A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study

Chen Sarbagili-Shabat, Lindsey Albenberg, Johan Van Limbergen, Naomi Pressman, Anthony Otley, Michal Yaakov, Eytan Wine, Dror Weiner, Arie Levine, Chen Sarbagili-Shabat, Lindsey Albenberg, Johan Van Limbergen, Naomi Pressman, Anthony Otley, Michal Yaakov, Eytan Wine, Dror Weiner, Arie Levine

Abstract

Background: As the microbiome plays an important role in instigating inflammation in ulcerative colitis (UC), strategies targeting the microbiome may offer an alternative therapeutic approach. The goal of the pilot trial was to evaluate the potential efficacy and feasibility of a novel UC exclusion diet (UCED) for clinical remission, as well as the potential of sequential antibiotics for diet-refractory patients to achieve remission without steroids.

Methods: This was a prospective, single-arm, multicenter, open-label pilot study in patients aged 8-19, with pediatric UC activity index (PUCAI) scores >10 on stable maintenance therapy. Patients failing to enter remission (PUCAI < 10) on the diet could receive a 14-day course of amoxycillin, metronidazole and doxycycline (AMD), and were re-assessed on day 21. The primary endpoint was intention-to-treat (ITT) remission at week 6, with UCED as the only intervention.

Results: Twenty-four UCED treatment courses were given to 23 eligible children (mean age: 15.3 ± 2.9 years). The median PUCAI decreased from 35 (30-40) at baseline to 12.5 (5-30) at week 6 (p = 0.001). Clinical remission with UCED alone was achieved in 9/24 (37.5%). The median fecal calprotectin declined from 818 (630.0-1880.0) μg/g at baseline to 592.0 (140.7-1555.0) μg/g at week 6 (p > 0.05). Eight patients received treatment with antibiotics after failing on the diet; 4/8 (50.0%) subsequently entered remission 3 weeks later.

Conclusion: The UCED appears to be effective and feasible for the induction of remission in children with mild to moderate UC. The sequential use of UCED followed by antibiotic therapy needs to be evaluated as a microbiome-targeted, steroid-sparing strategy.

Keywords: antibiotics; child; diet; remission; treatment; ulcerative colitis.

Conflict of interest statement

C.S.-S.: potential IP for Nestle Health Science. LA. has received grants, honoraria, and speaker or consulting fees from Abbott Nutrition, Nestle Health Science, and Seres Therapeutics. J.V.L.: consulting, travel and/or speaker fees and research support from AbbVie, Janssen, Nestlé Health Science, Merck, P&G, GSK, Illumina and Otsuka. The conduct of the study in Halifax, Canada, was supported by local divisional funds, a Canadian Institutes of Health Research (CIHR: Canadian Association of Gastroenterology—Crohn’s Colitis Canada) New Investigator award (J.V.L.) and a Canada Research Chair Tier 2 in Translational Microbomics (J.V.L.). A.O. has received grants and consulting fees, and/or sits on advisory boards for Janssen, AbbVie, Pfizer, Eli Lily and Nestle Health Science. M.Y. has no conflicts of interest. E.W. has received honoraria from Janssen & Mead Johnson Nutrition (speaker fee) and from AbbVie and Nestle Health Sciences (advisory board and speaker fees). D.W. has no conflicts of interest. A.L. has received grants, honoraria, speaker or consulting fees, or IP licensing from Janssen, Megapharm, Takeda, Ferring, Galapagos and Nestle Health Science.

Figures

Figure 1
Figure 1
Trial design.
Figure 2
Figure 2
Response and remission rates according to intention-to-treat analysis with UC exclusion diet (UCED) as sole intervention; amoxycillin, metronidazole and doxycycline (AMD) antibiotic treatment; and either UCED or the AMD antibiotic treatment.
Figure 3
Figure 3
Change in PUCAI with UC exclusion diet between baseline and week 6, including all patients in a last-observation-carried-forward analysis.
Figure 4
Figure 4
Dietary intake of macronutrients and micronutrient targets for UCED at baseline and after diet treatment: total protein (g/kg, n = 20), saturated fat (g, n = 19), monounsaturated fat (g, n = 19), fiber (g, n = 20), cysteine (g, n = 15), methionine (g, n = 15), and iron (mg, n = 19).

References

    1. Lönnfors S., Vermeire S., Greco M., Hommes D., Bell C., Avedano L. IBD and health-related quality of life—Discovering the true impact. J. Crohn’s Coliti. 2014;8:1281–1286. doi: 10.1016/j.crohns.2014.03.005.
    1. Molodecky N.A., Soon I.S., Rabi D.M., Ghali W.A., Ferris M., Chernoff G., Benchimol E.I., Panaccione R., Ghosh S., Barkema H.W., et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases with Time, Based on Systematic Review. Gastroenterology. 2012;142:46–54.e42. doi: 10.1053/j.gastro.2011.10.001.
    1. Kaplan G.G., Ng S.C. Understanding and Preventing the Global Increase of Inflammatory Bowel Disease. Gastroenterology. 2017;152:313–321.e2. doi: 10.1053/j.gastro.2016.10.020.
    1. Levine A., Boneh R.S., Wine E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut. 2018;67:1726–1738. doi: 10.1136/gutjnl-2017-315866.
    1. James S.L., Christophersen C.T., Bird A.R., Conlon M.A., Rosella O., Gibson P.R., Muir J.G. Abnormal fibre usage in UC in remission. Gut. 2014;64:562–570. doi: 10.1136/gutjnl-2014-307198.
    1. Khalil N.A., Walton G.E., Gibson G.R., Tuohy K.M., Andrews S.C. In vitrobatch cultures of gut microbiota from healthy and ulcerative colitis (UC) subjects suggest that sulphate-reducing bacteria levels are raised in UC and by a protein-rich diet. Int. J. Food Sci. Nutr. 2013;65:79–88. doi: 10.3109/09637486.2013.825700.
    1. Turner D., Bishai J., Reshef L., Abitbol G., Focht G., Marcus D., Ledder O., Lev-Tzion R., Orlanski-Meyer E., Yerushalmi B., et al. Antibiotic Cocktail for Pediatric Acute Severe Colitis and the Microbiome: The PRASCO Randomized Controlled Trial. Inflamm. Bowel Dis. 2019;26:1733–1742. doi: 10.1093/ibd/izz298.
    1. Costello S.P., Soo W., Bryant R.V., Jairath V., Hart A.L., Andrews J.M. Systematic review with meta-analysis: Faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment. Pharmacol. Ther. 2017;46:213–224. doi: 10.1111/apt.14173.
    1. Moayyedi P., Surette M.G., Kim P.T., Libertucci J., Wolfe M., Onischi C., Armstrong D., Marshall J.K., Kassam Z., Reinisch W., et al. Fecal Microbiota Transplantation Induces Remission in Patients with Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology. 2015;149:102–109.e6. doi: 10.1053/j.gastro.2015.04.001.
    1. Johansson M.E.V., Gustafsson J.K., Holmén-Larsson J., Jabbar K., Xia L., Xu H., Ghishan F.K., A Carvalho F., Gewirtz A.T., Sjövall H., et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2013;63:281–291. doi: 10.1136/gutjnl-2012-303207.
    1. van der Post S., Jabbar K., Birchenough G., Arike L., Akhtar N., Sjovall H., Johansson M.E.V., Hansson G.C. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut. 2019;68:2142–2151. doi: 10.1136/gutjnl-2018-317571.
    1. Llewellyn S.R., Britton G.J., Contijoch E.J., Vennaro O.H., Mortha A., Colombel J.-F., Grinspan A., Clemente J.C., Merad M., Faith J.J. Interactions Between Diet and the Intestinal Microbiota Alter Intestinal Permeability and Colitis Severity in Mice. Gastroenterology. 2018;154:1037–1046.e2. doi: 10.1053/j.gastro.2017.11.030.
    1. Puértolas-Balint F., Schroeder B.O. Does an Apple a Day Also Keep the Microbes Away? The Interplay Between Diet, Microbiota, and Host Defense Peptides at the Intestinal Mucosal Barrier. Front. Immunol. 2020;11:1164. doi: 10.3389/fimmu.2020.01164.
    1. Zaidi D., Huynh H.Q., Carroll M.W., Mandal R., Wishart D.S., Wine E. Gut Microenvironment and Bacterial Invasion in Paediatric Inflammatory Bowel Diseases. J. Pediatr. Gastroenterol. Nutr. 2020;71:624–632. doi: 10.1097/MPG.0000000000002848.
    1. Miele E., Shamir R., Aloi M., Assa A., Braegger C., Bronsky J., de Ridder L., Escher J.C., Hojsak I., Kolaček S., et al. Nutrition in Pediatric Inflammatory Bowel Disease: A Position Paper on Behalf of the Porto Inflammatory Bowel Disease Group of the European Society of Pediatric Gastroenterology, Hepatology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2018;66:687–708. doi: 10.1097/MPG.0000000000001896.
    1. Levine A., Wine E., Assa A., Boneh R.S., Shaoul R., Kori M., Cohen S., Peleg S., Shamaly H., On A., et al. Crohn’s Disease Exclusion Diet Plus Partial Enteral Nutrition Induces Sustained Remission in a Randomized Controlled Trial. Gastroenterology. 2019;157:440–450.e8. doi: 10.1053/j.gastro.2019.04.021.
    1. Sarbagili-Shabat C., Sigall-Boneh R., Levine A. Nutritional therapy in inflammatory bowel disease. Curr. Opin. Gastroenterol. 2015;31:303–308. doi: 10.1097/MOG.0000000000000178.
    1. Levine A., Rhodes J.M., Lindsay J.O., Abreu M.T., Kamm M.A., Gibson P.R., Gasche C., Silverberg M.S., Mahadevan U., Boneh R.S., et al. Dietary Guidance from the International Organization for the Study of Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2020;18:1381–1392. doi: 10.1016/j.cgh.2020.01.046.
    1. Chen L., Wang J., Yi J., Liu Y., Yu Z., Chen S., Liu X. Increased mucin-degrading bacteria by high protein diet leads to thinner mucus layer and aggravates experimental colitis. J. Gastroenterol. Hepatol. 2021;36:2864–2874. doi: 10.1111/jgh.15562.
    1. Uehara T., Kato K., Ohkusa T., Sugitani M., Ishii Y., Nemoto N., Moriyama M. Efficacy of antibiotic combination therapy in patients with active ulcerative colitis, including refractory or steroid-dependent cases. J. Gastroenterol. Hepatol. 2010;25:S62–S66. doi: 10.1111/j.1440-1746.2010.06231.x.
    1. Ohkusa T., Kato K., Terao S., Chiba T., Mabe K., Murakami K., Mizokami Y., Sugiyama T., Yanaka A., Takeuchi Y., et al. Newly Developed Antibiotic Combination Therapy for Ulcerative Colitis: A Double-Blind Placebo-Controlled Multicenter Trial. Am. J. Gastroenterol. 2010;105:1820–1829. doi: 10.1038/ajg.2010.84.
    1. Kushkevych I., Cejnar J., Treml J., Dordević D., Kollar P., Vítězová M. Recent Advances in Metabolic Pathways of Sulfate Reduction in Intestinal Bacteria. Cells. 2020;9:698. doi: 10.3390/cells9030698.
    1. Devkota S., Wang Y., Musch M.W., Leone V., Fehlner-Peach H., Nadimpalli A., Antonopoulos D.A., Jabri B., Chang E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487:104–108. doi: 10.1038/nature11225.
    1. Tomas J., Mulet C., Saffarian A., Cavin J.-B., Ducroc R., Regnault B., Tan C.K., Duszka K., Burcelin R., Wahli W., et al. High-fat diet modifies the PPAR-γ pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proc. Natl. Acad. Sci. USA. 2016;113:E5934–E5943. doi: 10.1073/pnas.1612559113.
    1. Vidal-Lletjós S., Beaumont M., Tomé D., Benamouzig R., Blachier F., Lan A. Dietary Protein and Amino Acid Supplementation in Inflammatory Bowel Disease Course: What Impact on the Colonic Mucosa? Nutrients. 2017;9:310. doi: 10.3390/nu9030310.
    1. Mu C., Yang Y., Luo Z., Guan L., Zhu W. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet. J. Nutr. 2016;146:474–483. doi: 10.3945/jn.115.223990.
    1. Le Leu R.K., Young G.P., Hu Y., Winter J., Conlon M.A. Dietary Red Meat Aggravates Dextran Sulfate Sodium-Induced Colitis in Mice Whereas Resistant Starch Attenuates Inflammation. Dig. Dis. Sci. 2013;58:3475–3482. doi: 10.1007/s10620-013-2844-1.
    1. Barnes E.L., Nestor M., Onyewadume L., de Silva P.S., Korzenik J.R., Aguilar H., Bailen L., Berman A., Bhaskar S.K., Brown M., et al. High Dietary Intake of Specific Fatty Acids Increases Risk of Flares in Patients with Ulcerative Colitis in Remission during Treatment with Aminosalicylates. Clin. Gastroenterol. Hepatol. 2017;15:1390–1396.e1. doi: 10.1016/j.cgh.2016.12.036.
    1. Chassaing B., Van De Wiele T., De Bodt J., Marzorati M., Gewirtz A.T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut. 2017;66:1414–1427. doi: 10.1136/gutjnl-2016-313099.
    1. Alvarado D.M., Chen B., Iticovici M., Thaker A.I., Dai N., VanDussen K.L., Shaikh N., Lim E., Guillemin G., Tarr P.I., et al. Epithelial Indoleamine 2,3-Dioxygenase 1 Modulates Aryl Hydrocarbon Receptor and Notch Signaling to Increase Differentiation of Secretory Cells and Alter Mucus-Associated Microbiota. Gastroenterology. 2019;157:1093–1108.e11. doi: 10.1053/j.gastro.2019.07.013.
    1. Agus A., Planchais J., Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003.
    1. Wei Y., Gong J., Zhu W., Tian H., Ding C., Gu L., Li N., Li J. Pectin enhances the effect of fecal microbiota transplantation in ulcerative colitis by delaying the loss of diversity of gut flora. BMC Microbiol. 2016;16:255. doi: 10.1186/s12866-016-0869-2.
    1. Sahasrabudhe N.M., Beukema M., Tian L., Troost B., Scholte J., Bruininx E., Bruggeman G., Berg M.V.D., Scheurink A., Schols H.A., et al. Dietary Fiber Pectin Directly Blocks Toll-Like Receptor 2–1 and Prevents Doxorubicin-Induced Ileitis. Front. Immunol. 2018;9:383. doi: 10.3389/fimmu.2018.00383.
    1. Desai M.S., Seekatz A.M., Koropatkin N.M., Kamada N., Hickey C.A., Wolter M., Pudlo N.A., Kitamoto S., Terrapon N., Muller A., et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell. 2016;167:1339–1353.e21. doi: 10.1016/j.cell.2016.10.043.
    1. Russo E., Giudici F., Fiorindi C., Ficari F., Scaringi S., Amedei A. Immunomodulating Activity and Therapeutic Effects of Short Chain Fatty Acids and Tryptophan Post-biotics in Inflammatory Bowel Disease. Front. Immunol. 2019;10:2754. doi: 10.3389/fimmu.2019.02754.
    1. Martinez-Medina M., Denizot J., Dreux N., Robin F., Billard E., Bonnet R., Darfeuille-Michaud A., Barnich N. Western diet induces dysbiosis with increasedE coliin CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut. 2013;63:116–124. doi: 10.1136/gutjnl-2012-304119.
    1. Gulhane M., Murray L., Lourie R., Tong H., Sheng Y.H., Wang R., Kang A., Schreiber V., Wong K.Y., Magor G., et al. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22. Sci. Rep. 2016;6:28990. doi: 10.1038/srep28990.
    1. Laudisi F., Di Fusco D., Dinallo V., Stolfi C., Di Grazia A., Marafini I., Colantoni A., Ortenzi A., Alteri C., Guerrieri F., et al. The Food Additive Maltodextrin Promotes Endoplasmic Reticulum Stress–Driven Mucus Depletion and Exacerbates Intestinal Inflammation. Cell. Mol. Gastroenterol. Hepatol. 2019;7:457–473. doi: 10.1016/j.jcmgh.2018.09.002.
    1. Lee J.-Y., Cevallos S.A., Byndloss M.X., Tiffany C.R., Olsan E.E., Butler B.P., Young B.M., Rogers A.W., Nguyen H., Kim K., et al. High-Fat Diet and Antibiotics Cooperatively Impair Mitochondrial Bioenergetics to Trigger Dysbiosis that Exacerbates Pre-inflammatory Bowel Disease. Cell Host Microbe. 2020;28:273–284.e6. doi: 10.1016/j.chom.2020.06.001.
    1. E Jakobsson H., Rodríguez-Piñeiro A.M., Schütte A., Ermund A., Boysen P., Bemark M., Sommer F., Bäckhed F., Hansson G.C., Johansson M.E.V. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 2014;16:164–177. doi: 10.15252/embr.201439263.
    1. Singh V., Yeoh B.S., Walker R., Xiao X., Saha P., Golonka R.M., Cai J., Bretin A.C.A., Cheng X., Liu Q., et al. Microbiota fermentation-NLRP3 axis shapes the impact of dietary fibres on intestinal inflammation. Gut. 2019;68:1801–1812. doi: 10.1136/gutjnl-2018-316250.
    1. Ijssennagger N., van der Meer R., van Mil S.W. Sulfide as a Mucus Barrier-Breaker in Inflammatory Bowel Disease? Trends Mol. Med. 2016;22:190–199. doi: 10.1016/j.molmed.2016.01.002.
    1. Sittipo P., Shim J.-W., Lee Y.K. Microbial Metabolites Determine Host Health and the Status of Some Diseases. Int. J. Mol. Sci. 2019;20:5296. doi: 10.3390/ijms20215296.
    1. Kellingray L., Tapp H.S., Saha S., Doleman J.F., Narbad A., Mithen R.F. Consumption of a diet rich in Brassica vegetables is associated with a reduced abundance of sulphate-reducing bacteria: A randomised crossover study. Mol. Nutr. Food Res. 2017;61:1600992. doi: 10.1002/mnfr.201600992.
    1. Fritsch J., Garces L., Quintero M.A., Pignac-Kobinger J., Santander A.M., Fernández I., Ban Y.J., Kwon D., Phillips M.C., Knight K., et al. Low-Fat, High-Fiber Diet Reduces Markers of Inflammation and Dysbiosis and Improves Quality of Life in Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2021;19:1189–1199.e30. doi: 10.1016/j.cgh.2020.05.026.
    1. A Daley C., Abbott A., Doyle P.S., A Nader G., Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010;9:10. doi: 10.1186/1475-2891-9-10.
    1. Sugawara T. Relapse Prevention by Plant-Based Diet Incorporated into Induction Therapy for Ulcerative Colitis: A Single-Group Trial. Perm. J. 2019;23:18–220. doi: 10.7812/TPP/18-220.
    1. Schreiner P., Yilmaz B., Rossel J.-B., Franc Y., Misselwitz B., Scharl M., Zeitz J., Frei P., Greuter T., Vavricka S.R., et al. Vegetarian or gluten-free diets in patients with inflammatory bowel disease are associated with lower psychological well-being and a different gut microbiota, but no beneficial effects on the course of the disease. United Eur. Gastroenterol. J. 2019;7:767–781. doi: 10.1177/2050640619841249.
    1. Boneh R.S., Van Limbergen J., Wine E., Assa A., Shaoul R., Milman P., Cohen S., Kori M., Peleg S., On A., et al. Dietary Therapies Induce Rapid Response and Remission in Pediatric Patients with Active Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2020;19:752–759. doi: 10.1016/j.cgh.2020.04.006.
    1. Knoop K., Gustafsson J.K., McDonald K.G., Kulkarni D.H., Kassel R., Newberry R.D. Antibiotics promote the sampling of luminal antigens and bacteria via colonic goblet cell associated antigen passages. Gut Microbes. 2017;8:400–411. doi: 10.1080/19490976.2017.1299846.
    1. Shabat C.S., Scaldaferri F., Zittan E., Hirsch A., Mentella M.C., Musca T., Cohen N.A., Ron Y., Isakov N.F., Pfeffer J., et al. Use of Fecal transplantation with a novel diet for mild to moderate active ulcerative colitis: The CRAFT UC randomized controlled trial. J. Crohn’s Coliti. 2021:jjab165. doi: 10.1093/ecco-jcc/jjab165.

Source: PubMed

3
Abonner