Long-Term Post-COVID-19 Associated Oral Inflammatory Sequelae

Areej Alfaifi, Ahmed S Sultan, Daniel Montelongo-Jauregui, Timothy F Meiller, Mary Ann Jabra-Rizk, Areej Alfaifi, Ahmed S Sultan, Daniel Montelongo-Jauregui, Timothy F Meiller, Mary Ann Jabra-Rizk

Abstract

The oral cavity remains an underappreciated site for SARS-CoV-2 infection despite the myriad oral conditions observed in COVID-19 patients. Recently, replicating SARS-CoV-2 was found inside salivary epithelial cells resulting in inflammation and atrophy of salivary glands. Saliva possesses healing properties crucial for maintaining the health of the oral mucosa. Specifically, salivary antimicrobial peptides, most notable, histatin-5 exclusively produced in salivary glands, plays a vital role in innate immunity against colonizing microbial species. The demonstration of SARS-CoV-2 destruction of gland tissue where histatin-5 is produced strongly indicate that histatin-5 production is compromised due to COVID-19. Here we present a case of a patient presenting with unexplained chronic oral dysesthesia and dysgeusia post-recovery from COVID-19. To explore potential physiological mechanisms behind the symptoms, we comparatively analyzed saliva samples from the patient and matched healthy subject for histatin-5 and key cytokines. Findings demonstrated significantly reduced histatin-5 levels in patient's saliva and activation of the Th17 inflammatory pathway. As histatin-5 exhibits potent activity against the opportunistic oral pathogen Candida albicans, we evaluated saliva potency against C. albicans ex vivo. Compared to control, patient saliva exhibited significantly reduced anti-candidal efficacy. Although speculative, based on history and salivary analysis we hypothesize that salivary histatin-5 production may be compromised due to SARS-CoV-2 mediated salivary gland destruction. With the current lack of emphasis on implications of COVID-19 on oral health, this report may provide lacking mechanistic insights that may lead to reassessment of risks for oral opportunistic infections and mucosal inflammatory processes in acutely-ill and recovered COVID-19 patients.

Keywords: COVID - 19; antimicrobial peptide; inflammation; opportunistic infection; oral; salivary glands.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Alfaifi, Sultan, Montelongo-Jauregui, Meiller and Jabra-Rizk.

Figures

Figure 1
Figure 1
Ex vivo evaluation of anti-candidal activity of patient and control subject saliva based on reduction in C. albicans CFU counts. When the patient (P) and control subject (C) saliva samples with pre-determined Hst-5 levels were used in our Candida killing assay, both patient samples exhibited significantly reduced inhibitory effect on C. albicans compared to the control samples. The percent killing of the patient samples was proportional to measured Hst-5 concentration (P-S1: 1µg/l; P-S2: 2.3µg/ml). Purified Hst-5 peptide (5-20 µg/ml) was used as positive control for killing, and PBS as negative control. *P = 0.03; **P < 0.0021; ***P < 0.0002.
Figure 2
Figure 2
A hypothetical mechanistic illustration of the impact of COVID-19 on salivary glands and histatin production and secretion into saliva potentially predisposing patients to opportunistic infections and mucosal tissue inflammation. A schematic of a salivary gland depicting: Enrichment of viral entry factors (receptors) and replication of SARS-CoV-2 in gland serous acini and ducts; Resulting lymphocytic sialadenitis, architectural distortion, ductal rupture and atrophy of infected SG; Localization of histatin in the serous acinar and duct cells; Release of histatin and inflammatory cytokines into saliva.

References

    1. Ahmad M., Piludu M., Oppenheim F. G., Helmerhorst E. J., Hand A. R. (2004). Immunocytochemical Localization of Histatins in Human Salivary Glands. J. Histochem Cytochem 52 (3), 361–370. doi: 10.1177/002215540405200307
    1. Amorim Dos Santos J., Normando A. G. C., Carvalho da Silva R. L., Acevedo A. C., De Luca Canto G., Sugaya N., et al. . (2021). Oral Manifestations in Patients With COVID-19: A Living Systematic Review. Dent. Res. 100 (2), 141–154. doi: 10.1177/0022034520957289
    1. Brandini D. A., Takamiya A. S., Thakkar P., Schaller S., Rahat R., Naqvi A. R. (2021). Covid-19 and Oral Diseases: Crosstalk, Synergy or Association? Rev. Med. Virol. 31 (6), e2226. doi: 10.1002/rmv.2226
    1. Bunte K., Beikler T. (2019). Th17 Cells and the IL-23/IL-17 Axis in the Pathogenesis of Periodontitis and Immune-Mediated Inflammatory Diseases. Int. J. Mol. Sci. 20 (14), 3394. doi: 10.3390/ijms20143394
    1. Chen J., Feng J., Chen X., Xu H., Zhou Z., Shen X., et al. . (2013). Immunoexpression of Interleukin-22 and Interleukin-23 in Oral and Cutaneous Lichen Planus Lesions: A Preliminary Study. Mediators Inflamm. doi: 10.1155/2013/801974
    1. Ciccia F., Guggino G., Rizzo A., Ferrante A., Raimondo S., Giardina A., et al. . (2012). Potential Involvement of IL-22 and IL-22-Producing Cells in the Inflamed Salivary Glands of Patients With Sjogren's Syndrome. Ann. Rheum Dis. 71 (2), 295–301. doi: 10.1136/ard.2011.154013
    1. Corchuelo J., Ulloa F. C. (2020). Oral Manifestations in a Patient With a History of Asymptomatic COVID-19: Case Report. Int. J. Infect. Dis. 100, 154–157. doi: 10.1016/j.ijid.2020.08.071
    1. da Silva Pedrosa M., Sipert C. R., Nogueira F. N. (2021). Are the Salivary Glands the Key Players in Spreading COVID-19 Asymptomatic Infection in Dental Practice? J. Med. Virol. 93 (1), 204–205. doi: 10.1002/jmv.26316
    1. Diesch T., Filippi C., Fritschi N., Filippi A., Ritz N. (2021). Cytokines in Saliva as Biomarkers of Oral and Systemic Oncological or Infectious Diseases: A Systematic Review. Cytokine 143, 155506. doi: 10.1016/j.cyto.2021.155506
    1. Dos Santos J., Normando A. G. C., Carvalho da Silva R. L., De Paula R. M., Cembranel A. C., Santos-Silva A. R., et al. . (2020). Oral Mucosal Lesions in a COVID-19 Patient: New Signs or Secondary Manifestations? Int. J. Infect. Dis. 97, 326–328. doi: 10.1016/j.ijid.2020.06.012
    1. Edgerton M., Koshlukova S. E., Araujo M. W. B., Patel R. C., Dong J., Bruenn J. (2000). Salivary Histatin 5 and Human Neutrophil Defensin 1 Kill Candida Albicans via Shared Pathways. Animicrobial Agents Chemotherapy 44 (12), 3310–3316. doi: 10.1128/AAC.44.12.3310-3316.2000
    1. Gerós-Mesquita Â, Carvalho-Pereira J., Franco-Duarte R., Alves A., Gerós H., Pais C., et al. . (2020). Oral Candida Albicans Colonization in Healthy Individuals: Prevalence, Genotypic Diversity, Stability Along Time and Transmissibility. J. Oral. Microbiol. 12 (1), 1820292. doi: 10.1080/20002297.2020.1820292
    1. Gherlone E. F., Polizzi E., Tetè G., De Lorenzo R., Magnaghi C., Rovere Querini P., et al. . (2021). Frequent and Persistent Salivary Gland Ectasia and Oral Disease After COVID-19. J. Dent. Res. 100 (5), 464–471. doi: 10.1177/0022034521997112
    1. Gillum A. M., Tsay E. Y., Kirsch D. R. (1984). Isolation of the Candida Albicans Gene for Orotidine'5'-Phosphate Decarboxylase by Complementation of S. Cerevisiae Ura3 and E. Coli pyrF Mutations. Molec Gen. Genet. 198, 179–182. doi: 10.1007/BF00328721
    1. Helmerhorst E. J., Troxler R. F., Oppenheim F. G. (2001). The Human Salivary Peptide Histatin 5 Exerts Its Antifungal Activity Through the Formation of Reactive Oxygen Species. Proc. Nat. Acad. Sci. 98 (25), 14637–14642. doi: 10.1073/pnas.141366998
    1. Huang N., Pérez P., Kato T., Mikami Y., Okuda K., Gilmorre R. C., et al. . (2021). SARS-CoV-2 Infection of the Oral Cavity and Saliva. Nat. Med. 27, 892–903. doi: 10.1038/s41591-021-01296-8
    1. Jabra-Rizk M. A., Kong E., Tsui C., Nguyen M., Clancy C., Fidel P., et al. . (2016). Candida Albicans Pathogenesis: Fitting Within the Host-Microbe Damage Response Framework. Infect. Immun. 84 (10), 2724–2739. doi: 10.1128/IAI.00469-16
    1. Jahaj E., Vassiliou A. G., Keskinidou C., Gallos P., Vrettou C. S., Tsipilis S., et al. . (2021). Evaluating the Role of the Interleukin-23/17 Axis in Critically Ill COVID-19 Patients. J. Pers. Med. 11 (9), 891. doi: 10.3390/jpm11090891
    1. Khan S. A., Fidel P., Al Thunayyan A., Meiller T., Jabra-Rizk M. A. (2013). Impaired Histatin-5 Level and Salivary Antimicrobial Activity Against C. Albicans in HIV-Infected Individuals. J. AIDS Clin. Res. 4 (2), 1–6. doi: 10.4172/2155-6113.1000193
    1. Kong E., Tsui C., Boyce H., Ibrahim A., Hoag S., Karlsson A., et al. . (2015). Development and In Vivo Evaluation of a Novel Histatin-5 Bioadhesive Hydrogel Formulation Against Oral Candidiasis. Antimicrob. Agents Chemother. 60 (2), 881–889. doi: 10.1128/AAC.02624-15
    1. Mardani M., Mofidi H., Dastgheib L., Ranjbar S., Hamidizadeh N. (2021). Elevated Serum Interleukin-23 Levels in Patients With Oral and Cutaneous Lichen Planus. Mediators Inflamm. 2021. doi: 10.1155/2021/5578568
    1. Martonik D., Parfieniuk-Kowerda A., Rogalska M., Flisiak R. (2021). The Role of Th17 Response in COVID-19. Cells 10 (6), 1550. doi: 10.3390/cells10061550
    1. Nguyen C. Q., Hu M. H., Li Y., Stewart C., Peck A. B. (2008). Salivary Gland Tissue Expression of Interleukin-23 and Interleukin-17 in Sjögren's Syndrome: Findings in Humans and Mice. Arthritis Rheum 58 (3), 734–743. doi: 10.1002/art.23214
    1. Oppenheim F. G., Xu T., McMillian F. M., Levitz S. M., Diamond R. D., Offner G. D., et al. . (1988). Histatins, a Novel Family of Histidine-Rich Proteins in Human Parotid Secretion. J. Biol. Chem. 263 (16), 7472–7477. doi: 10.1016/S0021-9258(18)68522-9
    1. Pascolo L., Zupin L., Melato M., Tricarico P. M., Crovella S. (2020). TMPRSS2 and ACE2 Coexpression in SARS-CoV-2 Salivary Glands Infection. J. Dent. Res. 99 (10), 1120–1121. doi: 10.1177/0022034520933589
    1. Pastor-Fernández G I. R. M., Navarro M. N. (2020). Decoding IL-23 Signaling Cascade for New Therapeutic Opportunities. Cells 9 (9), 2044. doi: 10.3390/cells9092044
    1. Peters B. M., Shirtliff M. E., Jabra-Rizk M. A. (2010). Antimicrobial Peptides: Primeval Molecules or Future Drugs? PloS Pathog. 6 (10), e1001067. doi: 10.1371/journal.ppat.1001067
    1. Riad A., Gad A., Ockova B., Klugar M. (2020). Oral Candidiasis in Non-Severe COVID-19 Patients: Call for Antibiotic Stewardship. Oral. Surg. doi: 10.1111/ors.12561
    1. Salehi M., Ahmadikia K., Mahmoudi S., Kalantari S., Jamalimoghadamsiahkali S., Izadi A., et al. . (2020). Oropharyngeal Candidiasis in Hospitalised COVID-19 Patients From Iran: Species Identification and Antifungal Susceptibility Pattern. Mycoses 63 (8), 771–778. doi: 10.1111/myc.13137
    1. Salvatori O., Puri S., Tati S., Edgerton M. (2016). Innate Immunity and Saliva in Candida Albicans-Mediated Oral Diseases. J. Dent. Res. 95 (4), 365–371. doi: 10.1177/0022034515625222
    1. Sultan A. S., Kong E. F., Rizk A. M., Jabra-Rizk M. A. (2018). The Oral Microbiome: A Lesson in Co-Existence. PloS Pathog. 14 (1), e1006719. doi: 10.1371/journal.ppat.1006719
    1. Sultan A. S., Vila T., Hefni E., Karlsson A. J., Jabra-Rizk M. A. (2019). Evaluation of the Antifungal and Wound Healing Properties of a Novel Peptide-Based Bioadhesive Hydrogel Formulation. Antimicrob. Agents Chemother. 63 (10), e00888–e00819. doi: 10.1128/AAC.00888-19
    1. Tsuchiya H. (2021). Oral Symptoms Associated With COVID-19 and Their Pathogenic Mechanisms: A Literature Review. Dent. J. (Basel) 9 (3), 32. doi: 10.3390/dj9030032
    1. Vila T., Rizk A. M., Sultan A. S., Jabra-Rizk M. A. (2019). The Power of Saliva: Antimicrobial and Beyond. PloS Pathog. 15 (11), e1008058. doi: 10.1371/journal.ppat.1008058
    1. Vila T., Sultan A. S., Montelongo-Jauregui D., Jabra-Rizk M. A. (2020). Oral Candidiasis: A Disease of Opportunity. J. Fungi (Basel) 6 (1), pii: E15. doi: 10.3390/jof6010015
    1. Zhang L. W., Zhou P. R., Wei P., Cong X., Wu L. L., Hua H. (2018). Expression of Interleukin-17 in Primary Sjögren's Syndrome and the Correlation With Disease Severity: A Systematic Review and Meta-Analysis. Scand. J. Immunol. 87 (4), e12649. doi: 10.1111/sji.12649

Source: PubMed

3
Abonner