Relationship between Interleukin-6 gene polymorphism and hippocampal volume in antipsychotic-naïve schizophrenia: evidence for differential susceptibility?

Sunil Vasu Kalmady, Ganesan Venkatasubramanian, Venkataram Shivakumar, S Gautham, Aditi Subramaniam, Dania Alphonse Jose, Arindam Maitra, Vasanthapuram Ravi, Bangalore N Gangadhar, Sunil Vasu Kalmady, Ganesan Venkatasubramanian, Venkataram Shivakumar, S Gautham, Aditi Subramaniam, Dania Alphonse Jose, Arindam Maitra, Vasanthapuram Ravi, Bangalore N Gangadhar

Abstract

Background: Various lines of evidence including epidemiological, genetic and foetal pathogenetic models suggest a compelling role for Interleukin-6 (IL-6) in the pathogenesis of schizophrenia. IL-6 mediated inflammatory response triggered by maternal infection or stress induces disruption of prenatal hippocampal development which might contribute towards psychopathology during adulthood. There is a substantial lack of knowledge on how genetic predisposition to elevated IL-6 expression effects hippocampal structure in schizophrenia patients. In this first-time study, we evaluated the relationship between functional polymorphism rs1800795 of IL-6 and hippocampal gray matter volume in antipsychotic-naïve schizophrenia patients in comparison with healthy controls.

Methodology: We examined antipsychotic-naïve schizophrenia patients [N = 28] in comparison with healthy controls [N = 37] group matched on age, sex and handedness. Using 3 Tesla - MRI, bilateral hippocampi were manually segmented by blinded raters with good inter-rater reliability using a valid method. Additionally, Voxel-based Morphometry (VBM) analysis was performed using hippocampal mask. The IL-6 level was measured in blood plasma using ELISA technique. SNP rs1800795 was genotyped using PCR and DNA sequencing. Psychotic symptoms were assessed using Scale for Assessment of Positive Symptoms and Scale for Assessment of Negative Symptoms.

Results: Schizophrenia patients had significantly deficient left and right hippocampal volumes after controlling for the potential confounding effects of age, sex and total brain volume. Plasma IL-6 levels were significantly higher in patients than controls. There was a significant diagnosis by rs1800795 genotype interaction involving both right and left hippocampal volumes. Interestingly, this effect was significant only in men but not in women.

Conclusion: Our first time observations suggest a significant relationship between IL-6 rs1800795 and reduced hippocampal volume in antipsychotic-naïve schizophrenia. Moreover, this relationship was antithetical in healthy controls and this effect was observed in men but not in women. Together, these observations support a "differential susceptibility" effect of rs1800795 in schizophrenia pathogenesis mediated through hippocampal volume deficit that is of possible neurodevelopmental origin.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Cerebral MRI depicting manual segmentation…
Figure 1. Cerebral MRI depicting manual segmentation of hippocampus.
Figure shows MRI with segmented hippocampus in axial, sagittal & coronal sections within 3D-Slicer software interface.
Figure 2. Significant diagnosis-by-genotype interaction on hippocampal…
Figure 2. Significant diagnosis-by-genotype interaction on hippocampal volumes.
Figure shows significant diagnosis by genotype interaction involving both right and left hippocampal volumes – i.e. the effect of rs1800795 genotypes [GG & GG/GC] on hippocampal volume was found to be antithetical between patients and controls.
Figure 3. Box plot depicting significant diagnosis-by-genotype…
Figure 3. Box plot depicting significant diagnosis-by-genotype interaction on hippocampus volume between patients and controls.
Figure shows box plot depicting significant diagnosis by genotype interaction involving both right and left hippocampal volumes – i.e. the effect of rs1800795 genotypes [GG & GG/GC] on hippocampal volume was found to be antithetical between patients and controls; the interaction boxplot shows the five statistics of hippocampal volume (minimum, first quartile, median, third quartile, and maximum) for each genotype per group.
Figure 4. Significant effect of diagnosis-by-genotype interaction…
Figure 4. Significant effect of diagnosis-by-genotype interaction on hippocampus volume as demonstrated by voxel based morphometry analysis.
Red blobs in the figures show significant diagnosis by genotype interaction involving both right and left hippocampal volumes by VBM in parallel to those that were observed in manual analyses.
Figure 5. Scatter plot depicting the relationship…
Figure 5. Scatter plot depicting the relationship between plasma IL-6 level and hippocampal volumes in schizophrenia patients and healthy controls.
Figure 6. Illustration of the differential susceptibility…
Figure 6. Illustration of the differential susceptibility in contrast to diathesis-stress model.
Total hippocampal volume is represented against environmental adversity and polygenic liability that are known to be associated with schizophrenia (not quantified in this study). Pink and blue lines depict homozygous G and carrier of C rs1800795 genotypes respectively, that differ in their responsiveness to environmental and epistatic factors: the “plasticity” conferred by homozygous G is disproportionately more affected by influences compared to the “fixed” C carrier group. The gray line depicts “vulnerability”, that is affected only when exposed to an adversity, and this diathesis-stress view is not supported by data in the current study. In relation to these models, the bottom panel shows predicted probability of 'schizophrenia' outcome as the function of total hippocampal volume.

References

    1. Rapoport JL, Addington AM, Frangou S, Psych MR (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10: 434–449.
    1. Nicodemus KK, Marenco S, Batten AJ, Vakkalanka R, Egan MF, et al. (2008) Serious obstetric complications interact with hypoxia-regulated/vascular-expression genes to influence schizophrenia risk. Molecular psychiatry 13: 873–877.
    1. Brown AS, Derkits EJ (2010) Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. The American journal of psychiatry 167: 261–280.
    1. Brown AS (2011) Exposure to prenatal infection and risk of schizophrenia. Frontiers in psychiatry/ Frontiers Research Foundation 2: 63.
    1. Boksa P (2010) Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain, behavior, and immunity 24: 881–897.
    1. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27: 10695–10702.
    1. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, et al. (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63: 801–808.
    1. Zakharyan R, Petrek M, Arakelyan A, Mrazek F, Atshemyan S, et al. (2012) Interleukin-6 promoter polymorphism and plasma levels in patients with schizophrenia. Tissue Antigens 80: 136–142.
    1. Paul-Samojedny M, Owczarek A, Kowalczyk M, Suchanek R, Palacz M, et al. (2013) Association of interleukin 2 (IL-2), interleukin 6 (IL-6), and TNF-alpha (TNFalpha) gene polymorphisms with paranoid schizophrenia in a Polish population. J Neuropsychiatry Clin Neurosci 25: 72–82.
    1. Marsland AL, Gianaros PJ, Abramowitch SM, Manuck SB, Hariri AR (2008) Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiatry 64: 484–490.
    1. Behrens MM, Ali SS, Dugan LL (2008) Interleukin-6 mediates the increase in NADPH-oxidase in the ketamine model of schizophrenia. J Neurosci 28: 13957–13966.
    1. Cole SW, Arevalo JM, Takahashi R, Sloan EK, Lutgendorf SK, et al. (2010) Computational identification of gene-social environment interaction at the human IL6 locus. Proceedings of the National Academy of Sciences of the United States of America 107: 5681–5686.
    1. Terry CF, Loukaci V, Green FR (2000) Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J Biol Chem 275: 18138–18144.
    1. Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin JS, et al. (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 102: 1369–1376.
    1. Pereira DS, Garcia DM, Narciso FM, Santos ML, Dias JM, et al. (2011) Effects of 174 G/C polymorphism in the promoter region of the interleukin-6 gene on plasma IL-6 levels and muscle strength in elderly women. Braz J Med Biol Res 44: 123–129.
    1. Giannitrapani L, Soresi M, Giacalone A, Campagna ME, Marasa M, et al. (2011) IL-6 -174G/C polymorphism and IL-6 serum levels in patients with liver cirrhosis and hepatocellular carcinoma. OMICS 15: 183–186.
    1. Hulkkonen J, Pertovaara M, Antonen J, Pasternack A, Hurme M (2001) Elevated interleukin-6 plasma levels are regulated by the promoter region polymorphism of the IL6 gene in primary Sjogren's syndrome and correlate with the clinical manifestations of the disease. Rheumatology (Oxford) 40: 656–661.
    1. Yang X, Jansson PA, Pellme F, Laakso M, Smith U (2005) Effect of the interleukin-6 (-174) g/c promoter polymorphism on adiponectin and insulin sensitivity. Obes Res 13: 813–817.
    1. Sanderson SC, Kumari M, Brunner EJ, Miller MA, Rumley A, et al. (2009) Association between IL6 gene variants -174G>C and -572G>C and serum IL-6 levels: interactions with social position in the Whitehall II cohort. Atherosclerosis 204: 459–464.
    1. Huang M, Wang L, Ma H, Wang J, Xiang M (2013) Lack of an Association Between Interleukin-6 -174G/C Polymorphism and Circulating Interleukin-6 Levels in Normal Population: A Meta-Analysis. DNA Cell Biol 32: 654–664.
    1. Kilpinen S, Hulkkonen J, Wang XY, Hurme M (2001) The promoter polymorphism of the interleukin-6 gene regulates interleukin-6 production in neonates but not in adults. Eur Cytokine Netw 12: 62–68.
    1. Meyer U, Feldon J, Yee BK (2009) A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 35: 959–972.
    1. Brown AS (2011) The environment and susceptibility to schizophrenia. Prog Neurobiol 93: 23–58.
    1. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, et al. (2012) Preterm birth and psychiatric disorders in young adult life. Archives of general psychiatry 69: E1–8.
    1. Smith GN, Flynn SW, McCarthy N, Meistrich B, Ehmann TS, et al. (2001) Low birthweight in schizophrenia: prematurity or poor fetal growth? Schizophrenia research 47: 177–184.
    1. de Kieviet JF, Zoetebier L, van Elburg RM, Vermeulen RJ, Oosterlaan J (2012) Brain development of very preterm and very low-birthweight children in childhood and adolescence: a meta-analysis. Developmental medicine and child neurology 54: 313–323.
    1. Beauchamp MH, Thompson DK, Howard K, Doyle LW, Egan GF, et al. (2008) Preterm infant hippocampal volumes correlate with later working memory deficits. Brain: a journal of neurology 131: 2986–2994.
    1. Harrison PJ (2004) The hippocampus in schizophrenia: a review of the neuropathological evidence and its pathophysiological implications. Psychopharmacology (Berl) 174: 151–162.
    1. Heckers S (2001) Neuroimaging studies of the hippocampus in schizophrenia. Hippocampus 11: 520–528.
    1. Heckers S (2004) The hippocampus in schizophrenia. Am J Psychiatry 161: 2138–2139.
    1. Tamminga CA, Stan AD, Wagner AD (2010) The hippocampal formation in schizophrenia. Am J Psychiatry 167: 1178–1193.
    1. Ebner F, Tepest R, Dani I, Pfeiffer U, Schulze TG, et al. (2008) The hippocampus in families with schizophrenia in relation to obstetric complications. Schizophr Res 104: 71–78.
    1. Mondelli V, Cattaneo A, Belvederi Murri M, Di Forti M, Handley R, et al. (2011) Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. The Journal of clinical psychiatry 72: 1677–1684.
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, et al. (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59 Suppl 20: 22–33;quiz 34–57.
    1. Konrad C, Ukas T, Nebel C, Arolt V, Toga AW, et al. (2009) Defining the human hippocampus in cerebral magnetic resonance images—an overview of current segmentation protocols. Neuroimage 47: 1185–1195.
    1. MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, et al. (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proceedings of the National Academy of Sciences of the United States of America 100: 1387–1392.
    1. Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, et al. (2005) Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biological psychiatry 57: 935–937.
    1. Narr KL, Thompson PM, Szeszko P, Robinson D, Jang S, et al. (2004) Regional specificity of hippocampal volume reductions in first-episode schizophrenia. Neuroimage 21: 1563–1575.
    1. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26: 839–851.
    1. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38: 95–113.
    1. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19: 1233–1239.
    1. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, et al. (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1 S208–219.
    1. Rivera-Chavez FA, Peters-Hybki DL, Barber RC, O'Keefe GE (2003) Interleukin-6 promoter haplotypes and interleukin-6 cytokine responses. Shock 20: 218–223.
    1. Maitra A, Shanker J, Dash D, John S, Sannappa PR, et al. (2008) Polymorphisms in the IL6 gene in Asian Indian families with premature coronary artery disease—the Indian Atherosclerosis Research Study. Thromb Haemost 99: 944–950.
    1. Flicek P, Amode MR, Barrell D, Beal K, Brent S, et al. (2012) Ensembl 2012. Nucleic Acids Res 40: D84–90.
    1. Integrating common and rare genetic variation in diverse human populations. Nature 467: 52–58.
    1. Qi HP, Qu ZY, Duan SR, Wei SQ, Wen SR, et al. (2012) IL-6-174 G/C and -572 C/G Polymorphisms and Risk of Alzheimer's Disease. PLoS One 7..
    1. Freedman R, Goldowitz D (2010) Studies on the hippocampal formation: From basic development to clinical applications: Studies on schizophrenia. Prog Neurobiol 90: 263–275.
    1. Keshavan MS, Dick E, Mankowski I, Harenski K, Montrose DM, et al. (2002) Decreased left amygdala and hippocampal volumes in young offspring at risk for schizophrenia. Schizophr Res 58: 173–183.
    1. Jayakumar PN, Venkatasubramanian G, Gangadhar BN, Janakiramaiah N, Keshavan MS (2005) Optimized voxel-based morphometry of gray matter volume in first-episode, antipsychotic-naive schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29: 587–591.
    1. Lodge DJ, Grace AA (2010) Developmental pathology, dopamine, stress and schizophrenia. Int J Dev Neurosci.
    1. Phillips LJ, McGorry PD, Garner B, Thompson KN, Pantelis C, et al. (2006) Stress, the hippocampus and the hypothalamic-pituitary-adrenal axis: implications for the development of psychotic disorders. Aust N Z J Psychiatry 40: 725–741.
    1. McEwen BS (2008) Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583: 174–185.
    1. Baune BT, Konrad C, Grotegerd D, Suslow T, Birosova E, et al. (2012) Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. Journal of neuroinflammation 9: 125.
    1. Brune M (2012) Does the oxytocin receptor (OXTR) polymorphism (rs2254298) confer 'vulnerability' for psychopathology or 'differential susceptibility'? Insights from evolution. BMC medicine 10: 38.
    1. Belsky J, Pluess M (2009) Beyond diathesis stress: differential susceptibility to environmental influences. Psychological bulletin 135: 885–908.
    1. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, et al. (2012) Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nature medicine 18: 1413–1417.
    1. Muller N, Empl M, Riedel M, Schwarz M, Ackenheil M (1997) Neuroleptic treatment increases soluble IL-2 receptors and decreases soluble IL-6 receptors in schizophrenia. European archives of psychiatry and clinical neuroscience 247: 308–313.
    1. Zalcman S, Green-Johnson JM, Murray L, Nance DM, Dyck D, et al. (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain research 643: 40–49.
    1. Zaretsky MV, Alexander JM, Byrd W, Bawdon RE (2004) Transfer of inflammatory cytokines across the placenta. Obstetrics and gynecology 103: 546–550.
    1. Lowe GC, Luheshi GN, Williams S (2008) Maternal infection and fever during late gestation are associated with altered synaptic transmission in the hippocampus of juvenile offspring rats. American journal of physiology Regulatory, integrative and comparative physiology 295: R1563–1571.
    1. Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH (2001) Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biological Psychiatry 50: 743–749.
    1. Gilmore JH, Fredrik Jarskog L, Vadlamudi S, Lauder JM (2004) Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 29: 1221–1229.
    1. Samuelsson AM, Jennische E, Hansson HA, Holmang A (2006) Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. American journal of physiology Regulatory, integrative and comparative physiology 290: R1345–1356.
    1. Hama T, Miyamoto M, Tsukui H, Nishio C, Hatanaka H (1989) Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neuroscience letters 104: 340–344.
    1. Mehler MF, Kessler JA (1998) Cytokines in brain development and function. Advances in protein chemistry 52: 223–251.
    1. Baier PC, May U, Scheller J, Rose-John S, Schiffelholz T (2009) Impaired hippocampus-dependent and -independent learning in IL-6 deficient mice. Behavioural brain research 200: 192–196.
    1. Vignozzi L, Cellai I, Santi R, Lombardelli L, Morelli A, et al. (2012) Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells. J Endocrinol 214: 31–43.
    1. Kovacs EJ, Plackett TP, Witte PL (2004) Estrogen replacement, aging, and cell-mediated immunity after injury. Journal of leukocyte biology 76: 36–41.
    1. Bonafe M, Olivieri F, Cavallone L, Giovagnetti S, Mayegiani F, et al. (2001) A gender—dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol 31: 2357–2361.
    1. Bergouignan L, Chupin M, Czechowska Y, Kinkingnehun S, Lemogne C, et al. (2009) Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? Neuroimage 45: 29–37.
    1. Keller SS, Mackay CE, Barrick TR, Wieshmann UC, Howard MA, et al. (2002) Voxel-based morphometric comparison of hippocampal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. Neuroimage 16: 23–31.
    1. Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, et al. (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences 97: 4398–4403.
    1. Kubicki M, Shenton ME, Salisbury DF, Hirayasu Y, Kasai K, et al. (2002) Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17: 1711–1719.
    1. Good CD, Scahill RI, Fox NC, Ashburner J, Friston KJ, et al. (2002) Automatic Differentiation of Anatomical Patterns in the Human Brain: Validation with Studies of Degenerative Dementias. Neuroimage 17: 29–46.
    1. Lindberg O, Manzouri A, Westman E, Wahlund LO (2012) A comparison between volumetric data generated by voxel-based morphometry and manual parcellation of multimodal regions of the frontal lobe. AJNR Am J Neuroradiol 33: 1957–1963.
    1. Uchida RR, Del-Ben CM, Araujo D, Busatto-Filho G, Duran FL, et al. (2008) Correlation between voxel based morphometry and manual volumetry in magnetic resonance images of the human brain. An Acad Bras Cienc 80: 149–156.
    1. Job DE, Whalley HC, McConnell S, Glabus M, Johnstone EC, et al. (2002) Structural Gray Matter Differences between First-Episode Schizophrenics and Normal Controls Using Voxel-Based Morphometry. Neuroimage 17: 880–889.
    1. Rajarethinam R, DeQuardo JR, Miedler J, Arndt S, Kirbat R, et al. (2001) Hippocampus and amygdala in schizophrenia: assessment of the relationship of neuroanatomy to psychopathology. Psychiatry Res 108: 79–87.
    1. Csernansky JG, Wang L, Jones D, Rastogi-Cruz D, Posener JA, et al. (2002) Hippocampal deformities in schizophrenia characterized by high dimensional brain mapping. Am J Psychiatry 159: 2000–2006.
    1. Tepest R, Wang L, Miller MI, Falkai P, Csernansky JG (2003) Hippocampal deformities in the unaffected siblings of schizophrenia subjects. Biol Psychiatry 54: 1234–1240.
    1. McDonald C, Marshall N, Sham PC, Bullmore ET, Schulze K, et al. (2006) Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives. Am J Psychiatry 163: 478–487.
    1. Testa C, Laakso MP, Sabattoli F, Rossi R, Beltramello A, et al. (2004) A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer's disease. Journal of Magnetic Resonance Imaging 19: 274–282.
    1. Ebdrup BH, Glenthoj B, Rasmussen H, Aggernaes B, Langkilde AR, et al. (2010) Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci 35: 95–104.
    1. Hu M, Li J, Eyler L, Guo X, Wei Q, et al. (2013) Decreased left middle temporal gyrus volume in antipsychotic drug-naive, first-episode schizophrenia patients and their healthy unaffected siblings. Schizophr Res 144: 37–42.
    1. Rizos EN, Papathanasiou M, Michalopoulou PG, Mazioti A, Douzenis A, et al. (2011) Association of serum BDNF levels with hippocampal volumes in first psychotic episode drug-naive schizophrenic patients. Schizophr Res 129: 201–204.
    1. Chua SE, Cheung C, Cheung V, Tsang JT, Chen EY, et al. (2007) Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophr Res 89: 12–21.
    1. Salgado-Pineda P, Baeza I, Perez-Gomez M, Vendrell P, Junque C, et al. (2003) Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. Neuroimage 19: 365–375.

Source: PubMed

3
Abonner