New chemotherapy regimens and biomarkers for Chagas disease: the rationale and design of the TESEO study, an open-label, randomised, prospective, phase-2 clinical trial in the Plurinational State of Bolivia

Cristina Alonso-Vega, Julio A Urbina, Sergi Sanz, María-Jesús Pinazo, Jimy José Pinto, Virginia R Gonzalez, Gimena Rojas, Lourdes Ortiz, Wilson Garcia, Daniel Lozano, Dolors Soy, Rosa A Maldonado, Rana Nagarkatti, Alain Debrabant, Alejandro Schijman, M Carmen Thomas, Manuel Carlos López, Katja Michael, Isabela Ribeiro, Joaquim Gascon, Faustino Torrico, Igor C Almeida, Cristina Alonso-Vega, Julio A Urbina, Sergi Sanz, María-Jesús Pinazo, Jimy José Pinto, Virginia R Gonzalez, Gimena Rojas, Lourdes Ortiz, Wilson Garcia, Daniel Lozano, Dolors Soy, Rosa A Maldonado, Rana Nagarkatti, Alain Debrabant, Alejandro Schijman, M Carmen Thomas, Manuel Carlos López, Katja Michael, Isabela Ribeiro, Joaquim Gascon, Faustino Torrico, Igor C Almeida

Abstract

Introduction: Chagas disease (CD) affects ~7 million people worldwide. Benznidazole (BZN) and nifurtimox (NFX) are the only approved drugs for CD chemotherapy. Although both drugs are highly effective in acute and paediatric infections, their efficacy in adults with chronic CD (CCD) is lower and variable. Moreover, the high incidence of adverse events (AEs) with both drugs has hampered their widespread use. Trials in CCD adults showed that quantitative PCR (qPCR) assays remain negative for 12 months after standard-of-care (SoC) BZN treatment in ~80% patients. BZN pharmacokinetic data and the nonsynchronous nature of the proliferative mammal-dwelling parasite stage suggested that a lower BZN/NFX dosing frequency, combined with standard or extended treatment duration, might have the same or better efficacy than either drug SoC, with fewer AEs.

Methods and analysis: New ThErapies and Biomarkers for ChagaS infEctiOn (TESEO) is an open-label, randomised, prospective, phase-2 clinical trial, with six treatment arms (75 patients/arm, 450 patients). Primary objectives are to compare the safety and efficacy of two new proposed chemotherapy regimens of BZN and NFX in adults with CCD with the current SoC for BZN and NFX, evaluated by qPCR and biomarkers for 36 months posttreatment and correlated with CD conventional serology. Recruitment of patients was initiated on 18 December 2019 and on 20 May 2021, 450 patients (study goal) were randomised among the six treatment arms. The treatment phase was finalised on 18 August 2021. Secondary objectives include evaluation of population pharmacokinetics of both drugs in all treatment arms, the incidence of AEs, and parasite genotyping.

Ethics and dissemination: The TESEO study was approved by the National Institutes of Health (NIH), U.S. Food and Drug Administration (FDA), federal regulatory agency of the Plurinational State of Bolivia and the Ethics Committees of the participating institutions. The results will be disseminated via publications in peer-reviewed journals, conferences and reports to the NIH, FDA and participating institutions.

Trial registration number: NCT03981523.

Keywords: chemotherapy; immunology; microbiology; parasitology; tropical medicine.

Conflict of interest statement

Competing interests: The TESEO study principal investigators declare no financial and competing interests for the overall trial and each study site.

© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
TESEO clinical trial design. AEs, adverse events; BMKs, biomarkers; BZN, benznidazole; CD, Chagas disease; EOT, end of treatment; NFX, nifurtimox; popPK, population pharmacokinetic; qPCR, quantitative PCR; SAEs, serious AEs; SoC, standard-of-care; TESEO, New ThErapies and Biomarkers for ChagaS infEctiOn.

References

    1. Rassi A, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375:1388–402. 10.1016/S0140-6736(10)60061-X
    1. Gascon J, Bern C, Pinazo M-J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop 2010;115:22–7. 10.1016/j.actatropica.2009.07.019
    1. Lee BY, Bacon KM, Bottazzi ME, et al. . Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 2013;13:342–8. 10.1016/S1473-3099(13)70002-1
    1. Ventura-Garcia L, Roura M, Pell C, et al. . Socio-cultural aspects of Chagas disease: a systematic review of qualitative research. PLoS Negl Trop Dis 2013;7:e2410. 10.1371/journal.pntd.0002410
    1. Alonso-Vega C, Losada-Galván I, Pinazo M-J, et al. . The senseless orphanage of Chagas disease. Expert Opin Orphan Drugs 2019;7:535–45. 10.1080/21678707.2019.1701432
    1. Kierszenbaum F. Where do we stand on the autoimmunity hypothesis of Chagas disease? Trends Parasitol 2005;21:513–6. 10.1016/j.pt.2005.08.013
    1. Viotti R, Alarcón de Noya B, Araujo-Jorge T, et al. . Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother 2014;58:635–9. 10.1128/AAC.01662-13
    1. Gascon J, Vilasanjuan R, Lucas A. The need for global collaboration to tackle hidden public health crisis of Chagas disease. Expert Rev Anti Infect Ther 2014;12:393–5. 10.1586/14787210.2014.896194
    1. Ribeiro I, Sevcsik A-M, Alves F, et al. . New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis 2009;3:e484. 10.1371/journal.pntd.0000484
    1. Bern C, Montgomery SP, Herwaldt BL, et al. . Evaluation and treatment of Chagas disease in the United States: a systematic review. JAMA 2007;298:2171–81. 10.1001/jama.298.18.2171
    1. Machado FS, Dutra WO, Esper L, et al. . Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol 2012;34:753–70. 10.1007/s00281-012-0351-7
    1. Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 2003;19:495–501. 10.1016/j.pt.2003.09.001
    1. Urbina JA. Recent clinical trials for the etiological treatment of chronic Chagas disease: advances, challenges and perspectives. J Eukaryot Microbiol 2015;62:149–56. 10.1111/jeu.12184
    1. Tarleton RL. Parasite persistence in the aetiology of Chagas disease. Int J Parasitol 2001;31:550–4. 10.1016/s0020-7519(01)00158-8
    1. Aldasoro E, Posada E, Requena-Méndez A, et al. . What to expect and when: benznidazole toxicity in chronic Chagas' disease treatment. J Antimicrob Chemother 2018;73:1060–7. 10.1093/jac/dkx516
    1. Jackson Y, Alirol E, Getaz L, et al. . Tolerance and safety of nifurtimox in patients with chronic Chagas disease. Clin Infect Dis 2010;51:e69–75. 10.1086/656917
    1. Pérez-Molina JA, Sojo-Dorado J, Norman F, et al. . Nifurtimox therapy for Chagas disease does not cause hypersensitivity reactions in patients with such previous adverse reactions during benznidazole treatment. Acta Trop 2013;127:101–4. 10.1016/j.actatropica.2013.04.003
    1. Pinazo M-J, Muñoz J, Posada E, et al. . Tolerance of benznidazole in treatment of Chagas' disease in adults. Antimicrob Agents Chemother 2010;54:4896–9. 10.1128/AAC.00537-10
    1. Regueiro A, García-Álvarez A, Sitges M, et al. . Myocardial involvement in Chagas disease: insights from cardiac magnetic resonance. Int J Cardiol 2013;165:107–12. 10.1016/j.ijcard.2011.07.089
    1. Viotti R, Vigliano C, Lococo B, et al. . Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev Anti Infect Ther 2009;7:157–63. 10.1586/14787210.7.2.157
    1. Sulleiro E, Muñoz-Calderon AQrturo, Schijman AG. Role of nucleic acid amplification assays in monitoring treatment response in Chagas disease: usefulness in clinical trials. Acta Trop 2019;199:105120. 10.1016/j.actatropica.2019.105120
    1. PAHO . Guidelines for the diagnosis and treatment of Chagas disease. secondary guidelines for the diagnosis and treatment of Chagas disease, 2019. Available:
    1. Ciapponi A, Barreira F, Perelli L, et al. . Fixed vs adjusted-dose benznidazole for adults with chronic Chagas disease without cardiomyopathy: a systematic review and meta-analysis. PLoS Negl Trop Dis 2020;14:e0008529. 10.1371/journal.pntd.0008529
    1. Sguassero Y, Roberts KN, Harvey GB, et al. . Course of serological tests in treated subjects with chronic Trypanosoma cruzi infection: A systematic review and meta-analysis of individual participant data. Int J Infect Dis 2018;73:93–101. 10.1016/j.ijid.2018.05.019
    1. Fabbro DL, Streiger ML, Arias ED, et al. . Trypanocide treatment among adults with chronic Chagas disease living in SANTA Fe City (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop 2007;40:1–10. 10.1590/s0037-86822007000100001
    1. Pinazo M-J, Thomas M-C, Bustamante J, et al. . Biomarkers of therapeutic responses in chronic Chagas disease: state of the art and future perspectives. Mem Inst Oswaldo Cruz 2015;110:422–32. 10.1590/0074-02760140435
    1. Cortes-Serra N, Losada-Galvan I, Pinazo M-J, et al. . State-of-the-art in host-derived biomarkers of Chagas disease prognosis and early evaluation of anti-Trypanosoma cruzi treatment response. Biochim Biophys Acta Mol Basis Dis 2020;1866:165758. 10.1016/j.bbadis.2020.165758
    1. Soy D, Aldasoro E, Guerrero L, et al. . Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob Agents Chemother 2015;59:3342–9. 10.1128/AAC.05018-14
    1. Muñoz C, Zulantay I, Apt W, et al. . Evaluation of nifurtimox treatment of chronic Chagas disease by means of several parasitological methods. Antimicrob Agents Chemother 2013;57:4518–23. 10.1128/AAC.00227-13
    1. Bustamante JM, Craft JM, Crowe BD, et al. . New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J Infect Dis 2014;209:150–62. 10.1093/infdis/jit420
    1. Meyer KJ, Meyers DJ, Shapiro TA. Optimal kinetic exposures for classic and candidate antitrypanosomals. J Antimicrob Chemother 2019;74:2303–10. 10.1093/jac/dkz160
    1. Torrico F, Gascon J, Ortiz L, et al. . Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis 2018;18:419–30. 10.1016/S1473-3099(17)30538-8
    1. Torrico F, Gascón J, Barreira F. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a phase 2, double-blind, randomised trial. Lancet Infect Dis 2021;21:P1129–40. 10.1016/S1473-3099(20)30844-6
    1. Morillo CA, Marin-Neto JA, Avezum A, et al. . Randomized trial of benznidazole for chronic Chagas' cardiomyopathy. N Engl J Med 2015;373:1295–306. 10.1056/NEJMoa1507574
    1. Britto C, Silveira C, Cardoso MA, et al. . Parasite persistence in treated chagasic patients revealed by xenodiagnosis and polymerase chain reaction. Mem Inst Oswaldo Cruz 2001;96:823–6. 10.1590/s0074-02762001000600014
    1. Aguiar C, Batista AM, Pavan TBS, et al. . Serological profiles and evaluation of parasitaemia by PCR and blood culture in individuals chronically infected by Trypanosoma cruzi treated with benzonidazole. Trop Med Int Health 2012;17:368–73. 10.1111/j.1365-3156.2011.02936.x
    1. Fernandes CD, Tiecher FM, Balbinot MM, et al. . Efficacy of benznidazol treatment for asymptomatic chagasic patients from state of Rio grande do Sul evaluated during a three years follow-up. Mem Inst Oswaldo Cruz 2009;104:27–32. 10.1590/s0074-02762009000100004
    1. Machado-de-Assis GF, Silva AR, Do Bem VAL, et al. . Posttherapeutic cure criteria in Chagas' disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. Clin Vaccine Immunol 2012;19:1283–91. 10.1128/CVI.00274-12
    1. Añez N, Carrasco H, Parada H, et al. . Myocardial parasite persistence in chronic chagasic patients. Am J Trop Med Hyg 1999;60:726–32. 10.4269/ajtmh.1999.60.726
    1. Díaz-Bello Z, de Noya BA, Muñoz-Calderón A, et al. . Ten-year follow-up of the largest oral Chagas disease outbreak. laboratory biomarkers of infection as indicators of therapeutic failure. Acta Trop 2021;222:106034. 10.1016/j.actatropica.2021.106034
    1. Santos FM, Mazzeti AL, Caldas S, et al. . Chagas cardiomyopathy: The potential effect of benznidazole treatment on diastolic dysfunction and cardiac damage in dogs chronically infected with Trypanosoma cruzi. Acta Trop 2016;161:44–54. 10.1016/j.actatropica.2016.05.007
    1. Morillo CA, Waskin H, Sosa-Estani S, et al. . Benznidazole and Posaconazole in Eliminating Parasites in Asymptomatic T. Cruzi Carriers: The STOP-CHAGAS Trial. J Am Coll Cardiol 2017;69:939–47. 10.1016/j.jacc.2016.12.023
    1. Almeida IC, Covas DT, Soussumi LM, et al. . A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 1997;37:850–7. 10.1046/j.1537-2995.1997.37897424410.x
    1. Almeida IC, Ferguson MA, Schenkman S, et al. . Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas' disease recognize novel O-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J 1994;304(Pt 3):793–802. 10.1042/bj3040793
    1. Almeida IC, Milani SR, Gorin PA, et al. . Complement-mediated lysis of Trypanosoma cruzi trypomastigotes by human anti-alpha-galactosyl antibodies. J Immunol 1991;146:2394–400.
    1. de Andrade AL, Zicker F, de Oliveira RM, et al. . Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 1996;348:1407–13. 10.1016/s0140-6736(96)04128-1
    1. Ortega-Rodriguez U, Portillo S, Ashmus RA, et al. . Purification of glycosylphosphatidylinositol-anchored mucins from Trypanosoma cruzi trypomastigotes and synthesis of α-Gal-Containing neoglycoproteins: application as biomarkers for reliable diagnosis and early assessment of chemotherapeutic outcomes of Chagas disease. Methods Mol Biol 2019;1955:287–308. 10.1007/978-1-4939-9148-8_22
    1. Schocker NS, Portillo S, Ashmus RA. Probing for Trypanosoma cruzi cell surface glycobiomarkers for the diagnosis and follow-up of chemotherapy of Chagas disease. In: Witzczak ZJ, Bielski R, eds. Coupling and decoupling of diverse molecular units in glycosciences. Cham, Switzerland: Springer International Publishing AG, 2018: 195–211.
    1. Ashmus RA, Schocker NS, Cordero-Mendoza Y, et al. . Potential use of synthetic α-galactosyl-containing glycotopes of the parasite Trypanosoma cruzi as diagnostic antigens for Chagas disease. Org Biomol Chem 2013;11:5579–83. 10.1039/c3ob40887f
    1. Schocker NS, Portillo S, Brito CRN, et al. . Synthesis of Galα(1,3)Galβ(1,4)GlcNAcα-, Galβ(1,4)GlcNAcα- and GlcNAc-containing neoglycoproteins and their immunological evaluation in the context of Chagas disease. Glycobiology 2016;26:39–50. 10.1093/glycob/cwv081
    1. Egui A, Thomas MC, Morell M, et al. . Trypanosoma cruzi paraflagellar rod proteins 2 and 3 contain immunodominant CD8(+) T-cell epitopes that are recognized by cytotoxic T cells from Chagas disease patients. Mol Immunol 2012;52:289–98. 10.1016/j.molimm.2012.05.021
    1. Fernández-Villegas A, Pinazo MJ, Marañón C, et al. . Short-Term follow-up of chagasic patients after benzonidazole treatment using multiple serological markers. BMC Infect Dis 2011;11:206. 10.1186/1471-2334-11-206
    1. Fernández-Villegas A, Thomas MC, Carrilero B, et al. . The innate immune response status correlates with a divergent clinical course in congenital Chagas disease of twins born in a non-endemic country. Acta Trop 2014;140:84–90. 10.1016/j.actatropica.2014.08.006
    1. Egui A, Thomas MC, Fernández-Villegas A, et al. . A Parasite Biomarker Set for Evaluating Benznidazole Treatment Efficacy in Patients with Chronic Asymptomatic Trypanosoma cruzi Infection. Antimicrob Agents Chemother 2019;63. 10.1128/AAC.02436-18. [Epub ahead of print: 23 09 2019].
    1. Fernandez-Villegas A, Thomas MC, Carrilero B, et al. . A 12-mer repetitive antigenic epitope from Trypanosoma cruzi is a potential marker of therapeutic efficacy in chronic Chagas' disease. J Antimicrob Chemother 2016;71:2005–9. 10.1093/jac/dkw090
    1. de Araujo FF, Nagarkatti R, Gupta C, et al. . Aptamer-based detection of disease biomarkers in mouse models for Chagas drug discovery. PLoS Negl Trop Dis 2015;9:e3451. 10.1371/journal.pntd.0003451
    1. Nagarkatti R, de Araujo FF, Gupta C, et al. . Aptamer based, non-PCR, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Negl Trop Dis 2014;8:e2650. 10.1371/journal.pntd.0002650
    1. Nagarkatti R, Acosta D, Acharyya N, et al. . A novel Trypanosoma cruzi secreted antigen as a potential biomarker of Chagas disease. Sci Rep 2020;10:19591. 10.1038/s41598-020-76508-1
    1. Almeida IC, Ferguson MA, Schenkman S, et al. . GPI-anchored glycoconjugates from Trypanosoma cruzi trypomastigotes are recognized by lytic anti-alpha-galactosyl antibodies isolated from patients with chronic Chagas' disease. Braz J Med Biol Res 1994;27:443–7.
    1. Almeida IC, Krautz GM, Krettli AU, et al. . Glycoconjugates of Trypanosoma cruzi: a 74 kD antigen of trypomastigotes specifically reacts with lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas disease. J Clin Lab Anal 1993;7:307–16. 10.1002/jcla.1860070603
    1. Pereira-Chioccola VL, Acosta-Serrano A, Correia de Almeida I, et al. . Mucin-like molecules form a negatively charged coat that protects Trypanosoma cruzi trypomastigotes from killing by human anti-alpha-galactosyl antibodies. J Cell Sci 2000;113(Pt 7):1299–307. 10.1242/jcs.113.7.1299
    1. Souto-Padron T, Almeida IC, de Souza W, et al. . Distribution of alpha-galactosyl-containing epitopes on Trypanosoma cruzi trypomastigote and amastigote forms from infected Vero cells detected by Chagasic antibodies. J Eukaryot Microbiol 1994;41:47–54. 10.1111/j.1550-7408.1994.tb05933.x
    1. Travassos LR, Almeida IC. Carbohydrate immunity in American trypanosomiasis. Springer Semin Immunopathol 1993;15:183–204. 10.1007/BF00201100
    1. Allen S, Richardson JM, Mehlert A, et al. . Structure of a complex phosphoglycan epitope from gp72 of Trypanosoma cruzi. J Biol Chem 2013;288:11093–105. 10.1074/jbc.M113.452763
    1. Galili U, Swanson K. Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci U S A 1991;88:7401–4. 10.1073/pnas.88.16.7401
    1. Galili U. Anti-Gal in Humans and Its Antigen the α-Gal Epitope. In: The natural anti-gal antibody as foe turned Friend in medicineCambridge. 1st edn. United States, MA: Elsevier - Academic Press, 2017: 1–18.
    1. Gazzinelli RT, Pereira ME, Romanha A, et al. . Direct lysis of Trypanosoma cruzi: a novel effector mechanism of protection mediated by human anti-gal antibodies. Parasite Immunol 1991;13:345–56. 10.1111/j.1365-3024.1991.tb00288.x
    1. Avila JL, Rojas M, Galili U. Immunogenic Gal alpha 1----3Gal carbohydrate epitopes are present on pathogenic American Trypanosoma and Leishmania. J Immunol 1989;142:2828–34.
    1. Antas PR, Medrano-Mercado N, Torrico F, et al. . Early, intermediate, and late acute stages in Chagas' disease: a study combining anti-galactose IgG, specific serodiagnosis, and polymerase chain reaction analysis. Am J Trop Med Hyg 1999;61:308–14. 10.4269/ajtmh.1999.61.308
    1. Travassos LR, Almeida IC, Takahashi HK. Presentation and the reactivity of biological ligands. recognition of alpha-D-GalpNAc and alpha-D-Galp conformational structures. Ci Cult J Braz Ass Adv Sc 1994;46:242–8.
    1. Zingales B, Miles MA, Campbell DA, et al. . The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 2012;12:240–53. 10.1016/j.meegid.2011.12.009
    1. Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018;184:38–52. 10.1016/j.actatropica.2017.09.017
    1. Soares RP, Torrecilhas AC, Assis RR, et al. . Intraspecies variation in Trypanosoma cruzi GPI-mucins: biological activities and differential expression of α-galactosyl residues. Am J Trop Med Hyg 2012;87:87–96. 10.4269/ajtmh.2012.12-0015
    1. Izquierdo L, Marques AF, Gállego M, et al. . Evaluation of a chemiluminescent enzyme-linked immunosorbent assay for the diagnosis of Trypanosoma cruzi infection in a nonendemic setting. Mem Inst Oswaldo Cruz 2013;108:928–31. 10.1590/0074-0276130112
    1. De Marchi CR, Di Noia JM, Frasch ACC, et al. . Evaluation of a recombinant Trypanosoma cruzi mucin-like antigen for serodiagnosis of Chagas' disease. Clin Vaccine Immunol 2011;18:1850–5. 10.1128/CVI.05289-11
    1. Andrade ALSS, Martelli CMT, Oliveira RM, et al. . Short report: benznidazole efficacy among Trypanosoma cruzi-infected adolescents after a six-year follow-up. Am J Trop Med Hyg 2004;71:594–7.
    1. Medrano-Mercado N, Luz MR, Torrico F, et al. . Acute-phase proteins and serologic profiles of chagasic children from an endemic area in Bolivia. Am J Trop Med Hyg 1996;54:154–61. 10.4269/ajtmh.1996.54.154
    1. González J, Neira I, Gutiérrez B, et al. . Serum antibodies to Trypanosoma cruzi antigens in Atacameños patients from highland of northern Chile. Acta Trop 1996;60:225–36. 10.1016/0001-706x(95)00119-y
    1. Avila JL, Rojas M, Velazquez-Avila G. Characterization of a natural human antibody with anti-galactosyl(alpha 1-2)galactose specificity that is present at high titers in chronic Trypanosoma cruzi infection. Am J Trop Med Hyg 1992;47:413–21. 10.4269/ajtmh.1992.47.413
    1. Pinazo M-J, Posada EdeJ, Izquierdo L, et al. . Altered hypercoagulability factors in patients with chronic Chagas disease: potential biomarkers of therapeutic response. PLoS Negl Trop Dis 2016;10:e0004269. 10.1371/journal.pntd.0004269
    1. OPAS/OMS . Tratamento etiológico de la Enfermedad de Chagas: Conclusiones de Una Consulta Técnica. Washington, DC, U.S.A: Organización Panamericana de la Salud (OPAS) / Organización Mundial de la Salud (OMS) / Fundación Oswaldo Cruz, Rio de Janeiro, Brasil, 1999.
    1. Buscaglia CA, Campo VA, Di Noia JM, et al. . The surface coat of the mammal-dwelling infective trypomastigote stage of Trypanosoma cruzi is formed by highly diverse immunogenic mucins. J Biol Chem 2004;279:15860–9. 10.1074/jbc.M314051200
    1. Sosa Estani S, Segura EL, Ruiz AM, et al. . Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of Chagas' disease. Am J Trop Med Hyg 1998;59:526–9. 10.4269/ajtmh.1998.59.526
    1. FDA . Drug trials snapshot: benznidazole, 2017. Available: [Accessed 19 Sep 2017].
    1. Viotti R, Vigliano C, Lococo B, et al. . Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med 2006;144:724–34. 10.7326/0003-4819-144-10-200605160-00006
    1. Thomas MC, Fernández-Villegas A, Carrilero B, et al. . Characterization of an immunodominant antigenic epitope from Trypanosoma cruzi as a biomarker of chronic Chagas' disease pathology. Clin Vaccine Immunol 2012;19:167–73. 10.1128/CVI.05566-11
    1. Cooley G, Etheridge RD, Boehlke C, et al. . High throughput selection of effective serodiagnostics for Trypanosoma cruzi infection. PLoS Negl Trop Dis 2008;2:e316. 10.1371/journal.pntd.0000316
    1. Viotti R, Vigliano C, Alvarez MG, et al. . Impact of aetiological treatment on conventional and multiplex serology in chronic Chagas disease. PLoS Negl Trop Dis 2011;5:e1314. 10.1371/journal.pntd.0001314
    1. Zarate-Blades CR, Bladés N, Nascimento MS, et al. . Diagnostic performance of tests based on Trypanosoma cruzi excreted-secreted antigens in an endemic area for Chagas' disease in Bolivia. Diagn Microbiol Infect Dis 2007;57:229–32. 10.1016/j.diagmicrobio.2006.08.004
    1. Málaga-Machaca ES, Romero-Ramirez A, Gilman RH, et al. . Polyclonal antibodies for the detection of Trypanosoma cruzi circulating antigens. PLoS Negl Trop Dis 2017;11:e0006069. 10.1371/journal.pntd.0006069
    1. Burgos JM, Diez M, Vigliano C, et al. . Molecular identification of Trypanosoma cruzi discrete typing units in end-stage chronic Chagas heart disease and reactivation after heart transplantation. Clin Infect Dis 2010;51:485–95. 10.1086/655680
    1. Kuschnir E, Sgammini H, Castro R, et al. . [Evaluation of cardiac function by radioisotopic angiography, in patients with chronic Chagas cardiopathy]. Arq Bras Cardiol 1985;45:249–56.
    1. Rassi A, Dias JCP, Marin-Neto JA, et al. . Challenges and opportunities for primary, secondary, and tertiary prevention of Chagas' disease. Heart 2009;95:524–34. 10.1136/hrt.2008.159624
    1. Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care 1986;24:67–74. 10.1097/00005650-198601000-00007
    1. Pinazo M-J, Pinto J, Ortiz L, et al. . A strategy for scaling up access to comprehensive care in adults with Chagas disease in endemic countries: the Bolivian Chagas platform. PLoS Negl Trop Dis 2017;11:e0005770. 10.1371/journal.pntd.0005770
    1. Yager JE, Lozano Beltran DF, Torrico F, et al. . Prevalence of Chagas heart disease in a region endemic for Trypanosoma cruzi: evidence from a central Bolivian community. Glob Heart 2015;10:145–50. 10.1016/j.gheart.2015.07.002
    1. Espinoza N, Borrás R, Abad-Franch F. Chagas disease vector control in a hyperendemic setting: the first 11 years of intervention in Cochabamba, Bolivia. PLoS Negl Trop Dis 2014;8:e2782. 10.1371/journal.pntd.0002782
    1. Duffy T, Cura CI, Ramirez JC, et al. . Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl Trop Dis 2013;7:e2000. 10.1371/journal.pntd.0002000
    1. Piron M, Fisa R, Casamitjana N, et al. . Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop 2007;103:195–200. 10.1016/j.actatropica.2007.05.019
    1. Ramírez JC, Cura CI, da Cruz Moreira O, et al. . Analytical Validation of Quantitative Real-Time PCR Methods for Quantification of Trypanosoma cruzi DNA in Blood Samples from Chagas Disease Patients. J Mol Diagn 2015;17:605–15. 10.1016/j.jmoldx.2015.04.010
    1. Galindo Bedor DC, Tavares Cavalcanti Bedor NC, Viturino da Silva JW, et al. . Dried blood spot technique-based liquid chromatography-tandem mass spectrometry method as a simple alternative for benznidazole pharmacokinetic assessment. Antimicrob Agents Chemother 2018;62. 10.1128/AAC.00845-18. [Epub ahead of print: 26 11 2018].
    1. Pan W. Sample size and power calculations with correlated binary data. Control Clin Trials 2001;22:211–27. 10.1016/S0197-2456(01)00131-3
    1. Cantor AB. Sas survival analysis techniques for medical research. SAS Institute, 2003.
    1. Gibbons RD, Bock RD. Trend in correlated proportions. Psychometrika 1987;52:113–24. 10.1007/BF02293959
    1. Chan A-W, Tetzlaff JM, Gøtzsche PC, et al. . Spirit 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ 2013;346:e7586. 10.1136/bmj.e7586
    1. Álvarez-Bardón M, Pérez-Pertejo Y, Ordóñez C, et al. . Screening marine natural products for new drug leads against trypanosomatids and malaria. Mar Drugs 2020;18. 10.3390/md18040187. [Epub ahead of print: 31 Mar 2020].
    1. Francisco AF, Jayawardhana S, Olmo F, et al. . Challenges in Chagas disease drug development. Molecules 2020;25. 10.3390/molecules25122799. [Epub ahead of print: 17 Jun 2020].
    1. Martinez-Peinado N, Cortes-Serra N, Torras-Claveria L, et al. . Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasit Vectors 2020;13:299. 10.1186/s13071-020-04171-6
    1. Gaspar L, Moraes CB, Freitas-Junior LH, et al. . Current and future chemotherapy for Chagas disease. Curr Med Chem 2015;22:4293–312. 10.2174/0929867322666151015120804
    1. Álvarez MG, Hernández Y, Bertocchi G, et al. . New Scheme of Intermittent Benznidazole Administration in Patients Chronically Infected with Trypanosoma cruzi: a Pilot Short-Term Follow-Up Study with Adult Patients. Antimicrob Agents Chemother 2016;60:833–7. 10.1128/AAC.00745-15
    1. Álvarez MG, Ramírez JC, Bertocchi G, et al. . New Scheme of Intermittent Benznidazole Administration in Patients Chronically Infected with Trypanosoma cruzi: Clinical, Parasitological, and Serological Assessment after Three Years of Follow-Up. Antimicrob Agents Chemother 2020;64. 10.1128/AAC.00439-20. [Epub ahead of print: 20 08 2020].
    1. Villar JC, Herrera VM, Pérez Carreño JG, et al. . Nifurtimox versus benznidazole or placebo for asymptomatic Trypanosoma cruzi infection (Equivalence of Usual Interventions for Trypanosomiasis - EQUITY): study protocol for a randomised controlled trial. Trials 2019;20:431. 10.1186/s13063-019-3423-3
    1. Stass H, Feleder E, Garcia-Bournissen F, et al. . Biopharmaceutical characteristics of nifurtimox tablets for age- and body weight-adjusted dosing in patients with Chagas disease. Clin Pharmacol Drug Dev 2021;10:542–55. 10.1002/cpdd.871
    1. Zingales B, Miles MA, Moraes CB, et al. . Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz 2014;109:828–33. 10.1590/0074-0276140156
    1. Crespillo-Andújar C, Venanzi-Rullo E, López-Vélez R, et al. . Safety profile of benznidazole in the treatment of chronic Chagas disease: experience of a referral centre and systematic literature review with meta-analysis. Drug Saf 2018;41:1035–48. 10.1007/s40264-018-0696-5
    1. Pérez-Molina JA, Pérez-Ayala A, Moreno S, et al. . Use of benznidazole to treat chronic Chagas' disease: a systematic review with a meta-analysis. J Antimicrob Chemother 2009;64:1139–47. 10.1093/jac/dkp357
    1. Guzmán-Gómez D, López-Monteon A, de la Soledad Lagunes-Castro M, et al. . Highly discordant serology against Trypanosoma cruzi in central Veracruz, Mexico: role of the antigen used for diagnostic. Parasit Vectors 2015;8:466. 10.1186/s13071-015-1072-2
    1. Fridericia LS. The duration of systole in an electrocardiogram in normal humans and in patients with heart disease. 1920. Ann Noninvasive Electrocardiol 2003;8:343–51. 10.1046/j.1542-474X.2003.08413.x

Source: PubMed

3
Abonner