Neuromuscular involvement in COVID-19 critically ill patients

Lidia Cabañes-Martínez, Marta Villadóniga, Liliana González-Rodríguez, Lesly Araque, Alba Díaz-Cid, Ignacio Ruz-Caracuel, Héctor Pian, Susana Sánchez-Alonso, Samira Fanjul, Marta Del Álamo, Ignacio Regidor, Lidia Cabañes-Martínez, Marta Villadóniga, Liliana González-Rodríguez, Lesly Araque, Alba Díaz-Cid, Ignacio Ruz-Caracuel, Héctor Pian, Susana Sánchez-Alonso, Samira Fanjul, Marta Del Álamo, Ignacio Regidor

Abstract

Objective: Coronavirus disease 2019 (COVID-19) has a high incidence of intensive care admittance due to the severe acute respiratory syndrome (SARS). Intensive care unit (ICU)-acquired weakness (ICUAW) is a common complication of ICU patients consisting of symmetric and generalised weakness. The aim of this study was to determine the presence of myopathy, neuropathy or both in ICU patients affected by COVID-19 and whether ICUAW associated with COVID-19 differs from other aetiologies.

Methods: Twelve SARS CoV-2 positive patients referred with the suspicion of critical illness myopathy (CIM) or polyneuropathy (CIP) were included between March and May 2020. Nerve conduction and concentric needle electromyography were performed in all patients while admitted to the hospital. Muscle biopsies were obtained in three patients.

Results: Four patients presented signs of a sensory-motor axonal polyneuropathy and seven patients showed signs of myopathy. One muscle biopsy showed scattered necrotic and regenerative fibres without inflammatory signs. The other two biopsies showed non-specific myopathic findings.

Conclusions: We have not found any distinctive features in the studies of the ICU patients affected by SARS-CoV-2 infection.

Significance: Further studies are needed to determine whether COVID-19-related CIM/CIP has different features from other aetiologies. Neurophysiological studies are essential in the diagnosis of these patients.

Keywords: COVID-19; Critical illness neuromyopathy; Neuromuscular disorders; Neurophysiology; Pandemic.

Copyright © 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
Patient 7: Right peroneal nerve compound muscle action potencial (CMAP) with normal distal motor latency, normal duration and decreased amplitude. Left sural nerve sensory nerve action potential (SNAP) with decreased amplitude.
Fig. 2
Fig. 2
Patient 1: (a) Myopathic pattern: short duration and amplitude (5.3 ms, 208 µV) and polyphasic motor unit potentials of the left posterior deltoid muscle. (b) Spontaneous activity (positive sharp waves and fibrillation potentials) of the left posterior deltoid muscle. (c) Sural nerve sensory nerve action potential (SNAP): normal conduction velocity (49.8 m/s) and amplitude (15.5 µV). (d) Peroneal nerve compound muscle action potential (CMAP): normal distal motor latency (3.97 ms), decreased amplitude (0.72 mV) and increased duration (9.8 ms).
Fig. 3
Fig. 3
Skeletal muscle biopsy showing (A) scattered necrotic fibers (arrowhead) in the absence of inflammatory infiltrate (hematoxylin-eosin, 20x). (B) Higher magnification of two necrotic fibers being phagocyted by macrophages (H-E, 40x). (C) There were no thrombi or inflammatory infiltrates in the vessels (H-E, 40x). Also note the absence of angulated fibers. (D) There was no deposit of C5b9 by immunohistochemistry in non-necrotic fibers (C5b9, 20x).

References

    1. Allenbach Y., Benveniste O. Peculiar clinicopathological features of immune-mediated necrotizing myopathies. Curr Opin Rheumatol. 2018;30:655–663.
    1. Authier F.-J., Chariot P., Gherardi R.K. Skeletal muscle involvement in human immunodeficiency virus (HIV)-infected patients in the era of highly active antiretroviral therapy (HAART) Muscle Nerve. 2005;32:247–260.
    1. Bolton C.F. The discovery of critical illness polyneuropathy: a memoir. Can J Neurol Sci. 2010;37:431–438.
    1. de Carvalho M. Intensive care unit-acquired weakness: introductory notes. J Clin Neurophysiol. 2020;37:195–196.
    1. Casas-Rojo J.M., Antón-Santos J.M., Millán-Núñez-Cortés J., Lumbreras-Bermejo C., Ramos-Rincón J.M., Roy-Vallejo E. Características clínicas de los pacientes hospitalizados con COVID-19 en España: resultados del Registro SEMI-COVID-19. Rev Clin Esp. 2020 [published online ahead of print, 2020 Jul 19]
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507–513.
    1. De Jonghe B., Sharshar T., Lefaucheur J.-P., Authier F.-J., Durand-Zaleski I., Boussarsar M. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–2867.
    1. Dubowitz V., Sewry C.A. Elsevier Health Sciences; 2013. Muscle biopsy: a practical approach: expert consult; Online and print.
    1. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2019;2020(41):145–151.
    1. Friedrich O., Reid M.B., Van den Berghe G., Vanhorebeek I., Hermans G., Rich M.M. The sick and the weak: neuropathies/myopathies in the critically Ill. Physiol Rev. 2015;95:1025–1109.
    1. Garnacho-Montero J., Amaya-Villar R., García-Garmendía J.L., Madrazo-Osuna J., Ortiz-Leyba C. Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients*. Crit Care Med. 2005;33:349–354.
    1. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382:2268–2270.
    1. Hermans G., Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19:274.
    1. Jimenez-Ruiz A., Garcia-Grimshaw M., Ruiz-Sandoval J.L. Neurological manifestations of COVID-19. Gac Med Mex. 2020;156:257.
    1. Koch S., Wollersheim T., Bierbrauer J., Haas K., Mörgeli R., Deja M. Long-term recovery In critical illness myopathy is complete, contrary to polyneuropathy. Muscle Nerve. 2014;50:431–436.
    1. Larsson L., Li X., Edström L., Zackrisson H., Argentini C., Schiaffino S. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med. 2000;28:34–45.
    1. Latronico N., Bolton C.F. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10:931–941.
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77:683–690.
    1. Nanas S., Kritikos K., Angelopoulos E., Siafaka A., Tsikriki S., Poriazi M. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol Scand. 2008;118:175–181.
    1. Polak S.B., Van Gool I.C., Cohen D., von der Thüsen J.H., van Paassen J. A systematic review of pathological findings in COVID-19: a pathophysiological timeline and possible mechanisms of disease progression. Mod Pathol. 2020 doi: 10.1038/s41379-020-0603-3. Epub ahead of print.
    1. San-Juan D., Jiménez C.R., Camilli C.X., de la Cruz Reyes L.A., Galindo E.G.A., Burbano G.E.R. Guidance for clinical neurophysiology examination throughout the COVID-19 pandemic. Latin American chapter of the IFCN task force – COVID-19. Clin Neurophysiol. 2020;131:1589–1598.
    1. Stevens R.D., Marshall S.A., Cornblath D.R., Hoke A., Needham D.M., de Jonghe B. A framework for diagnosing and classifying intensive care unit-acquired weakness. Crit Care Med. 2009;37:S299–S308.
    1. Tankisi H., de Carvalho M., Z’Graggen W.J. Critical illness neuropathy. J Clin Neurophysiol. 2020;37:205–207.
    1. Tankisi H., Tankisi A., Harbo T., Markvardsen L.K., Andersen H., Pedersen T.H. Critical illness myopathy as a consequence of Covid-19 infection. Clin Neurophysiol. 2020;131:1931–1932.
    1. Tsai L.-K., Hsieh S.-T., Chang Y.-C. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan. 2005;14:113–119.
    1. Tsai L.-K., Hsieh S.-T., Chao C.-C., Chen Y.-C., Lin Y.-H., Chang S.-C. Neuromuscular disorders in severe acute respiratory syndrome. Arch Neurol. 2004;61:1669–1673.
    1. Vanhorebeek I., Latronico N., Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46:637–653.
    1. Wang J.-L., Wang J.-T., Yu C.-J., Chen Y.-C., Hsueh P.-R., Hsiao C.-H. Rhabdomyolysis associated with probable SARS. Am J Med. 2003;115:421–422.
    1. Weber-Carstens S., Deja M., Koch S., Spranger J., Bubser F., Wernecke K.D. Risk factors in critical illness myopathy during the early course of critical illness: a prospective observational study. Crit Care. 2010;14:R119.
    1. Wu C., Chen X., Cai Y., Xia J., Zhou X., Xu S. Risk Factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Int Med. 2020;180:1–11.
    1. Yoshino M., Suzuki S., Adachi K., Fukayama M., Inamatsu T. High incidence of acute myositis with type A influenza virus infection in the elderly. Int Med. 2000;39:431–432.
    1. Z’Graggen W.J., Tankisi H. Critical illness myopathy. J Clin Neurophysiol. 2020;37:200–204.

Source: PubMed

3
Abonner