The Effect of Flowable Composite Resins on Periodontal Health, Cytokine Levels, and Immunoglobulins

Cem Peskersoy, Aybeniz Oguzhan, Onder Gurlek, Cem Peskersoy, Aybeniz Oguzhan, Onder Gurlek

Abstract

Objective: This study investigated the effects of flowable resin composites (FCR) on the restoration of noncarious cervical lesions (NCCL) and their impact on periodontal tissues.

Materials and methods: 30 periodontally healthy patients were assigned into three groups randomly; group VF: self-adhering FCR, group NF: fluoride-releasing FCR, and group SF: microhybrid FCR. Gingival crevicular fluid (GCF) volume levels of osteoprotegerin (OPG), immunoglobulins (IgA, IgM), and interleukins (IL-1, IL-1β, and IL-10) in GCF were analyzed with ELISA tests. Clinical success rates were evaluated using USPHS criteria during the 12-month follow-up.

Results: The GCF volume was increased mostly in group SF (1.34 ± 0.09 μl). While the titer of interleukin was increased in all groups, higher increases were observed in IL-1 and IL-1β in group NF (170.78 pg/ml and 39.35 pg/ml). Increased IL-10 was observed in group VF (14.33 ± 0.85 pg/ml). IgA levels varied partially among all groups (p > 0.05), and even IgM levels were elevated immediately after the restoration process but returned to normal on the 28th day (p < 0.05). Group NF failed in most of the USPHS criteria, while the material group VF and group SF presented acceptable results except in the marginal adaptation criterion (p < 0.05).

Conclusions: Clinical efficacy of self-adhering FCR was found the best for restoration of NCCL while fluoride-releasing FCR stimulated the periodontal response and had negative effects on GCF volume, cytokine, and immunoglobulin levels.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this article.

Copyright © 2022 Cem Peskersoy et al.

Figures

Figure 1
Figure 1
Materials used in the study. (a) Vertise flow (self-adhering FCR). (b) Nova Compo SF (microhybrid FCR). (c) Nexcomp flow (fluoride-releasing FCR). (d) Single Bond Universal (all-in-one self-etch adhesive).
Figure 2
Figure 2
Case design of the study. (a) Clinical condition of the teeth and collecting GCF before treatment. (b) Post-op. GCF sampling immediately after the restoration phase. (c) 1-week follow-up GCF collecting. (d) 1-month follow-up control and sample collecting.

References

    1. Szesz A., Parreiras S., Martini E., Reis A., Loguercio A. Effect of flowable composites on the clinical performance of non-carious cervical lesions: a systematic review and meta-analysis. Journal of Dentistry . 2017;65:11–21. doi: 10.1016/j.jdent.2017.07.007.
    1. Czasch P., Ilie N. In vitro comparison of mechanical properties and degree of cure of a self-adhesive and four novel flowable composites. The Journal of Adhesive Dentistry . 2013;15(3):229–236. doi: 10.3290/j.jad.a29530.
    1. Akimoto N., Ohmori K., Hanabusa M., Momoi Y. An eighteen-month clinical evaluation of posterior restorations with fluoride releasing adhesive and composite systems. Dental Materials Journal . 2011;30(3):411–418. doi: 10.4012/dmj.2010-205.
    1. Al-Humaid J., Al Harbi F. A., El-Embaby A. E. Performance of self-adhering flowable composite in Class V restorations: 18 months clinical study. The Journal of Contemporary Dental Practice . 2018;19(7):785–791. doi: 10.5005/jp-journals-10024-2337.
    1. Karaman E., Yazici A. R., Ozgunaltay G., Dayangac B. Clinical evaluation of a nanohybrid and a flowable resin composite in non-carious cervical lesions: 24-month results. The Journal of Adhesive Dentistry . 2012;14(5):485–492. doi: 10.3290/j.jad.a27794.
    1. Langalia A., Buch A., Khamar M., Patel P. Polymerization shrinkage of composite resins: a review. Journal of Medical and Dental Science Research . 2015;2:23–27.
    1. Beyth N., Farah S., Domb A. J., Weiss E. I. Antibacterial dental resin composites. Reactive and Functional Polymers . 2014;75:81–88. doi: 10.1016/j.reactfunctpolym.2013.11.011.
    1. Celik N., Askın S., Gul M. A., Seven N. The effect of restorative materials on cytokines in gingival crevicular fluid. Archives of Oral Biology . 2017;84:139–144. doi: 10.1016/j.archoralbio.2017.09.026.
    1. Bonilla F. A., Bona C. A. Textbook of Immunology . 1st ed. London CRC Press; 1996.
    1. Toker H., Poyraz O., Eren K. Effect of periodontal treatment on IL-1β, IL-1ra, and IL-10 levels in gingival crevicular fluid in patients with aggressive periodontitis. Journal of Clinical Periodontology . 2008;35(6):507–513. doi: 10.1111/j.1600-051X.2008.01213.x.
    1. Gurlek C., Ertugrul F., Nile C., Lappin D. F., Buduneli N. Plaque accumulation and inflammation adjacent to restorations of amorphous calcium phosphate-containing composite in early childhood caries. Oral Health & Preventive Dentistry . 2018;16(5):457–465. doi: 10.3290/j.ohpd.a41361.
    1. Kwon J. S., Piao Y. Z., Cho S. A., et al. Biocompatibility evaluation of dental luting cements using cytokine released from human oral fibroblasts and keratinocytes. Materials . 2015;8(11):7269–7277. doi: 10.3390/ma8115372.
    1. Sakallioğlu E. E., Lütfioğlu M., Sakallioğlu U., et al. Gingival crevicular fluid levels of neuropeptides following dental restorations. Journal of Applied Biomaterials & Functional Materials . 2015;13(2):186–193. doi: 10.5301/jabfm.5000197.
    1. Longo D. L., Paula-Silva F. W., Faccioli L. H., Gatón-Hernández P. M., Queiroz A. M., Silva L. A. Cytotoxicity and cytokine expression induced by silorane and methacrylate-based composite resins. Journal of Applied Oral Science . 2016;24(4):338–343. doi: 10.1590/1678-775720150449.
    1. Mahn E., Rousson V., Heintze S. Meta-analysis of the influence of bonding parameters on the clinical outcome of tooth-colored cervical restorations. The Journal of Adhesive Dentistry . 2015;17(5):391–403. doi: 10.3290/j.jad.a35008.
    1. Arregui M., Giner L., Ferrari M., Vallés M., Mercadé M. Six-month color change and water sorption of 9 new-generation flowable composites in 6 staining solutions. Brazilian Oral Research . 2016;30(1):123–140. doi: 10.1590/1807-3107bor-2016.vol30.0123.
    1. Peumans M., Politano G., Van Meerbeek B. Treatment of noncarious cervical lesions: when, why, and how. The International Journal of Esthetic Dentistry . 2020;15(1):16–42.
    1. Ruan J. Y., Gong Z. L., Zhang R. Z., et al. Evaluation of four different restorative materials for restoration of the periodontal condition of wedge-shaped defect: a comparative study. Medical Science Monitor . 2017;23:4462–4470. doi: 10.12659/MSM.902937.
    1. Andersson J., Dahlgren U. 2-Hydroxyethyl methacrylate (HEMA) promotes IgG but not IgM antibody production in vivo in mice. European Journal of Oral Sciences . 2011;119(4):305–309. doi: 10.1111/j.1600-0722.2011.00836.x.
    1. Borges A. F., Chase M. A., Guggiari A. L., et al. A critical review on the conversion degree of resin monomers by direct analyses. Brazilian Dental Science . 2013;16(1):18–26. doi: 10.14295/bds.2013.v16i1.845.
    1. Sampaio C. S., Arias J. F., Atria P. J., Cáceres E., Díaz C. P., Freitas A. Volumetric polymerization shrinkage and its comparison to internal adaptation in bulk fill and conventional composites: a μCT and OCT in vitro analysis. Dental Materials . 2019;35(11):1568–1575. doi: 10.1016/j.dental.2019.07.025.
    1. Moharamzadeh K., Van Noort R., Brook I. M., Scutt A. M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dental Materials . 2007;23(1):40–44. doi: 10.1016/j.dental.2005.11.039.
    1. Francois P., Fouquet V., Attal J. P., Dursun E. Commercially available fluoride-releasing restorative materials: a review and a proposal for classification. Materials. . 2020;13(10):2313–2323. doi: 10.3390/ma13102313.
    1. Farchegas L. R. P., Rached R. N., Ignacio S. A., Vasconcelos E. C., Ramos D. T., Souza E. M. Identification and quantification of monomers released from dental composites using HPLC. Brazilian Archives of Biology and Technology . 2009;52(4):855–862. doi: 10.1590/S1516-89132009000400009.
    1. Davis H. B., Gwinner F., Mitchell J. C., Ferracane J. Ion release from, and fluoride recharge of a composite with a fluoride- containing bioactive glass. Dental Materials . 2014;30(10):1187–1194. doi: 10.1016/j.dental.2014.07.012.
    1. Kanjevac T., Milovanovic M., Volarevic V., et al. Cytotoxic effects of glass ionomer cements on human dental pulp stem cells correlate with fluoride release. Medicinal Chemistry . 2012;8(1):40–45. doi: 10.2174/157340612799278351.
    1. Passoja A., Puijola I., Knuuttila M., et al. Serum levels of interleukin-10 and tumour necrosis factor-α in chronic periodontitis. Journal of Clinical Periodontology . 2010;37(10):881–887. doi: 10.1111/j.1600-051X.2010.01602.x.
    1. Kamalak H., Taghizadehghalehjoughi A., Kamalak A. The biocompatibility of resin composite materials on different stem cells. Biomedical Research . 2019;30(1):32–41. doi: 10.35841/biomedicalresearch.30-18-1162.
    1. Aral K., Milward M. R., Kapila Y., Berdeli A., Cooper P. R. Inflammasomes and their regulation in periodontal disease: a review. Journal of Periodontal Research . 2020;55(4):473–487. doi: 10.1111/jre.12733.
    1. El-Zeiny H. M., El-Fattah A., Wegdan M., Abd-Elmotie M. A. Shear bond strength of self adhering flowable composites after preliminary acid etching of dentin. Alexandria Dental Journal . 2016;41(3):318–321. doi: 10.21608/adjalexu.2016.58046.
    1. Alizadehgharib S., Östberg A. K., Dahlgren U. Triethylene glycol dimethacrylate: adjuvant properties and effect on cytokine production. Acta Biomaterialia Odontologica Scandinavica . 2018;4(1):1–9. doi: 10.1080/23337931.2017.1409075.
    1. Diomede F., Caputi S., Merciaro I., et al. Pro-inflammatory cytokine release and cell growth inhibition in primary human oral cells after exposure to endodontic sealer. International Endodontic Journal . 2014;47(9):864–872. doi: 10.1111/iej.12230.
    1. Nakagawa K., Saita M., Ikeda T., Hirota M., Park W., Lee M. C. Biocompatibility of 4-META/MMA-TBB resin used as a dental luting agent. The Journal of Prosthetic Dentistry . 2015;114(1):114–121. doi: 10.1016/j.prosdent.2014.10.016.
    1. van der Es D., Berni F., Hogendorf W. F. J., et al. Streamlined synthesis and evaluation of teichoic acid fragments. Chemistry . 2018;24(16):4014–4018. doi: 10.1002/chem.201800153.
    1. López Roldán A., García Giménez J. L., Alpiste Illueca F. Impact of periodontal treatment on the RANKL/OPG ratio in crevicular fluid. PLoS One . 2020;15(1, article e0227757) doi: 10.1371/journal.pone.0227757.
    1. Hassan S. H., El-Refai M. I., Ghallab N. A., Kasem R. F., Shaker O. G. Effect of periodontal surgery on osteoprotegerin levels in gingival crevicular fluid, saliva, and gingival tissues of chronic periodontitis patients. Disease Markers . 2015;2015:9. doi: 10.1155/2015/341259.341259
    1. Tuncer B. B., Özdemir B., Tuncer C., et al. The effect of fluorine release resin application on microbial dental plaque accumulation. Ondokuz Mayıs Üniv. Diş Hekimliği Derg., (J Omdis) . 2009;10:8–14.
    1. Graswinckel J. E. M., Van Der Velden U., Van Winkelhoff A. J. Plasma antibody levels in periodontitis patients and controls. Journal of Clinical Periodontology . 2004;31(7):562–568. doi: 10.1111/j.1600-051X.2004.00522.x.
    1. Lo Giudice G., Nicita F., Militi A., et al. Correlation of s-IgA and IL-6 salivary with caries disease and oral hygiene parameters in children. Dental Journal . 2020;8(1):3–9. doi: 10.3390/dj8010003.
    1. Hegde M., Devadiga D. Correlation between dental caries and salivary immunoglobulin in adult Indian population: an in vivo study. Journal of Restorative Dentistry . 2013;1(1):22–25. doi: 10.4103/2321-4619.111229.
    1. Kavaloglu Cıldır S., Sandallı N. Compressive strength, surface roughness, fluoride release and recharge of four new fluoride-releasing fissure sealants. Dental Materials Journal . 2007;26(3):335–341. doi: 10.4012/dmj.26.335.
    1. Oginni A. O., Adeleke A. A. Comparison of pattern of failure of resin composite restorations in non- carious cervical lesions with and without occlusal wear facets. Journal of Dentistry . 2014;42(7):824–830. doi: 10.1016/j.jdent.2014.04.003.

Source: PubMed

3
Abonner