen JP, Vilsen B. Neurological disease mutations of α3 Na(+),K(+)-ATPase: Structural and functional perspectives and rescue of compromised function. Biochim Biophys Acta. 2016;1857(11):1807–1828. doi: 10.1016/j.bbabio.2016.08.009.
    1. Kinoshita PF, Leite JA, Orellana AMM, Vasconcelos AR, Quintas LEM, Kawamoto EM, et al. The Influence of Na(+), K(+)-ATPase on Glutamate Signaling in Neurodegenerative Diseases and Senescence. Front Physiol. 2016;7:195. doi: 10.3389/fphys.2016.00195.
    1. Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, et al. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol. 2014;13(5):503–514. doi: 10.1016/S1474-4422(14)70011-0.
    1. Rosewich H, Baethmann M, Ohlenbusch A, Gärtner J, Brockmann K. A novel ATP1A3 mutation with unique clinical presentation. J Neurol Sci. 2014;341(1–2):133–135. doi: 10.1016/j.jns.2014.03.034.
    1. Neville BGR, Ninan M. The treatment and management of alternating hemiplegia of childhood. Dev Med Child Neurol. 2007;49(10):777–780. doi: 10.1111/j.1469-8749.2007.00777.x.
    1. Vila-Pueyo M, Pons R, Raspall-Chaure M, Marcé-Grau A, Carreño O, Sintas C, et al. Clinical and genetic analysis in alternating hemiplegia of childhood: ten new patients from Southern Europe. J Neurol Sci. 2014;344(1–2):37–42. doi: 10.1016/j.jns.2014.06.014.
    1. Roubergue A, Philibert B, Gautier A, Kuster A, Markowicz K, Billette de Villemeur T, et al. Excellent response to a ketogenic diet in a patient with alternating hemiplegia of childhood. JIMD Rep. 2015;15:7–12.
    1. Sasaki M, Sakuma H, Fukushima A, Yamada K, Ohnishi T, Matsuda H. Abnormal cerebral glucose metabolism in alternating hemiplegia of childhood. Brain and Development. 2009;31(1):20–26. doi: 10.1016/j.braindev.2008.03.008.
    1. Kirshenbaum GS, Dawson N, Mullins JGL, Johnston TH, Drinkhill MJ, Edwards IJ, et al. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+−ATPase α3 missense mutant mice. PLoS One. 2013;8(3):e60141. doi: 10.1371/journal.pone.0060141.
    1. Pisciotta L, Gherzi M, Stagnaro M, Calevo MG, Giannotta M, Vavassori MR, et al. Alternating Hemiplegia of Childhood: Pharmacological treatment of 30 Italian patients. Brain Dev [Internet] [cited 8 Mar 2017]; Available from:
    1. Mochel F, Hainque E, Gras D, Adanyeguh IM, Caillet S, Héron B, et al. Triheptanoin dramatically reduces paroxysmal motor disorder in patients with GLUT1 deficiency. J Neurol Neurosurg Psychiatry. 2016;87(5):550–553. doi: 10.1136/jnnp-2015-311475.
    1. Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman RP, Rabier D, et al. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab. 2005;84(4):305–312. doi: 10.1016/j.ymgme.2004.09.007.
    1. Adanyeguh IM, Rinaldi D, Henry P-G, Caillet S, Valabregue R, Durr A, et al. Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology. 2015;84(5):490–495. doi: 10.1212/WNL.0000000000001214.
    1. Gu L, Zhang G-F, Kombu RS, Allen F, Kutz G, Brewer W-U, et al. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile. Am J Physiol Endocrinol Metab. 2010;298(2):E362–E371. doi: 10.1152/ajpendo.00384.2009.
    1. Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, et al. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab. 2006;291(4):E860–E866. doi: 10.1152/ajpendo.00366.2005.
    1. Roe CR, Sweetman L, Roe DS, David F, Brunengraber H. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest. 2002;110(2):259–269. doi: 10.1172/JCI0215311.
    1. Mikati MA, Kramer U, Zupanc ML, Shanahan RJ. Alternating hemiplegia of childhood: clinical manifestations and long-term outcome. Pediatr Neurol. 2000;23(2):134–141. doi: 10.1016/S0887-8994(00)00157-0.
    1. Casaer P. Flunarizine in alternating hemiplegia in childhood. An international study in 12 children. Neuropediatrics. 1987;18(4):191–195. doi: 10.1055/s-2008-1052478.
    1. Méneret A, Roze E. Paroxysmal movement disorders: An update. Rev Neurol. 2016;172(8–9):433–445. doi: 10.1016/j.neurol.2016.07.005.
    1. Skou JC. Nobel Lecture. The identification of the sodium pump. Biosci Rep. 1998;18(4):155–169. doi: 10.1023/A:1020196612909.
    1. Yu AS, Hirayama BA, Timbol G, Liu J, Diez-Sampedro A, Kepe V, et al. Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol Cell Physiol. 2013;304(3):C240–C247. doi: 10.1152/ajpcell.00317.2012.
    1. Clapcote SJ, Duffy S, Xie G, Kirshenbaum G, Bechard AR, Rodacker Schack V, et al. Mutation I810N in the alpha3 isoform of Na+,K+−ATPase causes impairments in the sodium pump and hyperexcitability in the CNS. Proc Natl Acad Sci U S A. 2009;106(33):14085–14090. doi: 10.1073/pnas.0904817106.
    1. Gras D, Roze E, Caillet S, Méneret A, Doummar D. Billette de Villemeur T, et al. GLUT1 deficiency syndrome: an update. Rev Neurol. 2014;170(2):91–99. doi: 10.1016/j.neurol.2013.09.005.
    1. Roe CR, Bottiglieri T, Wallace M, Arning E, Martin A. Adult Polyglucosan Body Disease (APBD): Anaplerotic diet therapy (Triheptanoin) and demonstration of defective methylation pathways. Mol Genet Metab. 2010;101(2–3):246–252. doi: 10.1016/j.ymgme.2010.06.017.

Source: PubMed

3
Abonner