Age-Dependent Modulations of Resting State Connectivity Following Motor Practice

Elena Solesio-Jofre, Iseult A M Beets, Daniel G Woolley, Lisa Pauwels, Sima Chalavi, Dante Mantini, Stephan P Swinnen, Elena Solesio-Jofre, Iseult A M Beets, Daniel G Woolley, Lisa Pauwels, Sima Chalavi, Dante Mantini, Stephan P Swinnen

Abstract

Recent work in young adults has demonstrated that motor learning can modulate resting state functional connectivity. However, evidence for older adults is scarce. Here, we investigated whether learning a bimanual tracking task modulates resting state functional connectivity of both inter- and intra-hemispheric regions differentially in young and older individuals, and whether this has behavioral relevance. Both age groups learned a set of complex bimanual tracking task variants over a 2-week training period. Resting-state and task-related functional magnetic resonance imaging scans were collected before and after training. Our analyses revealed that both young and older adults reached considerable performance gains. Older adults even obtained larger training-induced improvements relative to baseline, but their overall performance levels were lower than in young adults. Short-term practice resulted in a modulation of resting state functional connectivity, leading to connectivity increases in young adults, but connectivity decreases in older adults. This pattern of age differences occurred for both inter- and intra-hemispheric connections related to the motor network. Additionally, long-term training-induced increases were observed in intra-hemispheric connectivity in the right hemisphere across both age groups. Overall, at the individual level, the long-term changes in inter-hemispheric connectivity correlated with training-induced motor improvement. Our findings confirm that short-term task practice shapes spontaneous brain activity differentially in young and older individuals. Importantly, the association between changes in resting state functional connectivity and improvements in motor performance at the individual level may be indicative of how training shapes the short-term functional reorganization of the resting state motor network for improvement of behavioral performance.

Keywords: aging; bimanual coordination; motor learning; motor network; resting state functional connectivity.

Figures

FIGURE 1
FIGURE 1
Experimental setup and task. (A) Schematic representation of the experimental setup. Two scan sessions occurred before (pre-test session) and after (post-test session) five training sessions (training period), distributed across 2 weeks. Each scan session included a rest scan (rs1 and rs3, respectively) before a task-related scan, a task-related scan (tr1 and tr2, respectively) and a rest scan after the task-related scan (rs2 and rs4, respectively). We mainly focused on rest scans (i.e., two runs within each scan session, four runs in total: rs1, rs2, rs3, and rs4); (B) The goal of the bimanual tracking task was to track a white target dot over a blue target line, presented on a screen, by rotating two dials with both hands simultaneously in one of four directional patterns: inward (IN), outward (OUT), clockwise (CW), and counter-clockwise manner (CCW); at five different relative frequency ratios: 1:1, 1:2, 1:3, 2:1, and 3:1 (left: right). This resulted in 20 different bimanual patterns and target line directions.
FIGURE 2
FIGURE 2
Selected ROIs in the motor network. Spherical ROIs were defined bilaterally for the following areas: SMA, supplementary motor area; PMd, dorsal premotor area; M1, primary motor cortex; S1, primary somatosensory area; PMv, ventral premotor area. The ROIs are illustrated over a cortical representation for the right hemisphere only.
FIGURE 3
FIGURE 3
Brain-behavior correlations. (A) Functional connectivity measures: Connectivity changes extracted from rs2 minus rs1 (FC short-term learning), and also from rs4 minus rs1 (FC long-term learning) for inter- (homotopic, heterotopic) and intra-hemispheric (right, left) connectivity measures. (B) BTT gain measures: Last 15 trials of tr1 minus first 15 trials of tr1 (BTT Gain 1), and also last 15 trials of tr2 minus first 15 trials of tr1 (BTT Gain 2) for N-ISO conditions.
FIGURE 4
FIGURE 4
Behavioral performance during the scan and training sessions for the N-ISO condition. There was an initial reduction in target deviation error during the pre-test session, indicative of initial learning. During the training period, BTT performance became more stable, particularly during the last two training days. YA showed a more stable performance during the post-test session than OA, especially in the most difficult task condition (N-ISO). Error bars represent the standard error of the mean (SEM). N-ISO, non-isofrequency.
FIGURE 5
FIGURE 5
Correlation matrices across all participants showing the strength of functional connectivity between each pair of regions from the motor network for the four rest scans collected in the present study. Significant correlations (Bonferroni corrected probability, p < 0.001) are indicated with a black dot. Color bar on the right indicates t-values.
FIGURE 6
FIGURE 6
Bar plots showing the age × scan location interaction effect for inter-hemispheric functional connectivity. (A) Changes in connectivity in homotopic pairs of regions. (B) Changes in connectivity in heterotopic pairs of regions. In both cases, functional connectivity increased after task performance in YA, whereas it decreased in OA and we observed this pattern of results within both the pre- and post-test sessions. Moreover, homotopic functional connectivity was greater than heterotopic functional connectivity. Error bars represent SEM. Hm rs1+rs3, homotopic rest scans before task-related scans; Hm rs2+rs4, homotopic rest scans after task-related scans; Ht rs1+rs3, heterotopic rest scans before task-related scans; Ht rs2+rs4, heterotopic rest scans after task-related scans.
FIGURE 7
FIGURE 7
Bar plots show the age × scan location interaction effect for intra-hemispheric functional connectivity. (A) Changes in connectivity in right hemisphere pairs of regions. (B) Changes in connectivity in left hemisphere pairs of regions. In both cases, functional connectivity increased after task performance in YA, whereas it decreased after task performance in OA within pre- and post-test sessions. Error bars represent SEM.
FIGURE 8
FIGURE 8
Brain connectivity-behavior correlation. Scatter plot representing the significant correlation surviving Bonferroni correction (p < 0.025) between rs-FC change (y-axis) and bimanual coordination gain (x-axis). r, Pearson coefficient.

References

    1. Achard S., Bullmore E. (2007). Efficiency and cost of economical brain functional networks. PLOS Comput. Biol. 3:e17. 10.1371/journal.pcbi.0030017
    1. Achard S., Salvador R., Whitcher B., Suckling J., Bullmore E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26 63–72. 10.1523/JNEUROSCI.3874-05.2006
    1. Albert N. B., Robertson E. M., Miall R. C. (2009). The resting human brain and motor learning. Curr. Biol. 19 1023–1027. 10.1016/j.cub.2009.04.028
    1. Albouy G., Fogel S., King B. R., Laventure S., Benali H., Karni A., et al. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. Neuroimage 108 423–434. 10.1016/j.neuroimage.2014.12.049
    1. Amad A., Seidman J., Draper S. B., Bruchhage M. M. K., Lowry R. G., Wheeler J., et al. (2017). Motor learning induces plasticity in the resting brain-drumming up a connection. Cereb. Cortex 27 2010–2021. 10.1093/cercor/bhw048
    1. Andres F. G., Mima T., Schulman A. E., Dichgans J., Hallett M., Gerloff C. (1999). Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122 855–870. 10.1093/brain/122.5.855
    1. Bangert A. S., Reuter-Lorenz P. A., Walsh C. M., Schachter A. B., Seidler R. D. (2010). Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia 48 1165–1170. 10.1016/j.neuropsychologia.2009.11.013
    1. Barnes A., Bullmore E. T., Suckling J. (2009). Endogenous human brain dynamics recover slowly following cognitive effort. PLOS ONE 4:e6626. 10.1371/journal.pone.0006626
    1. Beets I. A., Gooijers J., Boisgontier M. P., Pauwels L., Coxon J. P., Wittenberg G., et al. (2015). Reduced neural differentiation between feedback conditions after bimanual coordination training with and without augmented visual feedback. Cereb. Cortex 25 1958–1969. 10.1093/cercor/bhu005
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34 537–541. 10.1002/mrm.1910340409
    1. Boonstra T. W., Daffertshofer A., Breakspear M., Beek P. J. (2007). Multivariate time-frequency analysis of electromagnetic brain activity during bimanual motor learning. Neuroimage 36 370–377. 10.1016/j.neuroimage.2007.03.012
    1. Brown L. E., Wilson E. T., Gribble P. L. (2009). Repetitive transcranial magnetic stimulation to the primary motor cortex interferes with motor learning by observing. J. Cogn. Neurosci. 21 1013–1022. 10.1162/jocn.2009.21079
    1. Buchel C., Coull J. T., Friston K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science 283 1538–1541. 10.1126/science.283.5407.1538
    1. Byblow W. D., Coxon J. P., Stinear C. M., Fleming M. K., Williams G., Muller J. F., et al. (2007). Functional connectivity between secondary and primary motor areas underlying hand-foot coordination. J. Neurophysiol. 98 414–422. 10.1152/jn.00325.2007
    1. Chan M. Y., Alhazmi F. H., Park D. C., Savalia N. K., Wig G. S. (2017). Resting-state network topology differentiates task signals across the adult life span. J. Neurosci. 37 2734–2745. 10.1523/JNEUROSCI.2406-16.2017
    1. Cohen J. (1992). A power primer. Psychol. Bull. 112 155–159. 10.1037/0033-2909.112.1.155
    1. Dancause N., Barbay S., Frost S. B., Mahnken J. D., Nudo R. J. (2007). Interhemispheric connections of the ventral premotor cortex in a new world primate. J. Comp. Neurol. 505 701–715. 10.1002/cne.21531
    1. Daselaar S. M., Huijbers W., de Jonge M., Goltstein P. M., Pennartz C. M. (2010). Experience-dependent alterations in conscious resting state activity following perceptuomotor learning. Neurobiol. Learn. Mem. 93 422–427. 10.1016/j.nlm.2009.12.009
    1. Deco G., Corbetta M. (2011). The dynamical balance of the brain at rest. Neuroscientist 17 107–123. 10.1177/1073858409354384
    1. Donchin O., Gribova A., Steinberg O., Bergman H., Vaadia E. (1998). Primary motor cortex is involved in bimanual coordination. Nature 395 274–278. 10.1038/26220
    1. Ebisch S. J., Gallese V., Willems R. M., Mantini D., Groen W. B., Romani G. L., et al. (2011). Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Hum. Brain Mapp. 32 1013–1028. 10.1002/hbm.21085
    1. Floyer-Lea A., Matthews P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. J. Neurophysiol. 94 512–518. 10.1152/jn.00717.2004
    1. Fogel S. M., Albouy G., Vien C., Popovicci R., King B. R., Hoge R., et al. (2014). fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Hum. Brain Mapp. 35 3625–3645. 10.1002/hbm.22426
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8 700–711. 10.1038/nrn2201
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102 9673–9678. 10.1073/pnas.0504136102
    1. Fox M. D., Zhang D., Snyder A. Z., Raichle M. E. (2009). The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101 3270–3283. 10.1152/jn.90777.2008
    1. Freitas C., Perez J., Knobel M., Tormos J. M., Oberman L., Eldaief M., et al. (2011). Changes in cortical plasticity across the lifespan. Front. Aging Neurosci. 3:5 10.3389/fnagi.2011.00005
    1. Friston K. J., Frith C. D., Frackowiak R. S., Turner R. (1995). Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage 2 166–172. 10.1006/nimg.1995.1019
    1. Geerligs L., Maurits N. M., Renken R. J., Lorist M. M. (2014). Reduced specificity of functional connectivity in the aging brain during task performance. Hum. Brain Mapp. 35 319–330. 10.1002/hbm.22175
    1. Gerloff C., Andres F. G. (2002). Bimanual coordination and interhemispheric interaction. Acta Psychol. 110 161–186. 10.1016/S0001-6918(02)00032-X
    1. Gooijers J., Beets I. A., Albouy G., Beeckmans K., Michiels K., Sunaert S., et al. (2016). Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain 139(Pt 9) 2469–2485. 10.1093/brain/aww177
    1. Gooijers J., Caeyenberghs K., Sisti H. M., Geurts M., Heitger M. H., Leemans A., et al. (2013). Diffusion tensor imaging metrics of the corpus callosum in relation to bimanual coordination: effect of task complexity and sensory feedback. Hum. Brain Mapp. 34 241–252. 10.1002/hbm.21429
    1. Gooijers J., Swinnen S. P. (2014). Interactions between brain structure and behavior: the corpus callosum and bimanual coordination. Neurosci. Biobehav. Rev. 43 1–19. 10.1016/j.neubiorev.2014.03.008
    1. Grady C. L., Haxby J. V., Horwitz B., Schapiro M. B., Rapoport S. I., Ungerleider L. G., et al. (1992). Dissociation of object and spatial vision in human extrastriate cortex: age-related changes in activation of regional cerebral blood flow measured with [(15) o]water and positron emission tomography. J. Cogn. Neurosci. 4 23–34. 10.1162/jocn.1992.4.1.23
    1. Gregory M. D., Agam Y., Selvadurai C., Nagy A., Vangel M., Tucker M., et al. (2014). Resting state connectivity immediately following learning correlates with subsequent sleep-dependent enhancement of motor task performance. Neuroimage 102(Pt 2) 666–673. 10.1016/j.neuroimage.2014.08.044
    1. Greicius M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Curr. Opin. Neurol. 21 424–430. 10.1097/WCO.0b013e328306f2c5
    1. Halsband U., Lange R. K. (2006). Motor learning in man: a review of functional and clinical studies. J. Physiol. Paris 99 414–424. 10.1016/j.jphysparis.2006.03.007
    1. Hardwick R. M., Lesage E., Eickhoff C. R., Clos M., Fox P., Eickhoff S. B. (2015). Multimodal connectivity of motor learning-related dorsal premotor cortex. Neuroimage 123 114–128. 10.1016/j.neuroimage.2015.08.024
    1. Hinder M. R., Schmidt M. W., Garry M. I., Carroll T. J., Summers J. J. (2011). Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J. Appl. Physiol. 110 166–175. 10.1152/japplphysiol.00958.2010
    1. Houweling S., Daffertshofer A., van Dijk B. W., Beek P. J. (2008). Neural changes induced by learning a challenging perceptual-motor task. Neuroimage 41 1395–1407. 10.1016/j.neuroimage.2008.03.023
    1. Johnson-Frey S. H., Newman-Norlund R., Grafton S. T. (2005). A distributed left hemisphere network active during planning of everyday tool use skills. Cereb. Cortex 15 681–695. 10.1093/cercor/bhh169
    1. King B. R., van Ruitenbeek P., Leunissen I., Cuypers K., Heise K. F., Santos Monteiro T., et al. (2017). Age-related declines in motor performance are associated with decreased segregation of large-scale resting state brain networks. Cereb. Cortex 9 1–13. 10.1093/cercor/bhx297
    1. Klingner C. M., Volk G. F., Brodoehl S., Burmeister H. P., Witte O. W., Guntinas-Lichius O. (2012). Time course of cortical plasticity after facial nerve palsy: a single-case study. Neurorehabil. Neural Repair 26 197–203. 10.1177/1545968311418674
    1. Loayza F. R., Fernandez-Seara M. A., Aznarez-Sanado M., Pastor M. A. (2011). Right parietal dominance in spatial egocentric discrimination. Neuroimage 55 635–643. 10.1016/j.neuroimage.2010.12.011
    1. Ma L., Narayana S., Robin D. A., Fox P. T., Xiong J. (2011). Changes occur in resting state network of motor system during 4 weeks of motor skill learning. Neuroimage 58 226–233. 10.1016/j.neuroimage.2011.06.014
    1. Ma L., Wang B., Narayana S., Hazeltine E., Chen X., Robin D. A., et al. (2010). Changes in regional activity are accompanied with changes in inter-regional connectivity during 4 weeks motor learning. Brain Res. 1318 64–76. 10.1016/j.brainres.2009.12.073
    1. Mary A., Wens V., Op de Beeck M., Leproult R., De Tiege X., Peigneux P. (2017). Age-related differences in practice-dependent resting-state functional connectivity related to motor sequence learning. Hum. Brain Mapp. 38 923–937. 10.1002/hbm.23428
    1. May C. M., Zwaan B. J. (2017). Relating past and present diet to phenotypic and transcriptomic variation in the fruit fly. BMC Genomics 18:640. 10.1186/s12864-017-3968-z
    1. Mehrkanoon S., Boonstra T. W., Breakspear M., Hinder M., Summers J. J. (2016). Upregulation of cortico-cerebellar functional connectivity after motor learning. Neuroimage 128 252–263. 10.1016/j.neuroimage.2015.12.052
    1. Miall R. C., Robertson E. M. (2006). Functional imaging: is the resting brain resting? Curr. Biol. 16 R998–R1000. 10.1016/j.cub.2006.10.041
    1. Nashiro K., Sakaki M., Braskie M. N., Mather M. (2017). Resting-state networks associated with cognitive processing show more age-related decline than those associated with emotional processing. Neurobiol. Aging 54 152–162. 10.1016/j.neurobiolaging.2017.03.003
    1. Nasreddine Z. S., Phillips N. A., Bedirian V., Charbonneau S., Whitehead V., Collin I., et al. (2005). The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53 695–699. 10.1111/j.1532-5415.2005.53221.x
    1. Nichols T., Brett M., Andersson J., Wager T., Poline J. B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage 25 653–660. 10.1016/j.neuroimage.2004.12.005
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 97–113. 10.1016/0028-3932(71)90067-4
    1. O’Shea J., Sebastian C., Boorman E. D., Johansen-Berg H., Rushworth M. F. (2007). Functional specificity of human premotor-motor cortical interactions during action selection. Eur. J. Neurosci. 26 2085–2095. 10.1111/j.1460-9568.2007.05795.x
    1. Park D. C., Polk T. A., Park R., Minear M., Savage A., Smith M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proc. Natl. Acad. Sci. U.S.A. 101 13091–13095. 10.1073/pnas.0405148101
    1. Pauwels L., Vancleef K., Swinnen S. P., Beets I. A. (2015). Challenge to promote change: both young and older adults benefit from contextual interference. Front. Aging Neurosci. 7:157. 10.3389/fnagi.2015.00157
    1. Peltier S. J., LaConte S. M., Niyazov D. M., Liu J. Z., Sahgal V., Yue G. H., et al. (2005). Reductions in interhemispheric motor cortex functional connectivity after muscle fatigue. Brain Res. 1057 10–16. 10.1016/j.brainres.2005.06.078
    1. Power J. D., Mitra A., Laumann T. O., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84 320–341. 10.1016/j.neuroimage.2013.08.048
    1. Pravata E., Sestieri C., Mantini D., Briganti C., Colicchio G., Marra C., et al. (2011). Functional connectivity MR imaging of the language network in patients with drug-resistant epilepsy. AJNR Am. J. Neuroradiol. 32 532–540. 10.3174/ajnr.A2311
    1. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98 676–682. 10.1073/pnas.98.2.676
    1. Rouiller E. M., Babalian A., Kazennikov O., Moret V., Yu X. H., Wiesendanger M. (1994). Transcallosal connections of the distal forelimb representations of the primary and supplementary motor cortical areas in macaque monkeys. Exp. Brain Res. 102 227–243. 10.1007/BF00227511
    1. Ruddy K. L., Leemans A., Carson R. G. (2017). Transcallosal connectivity of the human cortical motor network. Brain Struct. Funct. 222 1243–1252. 10.1007/s00429-016-1274-1
    1. Salvador R., Suckling J., Coleman M. R., Pickard J. D., Menon D., Bullmore E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15 1332–1342. 10.1093/cercor/bhi016
    1. Sami S., Robertson E. M., Miall R. C. (2014). The time course of task-specific memory consolidation effects in resting state networks. J. Neurosci. 34 3982–3992. 10.1523/JNEUROSCI.4341-13.2014
    1. Sampaio-Baptista C., Filippini N., Stagg C. J., Near J., Scholz J., Johansen-Berg H. (2015). Changes in functional connectivity and GABA levels with long-term motor learning. Neuroimage 106 15–20. 10.1016/j.neuroimage.2014.11.032
    1. Santos Monteiro T., Beets I. A. M., Boisgontier M. P., Gooijers J., Pauwels L., Chalavi S., et al. (2017). Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning. Neurobiol. Aging 58 54–67. 10.1016/j.neurobiolaging.2017.06.004
    1. Seidler R. D., Bernard J. A., Burutolu T. B., Fling B. W., Gordon M. T., Gwin J. T., et al. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci. Biobehav. Rev. 34 721–733. 10.1016/j.neubiorev.2009.10.005
    1. Serbruyns L., Gooijers J., Caeyenberghs K., Meesen R. L., Cuypers K., Sisti H. M., et al. (2015). Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Struct. Funct. 220 273–290. 10.1007/s00429-013-0654-z
    1. Serrien D. J. (2008). Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia 46 419–425. 10.1016/j.neuropsychologia.2007.08.011
    1. Serrien D. J. (2009). Functional connectivity patterns during motor behaviour: the impact of past on present activity. Hum. Brain Mapp. 30 523–531. 10.1002/hbm.20518
    1. Serrien D. J., Swinnen S. P., Stelmach G. E. (2000). Age-related deterioration of coordinated interlimb behavior. J. Gerontol. B Psychol. Sci. Soc. Sci. 55 295–303. 10.1093/geronb/55.5.P295
    1. Shumway R. H., Stoffer D. S. (2006). Time Series Analysis and Its Applications. New York, NY: Springer; 520.
    1. Sisti H. M., Geurts M., Clerckx R., Gooijers J., Coxon J. P., Heitger M. H., et al. (2011). Testing multiple coordination constraints with a novel bimanual visuomotor task. PLOS ONE 6:e23619. 10.1371/journal.pone.0023619
    1. Sisti H. M., Geurts M., Gooijers J., Heitger M. H., Caeyenberghs K., Beets I. A., et al. (2012). Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learn. Mem. 19 351–357. 10.1101/lm.026534.112
    1. Solesio-Jofre E., Serbruyns L., Woolley D. G., Mantini D., Beets I. A., Swinnen S. P. (2014). Aging effects on the resting state motor network and interlimb coordination. Hum. Brain Mapp. 35 3945–3961. 10.1002/hbm.22450
    1. Stevens W. D., Buckner R. L., Schacter D. L. (2010). Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cereb. Cortex 20 1997–2006. 10.1093/cercor/bhp270
    1. Swinnen S. P. (1998). Age-related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cogn. Neuropsychol. 15 439–466. 10.1080/026432998381104
    1. Swinnen S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nat. Rev. Neurosci. 3 348–359. 10.1038/nrn807
    1. Swinnen S. P., Van Langendonk L., Verschueren S., Peeters G., Dom R., De Weerdt W. (1997). Interlimb coordination deficits in patients with Parkinson’s disease during the production of two-joint oscillations in the sagittal plane. Mov. Disord. 12 958–968. 10.1002/mds.870120619
    1. Talelli P., Waddingham W., Ewas A., Rothwell J. C., Ward N. S. (2008). The effect of age on task-related modulation of interhemispheric balance. Exp. Brain Res. 186 59–66. 10.1007/s00221-007-1205-8
    1. Tambini A., Ketz N., Davachi L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65 280–290. 10.1016/j.neuron.2010.01.001
    1. Taubert M., Lohmann G., Margulies D. S., Villringer A., Ragert P. (2011). Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage 57 1492–1498. 10.1016/j.neuroimage.2011.05.078
    1. Todd G., Kimber T. E., Ridding M. C., Semmler J. G. (2010). Reduced motor cortex plasticity following inhibitory rTMS in older adults. Clin. Neurophysiol. 121 441–447. 10.1016/j.clinph.2009.11.089
    1. Tung K. C., Uh J., Mao D., Xu F., Xiao G., Lu H. (2013). Alterations in resting functional connectivity due to recent motor task. Neuroimage 78 316–324. 10.1016/j.neuroimage.2013.04.006
    1. Ungerleider L. G., Doyon J., Karni A. (2002). Imaging brain plasticity during motor skill learning. Neurobiol. Learn. Mem. 78 553–564.
    1. Vahdat S., Darainy M., Milner T. E., Ostry D. J. (2011). Functionally specific changes in resting-state sensorimotor networks after motor learning. J. Neurosci. 31 16907–16915. 10.1523/JNEUROSCI.2737-11.2011
    1. van den Heuvel M. P., Hulshoff Pol H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20 519–534. 10.1016/j.euroneuro.2010.03.008
    1. van Dijk V. F., Delnoy P., Smit J. J. J., Ramdat Misier R. A., Elvan A., van Es H. W., et al. (2017). Preliminary findings on the safety of 1.5 and 3 Tesla magnetic resonance imaging in cardiac pacemaker patients. J. Cardiovasc. Electrophysiol. 28 806–810. 10.1111/jce.13231
    1. Voelcker-Rehage C., Alberts J. L. (2007). Effect of motor practice on dual-task performance in older adults. J. Gerontol. B Psychol. Sci. Soc. Sci. 62 141–148.
    1. Voelcker-Rehage C., Willimczik K. (2006). Motor plasticity in a juggling task in older adults-a developmental study. Age Ageing 35 422–427. 10.1093/ageing/afl025
    1. Voss M. W., Erickson K. I., Chaddock L., Prakash R. S., Colcombe S. J., Morris K. S., et al. (2008). Dedifferentiation in the visual cortex: an fMRI investigation of individual differences in older adults. Brain Res. 1244 121–131. 10.1016/j.brainres.2008.09.051
    1. Waites A. B., Stanislavsky A., Abbott D. F., Jackson G. D. (2005). Effect of prior cognitive state on resting state networks measured with functional connectivity. Hum. Brain Mapp. 24 59–68. 10.1002/hbm.20069
    1. Wilson J. K., Baran B., Pace-Schott E. F., Ivry R. B., Spencer R. M. (2012). Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiol. Aging 33 991–1000. 10.1016/j.neurobiolaging.2011.06.029
    1. Wishart L. R., Lee T. D., Cunningham S. J., Murdoch J. E. (2002). Age-related differences and the role of augmented visual feedback in learning a bimanual coordination pattern. Acta Psychol. 110 247–263.
    1. Woolley D. G., Mantini D., Coxon J. P., D’Hooge R., Swinnen S. P., Wenderoth N. (2015). Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Hum. Brain Mapp. 36 1265–1277. 10.1002/hbm.22700
    1. Wu J., Srinivasan R., Kaur A., Cramer S. C. (2014). Resting-state cortical connectivity predicts motor skill acquisition. Neuroimage 91 84–90. 10.1016/j.neuroimage.2014.01.026
    1. Yoo K., Sohn W. S., Jeong Y. (2013). Tool-use practice induces changes in intrinsic functional connectivity of parietal areas. Front. Hum. Neurosci. 7:49. 10.3389/fnhum.2013.00049
    1. Zar J. H. (1998). Biostatistical Analysis. New York, NY: Prentice-Hall; 450.
    1. Zhang H., Long Z., Ge R., Xu L., Jin Z., Yao L., et al. (2014). Motor imagery learning modulates functional connectivity of multiple brain systems in resting state. PLOS ONE 9:e85489. 10.1371/journal.pone.0085489
    1. Zhang H., Zhang Y. J., Duan L., Ma S. Y., Lu C. M., Zhu C. Z. (2011). Is resting-state functional connectivity revealed by functional near-infrared spectroscopy test-retest reliable? J. Biomed. Opt. 16:067008. 10.1117/1.3591020
    1. Zuo X. N., Kelly C., Di Martino A., Mennes M., Margulies D. S., Bangaru S., et al. (2010). Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy. J. Neurosci. 30 15034–15043. 10.1523/JNEUROSCI.2612-10.2010

Source: PubMed

3
Abonner