Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression

Jiliang Fang, Natalia Egorova, Peijing Rong, Jun Liu, Yang Hong, Yangyang Fan, Xiaoling Wang, Honghong Wang, Yutian Yu, Yunyao Ma, Chunhua Xu, Shaoyuan Li, Jingjun Zhao, Man Luo, Bing Zhu, Jian Kong, Jiliang Fang, Natalia Egorova, Peijing Rong, Jun Liu, Yang Hong, Yangyang Fan, Xiaoling Wang, Honghong Wang, Yutian Yu, Yunyao Ma, Chunhua Xu, Shaoyuan Li, Jingjun Zhao, Man Luo, Bing Zhu, Jian Kong

Abstract

Transcutaneous vagus nerve stimulation (tVNS), a non-invasive method of brain stimulation through the auricular branch of the vagus nerve, has shown promising results in treating major depressive disorder (MDD) in several pilot studies. However, the neural mechanism by which the effect on depression might be achieved has not been fully investigated, with only a few neuroimaging studies demonstrating tVNS-induced changes in the brains of healthy volunteers. Identifying specific neural pathways, which are influenced by tVNS compared with sham in depressed individuals, as well as determining neurobiomarkers of tVNS treatment success are needed to advance the application of tVNS for MDD. In order to address these questions, we measured fMRI brain activity of thirty-eight depressed patients assigned to undergo tVNS (n = 17) or sham (n = 21) treatment for 4 weeks, during the first stimulation session. The results showed significant fMRI signal increases in the left anterior insula, revealed by a direct comparison of tVNS and sham stimulation. Importantly, the insula activation level during the first stimulation session in the tVNS group was significantly associated with the clinical improvement at the end of the four-week treatment, as indicated by the Hamilton Depression Rating Scale (HAM-D) score. Our findings suggest that anterior insula fMRI activity could serve as a potential cortical biomarker and an early predictor of tVNS longitudinal treatment success.

Keywords: Functional magnetic resonance imaging (fMRI); Major depressive disorder (MDD); Transcutaneous vagus nerve stimulation tVNS.

Figures

Fig. 1
Fig. 1
Locations for the tVNS and sham stimulation.
Fig. 2
Fig. 2
Stimulation protocol. Each session took 6 min to complete. Two stimulation sessions were recorded per subject. S: stimulation.
Fig. 3
Fig. 3
Bar graph demonstrating HAM-D scores pre- and post-treatment by group (tVNS vs. sham).
Fig. 4
Fig. 4
Results of a 2-sample t-test, tVNS > sham, whole-brain p = 0.005 (SVC for multiple comparisons).
Fig. 5
Fig. 5
Scatter plot showing a significant negative correlation between HAM-D scores at 4 weeks and activation in the left dorsal anterior insula during the first treatment session (values extracted from a sphere with 6 mm radius around the peak coordinate (− 30, 8, 8)) in the tVNS group, suggesting that greater activation of the insula during treatment is associated with better treatment outcome. The lines represent least squares linear fits (darker line for the tVNS group correlation). No association was observed in the sham group.

References

    1. Chae J.-H., Nahas Z., Lomarev M., Denslow S., Lorberbaum J.P., Bohning D.E., George M.S. A review of functional neuroimaging studies of vagus nerve stimulation (VNS) J. Psychiatr. Res. 2003;37:443–455.
    1. Cohen J.D., Nichols T., Keller J., Gomez R.G., Schatzberg A.F., Reiss A.L. Insular cortex abnormalities in psychotic major depression: relationship to gender and psychotic symptoms. Neurosci. Res. 2013;75:331–339.
    1. Conway C.R., Sheline Y.I., Chibnall J.T., George M.S., Fletcher J.W., Mintun M.A. Cerebral blood flow changes during vagus nerve stimulation for depression. Psychiatry Res. 2006;146:179–184. (S0925-4927(05)00207-6 [pii])
    1. Davidson R.J., Pizzagalli D., Nitschke J.B., Putnam K. Depression: perspectives from affective neuroscience. Annu. Rev. Psychol. 2002;53:545–574. (pii)
    1. de Graaf L.E., Huibers M.J., Cuijpers P., Arntz A. Minor and major depression in the general population: does dysfunctional thinking play a role? Compr. Psychiatry. 2010;51:266–274. (S0010-440X(09)00092-3 [pii])
    1. Dietrich S., Smith J., Scherzinger C., Hofmann-Preiß K., Freitag T., Eisenkolb A., Ringler R., Hofmann-Preiss K., Freitag T., Eisenkolb A., Ringler R. A novel transcutaneous vagus nerve stimulation leads to brainstem and cerebral activations measured by functional MRI. Biomed. Tech. 2008;53:104–111.
    1. Ellrich J. Transcutaneous vagus nerve stimulation. Eur. Neurol. Rev. 2011;6:254–256.
    1. Fang J., Hong Y., Fan Y., Liu J., Ma Y., Xiu C., Wang H., Ma Y., Wang X., Liu Z., Zhu B., Kong J., Rong P. Brain response to Transcutaneous vagus nerve stimulation, an fMRI study. J. Magn. Reson. Imaging. 2014;5:416–422.
    1. Fang J., Rong P., Hong Y., Fan Y., Liu J., Wang H., Zhang G., Chen X., Shi S., Wang L., Liu R., Hwang J., Li Z., Tao J., Wang Y., Zhu B., Kong J. Transcutaneous vagus nerve stimulation modulates default mode network in major depressive disorder. Biol. Psychiatry. 2015:1–8.
    1. Frangos E., Ellrich J., Komisaruk B.R. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624–636.
    1. Freeman S., Yu R., Egorova N., Chen X., Kirsch I., Claggett B., Kaptchuk T.J., Gollub R.L., Kong J. Distinct neural representations of placebo and nocebo effects. NeuroImage. 2015;112:197–207.
    1. Greicius M.D., Flores B.H., Menon V., Glover G.H., Solvason H.B., Kenna H., Reiss A.L., Schatzberg A.F. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry. 2007;62:429–437. (S0006-3223(06)01193-0 [pii])
    1. Groenewold N.a., Opmeer E.M., de Jonge P., Aleman A., Costafreda S.G. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci. Biobehav. Rev. 2013;37:152–163.
    1. Hashmi J.A., Kong J., Spaeth R., Khan S., Kaptchuk T.J., Gollub R.L. Functional network architecture predicts psychologically mediated analgesia related to treatment in chronic knee pain patients. J. Neurosci. 2014;34:3924–3936.
    1. Hastings R.S., Parsey R.V., Oquendo M.A., Arango V., Mann J.J. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology. 2004;29:952–959.
    1. Hatton S.N., Lagopoulos J., Hermens D.F., Naismith S.L., Bennett M.R., Hickie I.B. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study. BMC Psychiatry. 2012;12:45.
    1. Hayama T., Ogawa H. Two loci of the insular cortex project to the taste zone of the nucleus of the solitary tract in rats. Neurosci. Lett. 2001;303:49–52.
    1. Hein E., Nowak M., Kiess O., Biermann T., Bayerlein K., Kornhuber J., Kraus T. Auricular transcutaneous electrical nerve stimulation in depressed patients: a randomized controlled pilot study. J. Neural Transm. 2013;120:821–827.
    1. Henry T.R., Bakay R.A., Pennell P.B., Epstein C.M., Votaw J.R. Brain blood-flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: II. Prolonged effects at high and low levels of stimulation. Epilepsia. 2004;45:1064–1070.
    1. Howland R.H. Vagus nerve stimulation. Curr. Behav. Neurosci. Rep. 2014;1:64–73.
    1. Huang F., Dong J., Kong J., Wang H., Meng H., Spaeth R.B., Camhi S., Liao X., Li X., Zhai X., Li S., Zhu B., Rong P. Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Altern. Med. 2014;14:203.
    1. Hwang J.W., Egorova N., Yang X.Q., Zhang W.Y., Chen J., Yang X.Y., Hu L.J., Sun S., Tu Y., Kong J. Subthreshold depression is associated with impaired resting-state functional connectivity of the cognitive control network. Transl. Psychiatry. 2015;5
    1. Johnson J., Weissman M.M., Klerman G.L. Service utilization and social morbidity associated with depressive symptoms in the community. JAMA. 1992;267:1478–1483.
    1. King M.S. Anatomy of the Rostral nucleus of the solitary tract. In: Bradley R.M., editor. The Role of the Nucleus of the Solitary Tract in Gustatory Processing. CRC Press/Taylor & Francis; Boca Raton, Florida: 2007.
    1. Kirsch I., Deacon B.J., Huedo-Medina T.B., Scoboria A., Moore T.J., Johnson B.T. Initial severity and antidepressant benefits: a meta-analysis of data submitted to the food and drug administration. PLoS Med. 2008;5
    1. Konarski J.Z., McIntyre R.S., Grupp L.a., Kennedy S.H. Is the cerebellum relevant in the circuitry of neuropsychiatric disorders? J. Psychiatry Neurosci. 2005;30:178–186.
    1. Kosel M., Brockmann H., Frick C., Zobel A., Schlaepfer T.E. Chronic vagus nerve stimulation for treatment-resistant depression increases regional cerebral blood flow in the dorsolateral prefrontal cortex. Psychiatry Res. 2011;191:153–159.
    1. Kraus T., Hosl K., Kiess O., Schanze A., Kornhuber J., Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J. Neural Transm. 2007;114:1485–1493.
    1. Kraus T., Kiess O., Hosl K., Terekhin P., Kornhuber J., Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal — a pilot study. Brain Stimul. 2013;6:798–804. S1935-861X(13)00034-X [pii]
    1. Kraus T., Kiess O., Hösl K., Terekhin P., Kornhuber J., Forster C. CNS BOLD fMRI effects of sham-controlled transcutaneous electrical nerve stimulation in the left outer auditory canal — a pilot study. Brain Stimul. 2013;6:798–804.
    1. Lehtinen V., Joukamaa M. Epidemiology of depression: prevalence, risk factors and treatment situation. Acta Psychiatr. Scand. Suppl. 1994;377:7–10.
    1. Lener M.S., Iosifescu D.V. In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. Ann. N. Y. Acad. Sci. 2015;1344:50–65.
    1. Liu Z., Xu C., Xu Y., Wang Y., Zhao B., Lv Y., Cao X., Zhang K., Du C. Decreased regional homogeneity in insula and cerebellum: a resting-state fMRI study in patients with major depression and subjects at high risk for major depression. Psychiatry Res. 2010;182:211–215.
    1. Liu J., Fang J., Wang Z., Rong P., Hong Y., Fan Y., Wang X., Park J., Jin Y., Liu C., Zhu B., Kong J. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J. Affect. Disord. 2016;205:319–326.
    1. McGrath C.L., Kelley M.E., Holtzheimer P.E., Dunlop B.W., Craighead W.E., Franco A.R., Craddock R.C., Mayberg H.S. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiat. 2013;70:821–829.
    1. Nahas Z., Burns C., Foust M.J., Short B., Herbsman T., George M.S. Vagus nerve stimulation (VNS) for depression: what do we know now and what should be done next? Curr. Psychiatry Rep. 2006;8:445–451.
    1. Nemeroff C.B., Mayberg H.S., Krahl S.E., McNamara J., Frazer A., Henry T.R., George M.S., Charney D.S., Brannan S.K. VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31:1345–1355.
    1. Peuker E.T., Filler T.J. The nerve supply of the human auricle. Clin. Anat. 2002;15:35–37.
    1. Pizzagalli D.A. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36:183–206. (npp2010166 [pii])
    1. Power J.D., Barnes K.A., Snyder A.Z., Schlaggar B.L., Petersen S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage. 2012;59:2142–2154.
    1. Rong P.J., Fang J.L., Wang L.P., Meng H., Liu J., Ma Y.G., Ben H., Li L., Liu R.P., Huang Z.X., Zhao Y.F., Li X., Zhu B., Kong J. Transcutaneous vagus nerve stimulation for the treatment of depression: a study protocol for a double blinded randomized clinical trial. BMC Complement. Altern. Med. 2012;12:255. (1472-6882-12-255 [pii])
    1. Rong P., Liu A., Zhang J., Wang Y., Yang A., Li L., Ben H., Li L., Liu R., He W., Liu H., Huang F., Li X., Wu P., Zhu B. An alternative therapy for drug-resistant epilepsy: transcutaneous auricular vagus nerve stimulation. Chin. Med. J. 2014;127:300–304.
    1. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., Zhao Y., Wang H., Vangel M., Sun S., Ben H., Park J., Li S., Meng H., Zhu B., Kong J. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 2016;195:172–179.
    1. Ruffoli R., Giorgi F.S., Pizzanelli C., Murri L., Paparelli A., Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J. Chem. Neuroanat. 2011;42:288–296.
    1. Rush J., Siefert S.E. Clinical issues in considering vagus nerve stimulation for treatment-resistant depression. Exp. Neurol. 2009;219:36–43.
    1. Rush A.J., Marangell L.B., Sackeim H.A., George M.S., Brannan S.K., Davis S.M., Howland R., Kling M.A., Rittberg B.R., Burke W.J., Rapaport M.H., Zajecka J., Nierenberg A.A., Husain M.M., Ginsberg D., Cooke R.G. Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol. Psychiatry. 2005;58:347–354.
    1. Sacher J., Neumann J., Funfstuck T., Soliman A., Villringer A., Schroeter M.L. Mapping the depressed brain: a meta-analysis of structural and functional alterations in major depressive disorder. J. Affect. Disord. 2012;140:142–148. S0165-0327(11)00458-7 [pii]
    1. Sheline Y.I., Barch D.M., Price J.L., Rundle M.M., Vaishnavi S.N., Snyder A.Z., Mintun M.A., Wang S., Coalson R.S., Raichle M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. U. S. A. 2009;106:1942–1947. 0812686106 [pii]
    1. Sheline Y.I., Price J.L., Yan Z., Mintun M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U. S. A. 2010;107:11020–11025.
    1. Shipley M.T. Insular cortex projection to the nucleus of the solitary tract and brainstem visceromotor regions in the mouse. Brain Res. Bull. 1982;8:139–148.
    1. Singh M.K., Gotlib I.H. The neuroscience of depression: implications for assessment and intervention. Behav. Res. Ther. 2014;62:60–73.
    1. Soriano-Mas C., Hernndez-Ribas R., Pujol J., Urretavizcaya M., Deus J., Harrison B.J., Ortiz H., Lpez-Sol M., Menchn J.M., Cardoner N. Cross-sectional and longitudinal assessment of structural brain alterations in melancholic depression. Biol. Psychiatry. 2011;69:318–325.
    1. Sperling W., Reulbach U., Kornhuber J. Clinical benefits and cost effectiveness of vagus nerve stimulation in a long-term treatment of patients with major depression. Pharmacopsychiatry. 2009;42:85–88.
    1. Sprengelmeyer R., Steele J.D., Mwangi B., Kumar P., Christmas D., Milders M., Matthews K. The insular cortex and the neuroanatomy of major depression. J. Affect. Disord. 2011;133:120–127.
    1. Takahashi T., Yücel M., Lorenzetti V., Tanino R., Whittle S., Suzuki M., Walterfang M., Pantelis C., Allen N.B. Volumetric MRI study of the insular cortex in individuals with current and past major depression. J. Affect. Disord. 2010;121:231–238.
    1. Tracey I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 2010;16:1277–1283.
    1. Wagner G., Schachtzabel C., Peikert G., Bar K.J. The neural basis of the abnormal self-referential processing and its impact on cognitive control in depressed patients. Hum. Brain Mapp. 2015
    1. Weeks H.R., Tadler S.C., Smith K.W., Iacob E., Saccoman M., White A.T., Landvatter J.D., Chelune G.J., Suchy Y., Clark E., Cahalan M.K., Bushnell L., Sakata D., Light A.R., Light K.C. Antidepressant and neurocognitive effects of isoflurane anesthesia versus electroconvulsive therapy in refractory depression. PLoS One. 2013;8

Source: PubMed

3
Abonner