Interactions between the tumor and the blood systemic response of breast cancer patients

Vanessa Dumeaux, Bjørn Fjukstad, Hans E Fjosne, Jan-Ole Frantzen, Marit Muri Holmen, Enno Rodegerdts, Ellen Schlichting, Anne-Lise Børresen-Dale, Lars Ailo Bongo, Eiliv Lund, Michael Hallett, Vanessa Dumeaux, Bjørn Fjukstad, Hans E Fjosne, Jan-Ole Frantzen, Marit Muri Holmen, Enno Rodegerdts, Ellen Schlichting, Anne-Lise Børresen-Dale, Lars Ailo Bongo, Eiliv Lund, Michael Hallett

Abstract

Although systemic immunity is critical to the process of tumor rejection, cancer research has largely focused on immune cells in the tumor microenvironment. To understand molecular changes in the patient systemic response (SR) to the presence of BC, we profiled RNA in blood and matched tumor from 173 patients. We designed a system (MIxT, Matched Interactions Across Tissues) to systematically explore and link molecular processes expressed in each tissue. MIxT confirmed that processes active in the patient SR are especially relevant to BC immunogenicity. The nature of interactions across tissues (i.e. which biological processes are associated and their patterns of expression) varies highly with tumor subtype. For example, aspects of the immune SR are underexpressed proportionally to the level of expression of defined molecular processes specific to basal tumors. The catalog of subtype-specific interactions across tissues from BC patients provides promising new ways to tackle or monitor the disease by exploiting the patient SR.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Individual characteristics and SR markers…
Fig 1. Individual characteristics and SR markers of BC subtypes.
(A) Collection of biospecimen from BC patients and controls. (B) Individual characteristics of BC patients and controls. (C) Parallel plot displaying the repartition of BC patients across RNA-based subtyping schemes. (D) Sparse hierarchical clustering of BC patients based on genes expressed in tumor (upper) and the patient SR (lower). Clinicopathological and subtypes attributes are presented below the dendrogram. (E) Significant gene markers of subtypes in SR (false discovery rate, fdr 0.2). Blue and red shade correspond to under- and over- expression of the marker in a given subtype vs the others, respectively. Shading is proportional to the level of significance of the gene marker.
Fig 2. Gene co-expression networks, modules and…
Fig 2. Gene co-expression networks, modules and associations with clinicopathological attributes of BC patients.
(A) Network visualization using the edge-weighted spring embedded layout from Cytoscape (v3.2.1) including the top gene connections (topological overlap > 0.1) in tumor. Each node (gene) is color-coded by the module to which it belongs, Keywords representing top pathway enrichments (biological processes) are indicated for each module. (B) Network visualization including the top gene connections in the patient SR. The legend follows Fig 2A. (C) Associations between tumor modules and clinicopathological attributes of patients. Associations were estimated using Pearson correlation (Student’s p) or ANOVA. Shading is proportional to -log10(fdr) of the associations (fdr 0.15). HER2S: HER2 score; LUMS: luminal score; MKS: Mitotic kinase gene expression score; hrt: hormone replacement therapy (D) Associations between SR modules and clinicopathological attributes of patients. The legend follows Fig 2C.
Fig 3. Modules size and overlap in…
Fig 3. Modules size and overlap in their gene composition across tissues.
(A) Histograms depicting number of genes composing modules in each tissue. Edges between modules indicate significant overlaps in gene composition (Fisher exact test, fdr 95) in tumor that contains 95% of randomly generated samples. Twenty genes out of the 47 common genes are involved in the type 1 IFN signaling pathway (IFN alpha signaling pathway is depicted on the right).
Fig 4. Subtype-Specific Matched Interactions across Tissue…
Fig 4. Subtype-Specific Matched Interactions across Tissue (ssMIxT).
(A) Schematic of ssMIxT analysis (B) Significant associations between modules in SR and tumor from BC patients by subtype (MIxT statistic, p-value

Fig 5. Association between the brown tumor…

Fig 5. Association between the brown tumor and green SR module for two distinct subtypes.

Fig 5. Association between the brown tumor and green SR module for two distinct subtypes.
(A) Scatter plot of ranksums of the brown tumor module and the green SR module in ER-/HER2- patients. The top corner depicts the background distributions of the correlations coefficients between ranksums of every modules pairs across tissues in ER-/HER2- patients. (B) Scatter plot of ranksums of the brown tumor module and the green SR module in ER+/lumB patients. Legend follows Fig 5A (C) Expression heatmap of genes in the brown tumor module in ER-/HER2- patients. Patients are linearly ordered based on the ranksum of gene expression in the brown tumor module. Yellow vertical lines delimit the ROI95 in tumor that contains 95% of the randomly generated samples. Genes that are positively and negatively correlated with the ranksum are represented in the right sidebar colored in red and blue, respectively. Top pathway enrichment keywords and representative genes are indicated on the left and right of the heatmap, respectively). (D) Expression heatmap of genes in the brown tumor module in ER+/lumB patients. Legend follows Fig 5C. (E) Expression heatmap of genes in the green SR module in ER-/HER2- patients. Legend follows Fig 5C. Top pathway enrichment keywords and representative genes are indicated on the left and right of the heatmap, respectively. (F) Expression heatmap of genes in the green SR module in ER+/lumB patients. Legend follows Fig 5E. (G) Clinical characteristics of ER-/HER2- patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D. (H) Clinical characteristics of ER+/lumB patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D. Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module and clinicopathological attributes of patients. Associations were estimated using ANOVA (fdr < ***0.01). (I) Distribution of ranksums for ER-/HER2- patients and controls induced by the expression of genes in the green SR module. Patients are grouped according to the ROI95 brown tumor module category as defined in Fig 5C. aov: analysis of variance (J) Distribution of ranksums for ER+/lumB patients and controls induced by the expression of genes in the green SR module. Patients are grouped according to the ROI95 brown tumor module category as defined in Fig 5D.

Fig 6. Significant Matched Interactions across Tissue…

Fig 6. Significant Matched Interactions across Tissue (MIxT) in basalL patients.

(A) The figure summarizes…

Fig 6. Significant Matched Interactions across Tissue (MIxT) in basalL patients.
(A) The figure summarizes the two sets of significant MIxT in basalL patients detailed in Fig 6A and 6C. Top pathway enrichment keywords are presented for each module. Red and blue arrows correspond to negative and positive correlations between ranksums, respectively. (B) MIxT in basalL patients between the brown tumor module and the darkgreen SR module. Heatmaps are ordered by ranksum of gene expression in the brown tumor module. Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module and clinicopathological attributes of patients (fdr 95 tumor module category and controls. (C) The second set of MIxT in basalL patients between the darkgreen tumor module and four SR modules (darkgreen, green, greenyellow, darkgrey). Legend follows Fig 6B.
Fig 5. Association between the brown tumor…
Fig 5. Association between the brown tumor and green SR module for two distinct subtypes.
(A) Scatter plot of ranksums of the brown tumor module and the green SR module in ER-/HER2- patients. The top corner depicts the background distributions of the correlations coefficients between ranksums of every modules pairs across tissues in ER-/HER2- patients. (B) Scatter plot of ranksums of the brown tumor module and the green SR module in ER+/lumB patients. Legend follows Fig 5A (C) Expression heatmap of genes in the brown tumor module in ER-/HER2- patients. Patients are linearly ordered based on the ranksum of gene expression in the brown tumor module. Yellow vertical lines delimit the ROI95 in tumor that contains 95% of the randomly generated samples. Genes that are positively and negatively correlated with the ranksum are represented in the right sidebar colored in red and blue, respectively. Top pathway enrichment keywords and representative genes are indicated on the left and right of the heatmap, respectively). (D) Expression heatmap of genes in the brown tumor module in ER+/lumB patients. Legend follows Fig 5C. (E) Expression heatmap of genes in the green SR module in ER-/HER2- patients. Legend follows Fig 5C. Top pathway enrichment keywords and representative genes are indicated on the left and right of the heatmap, respectively. (F) Expression heatmap of genes in the green SR module in ER+/lumB patients. Legend follows Fig 5E. (G) Clinical characteristics of ER-/HER2- patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D. (H) Clinical characteristics of ER+/lumB patients ordered by the ranksum of gene expression in the brown tumor module. Legend follows Fig 1D. Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module and clinicopathological attributes of patients. Associations were estimated using ANOVA (fdr < ***0.01). (I) Distribution of ranksums for ER-/HER2- patients and controls induced by the expression of genes in the green SR module. Patients are grouped according to the ROI95 brown tumor module category as defined in Fig 5C. aov: analysis of variance (J) Distribution of ranksums for ER+/lumB patients and controls induced by the expression of genes in the green SR module. Patients are grouped according to the ROI95 brown tumor module category as defined in Fig 5D.
Fig 6. Significant Matched Interactions across Tissue…
Fig 6. Significant Matched Interactions across Tissue (MIxT) in basalL patients.
(A) The figure summarizes the two sets of significant MIxT in basalL patients detailed in Fig 6A and 6C. Top pathway enrichment keywords are presented for each module. Red and blue arrows correspond to negative and positive correlations between ranksums, respectively. (B) MIxT in basalL patients between the brown tumor module and the darkgreen SR module. Heatmaps are ordered by ranksum of gene expression in the brown tumor module. Asterisks represent the level of significance of the associations between the gene ranksums for the brown tumor module and clinicopathological attributes of patients (fdr 95 tumor module category and controls. (C) The second set of MIxT in basalL patients between the darkgreen tumor module and four SR modules (darkgreen, green, greenyellow, darkgrey). Legend follows Fig 6B.

References

    1. Yarden Y. The biological framework: translational research from bench to clinic. Oncologist. 2010;15 Suppl 5:1–7. doi: .
    1. Weigelt B, Baehner FL, Reis-Filho JS. The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol. 2010;220(2):263–80. Epub 2009/11/21. doi: .
    1. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52. Epub 2000/08/30. doi: .
    1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(19):10869–74. Epub 2001/09/13. doi: ; PubMed Central PMCID: PMC58566.
    1. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2009;27(8):1160–7. Epub 2009/02/11. doi: ; PubMed Central PMCID: PMC2667820.
    1. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52. Epub 2012/04/24. doi: ; PubMed Central PMCID: PMC3440846.
    1. Ali HR, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio SA, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome biology. 2014;15(8):431 doi: ; PubMed Central PMCID: PMCPMC4166472.
    1. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A refined molecular taxonomy of breast cancer. Oncogene. 2012;31(9):1196–206. Epub 2011/07/26. doi: ; PubMed Central PMCID: PMC3307061.
    1. Tofigh A, Suderman M, Paquet ER, Livingstone J, Bertos N, Saleh SM, et al. The prognostic ease and difficulty of invasive breast carcinoma. Cell Rep. 2014;9(1):129–42. doi: .
    1. Hornberger J, Alvarado MD, Rebecca C, Gutierrez HR, Yu TM, Gradishar WJ. Clinical validity/utility, change in practice patterns, and economic implications of risk stratifiers to predict outcomes for early-stage breast cancer: a systematic review. Journal of the National Cancer Institute. 2012;104(14):1068–79. Epub 2012/07/07. doi: .
    1. Killock D. Breast cancer: Genetic signature might spare 100,000 women annually from chemotherapy. Nature reviews Clinical oncology. 2016;13(10):589 doi: .
    1. Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. The New England journal of medicine. 2004;351(27):2817–26. Epub 2004/12/14. doi: .
    1. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6. Epub 2002/02/02. doi: .
    1. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001;1(1):46–54. Epub 2002/03/20. doi: ; PubMed Central PMCID: PMC2975572.
    1. Cichon MA, Degnim AC, Visscher DW, Radisky DC. Microenvironmental influences that drive progression from benign breast disease to invasive breast cancer. J Mammary Gland Biol Neoplasia. 2010;15(4):389–97. Epub 2010/12/17. doi: ; PubMed Central PMCID: PMC3011086.
    1. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22. Epub 2012/03/24. doi: .
    1. McMillin DW, Negri JM, Mitsiades CS. The role of tumour-stromal interactions in modifying drug response: challenges and opportunities. Nature reviews Drug discovery. 2013;12(3):217–28. Epub 2013/03/02. doi: .
    1. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74. Epub 2011/10/14. doi: ; PubMed Central PMCID: PMC3632399.
    1. Santarpia L, Lippman SM, El-Naggar AK. Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert opinion on therapeutic targets. 2012;16(1):103–19. Epub 2012/01/14. doi: ; PubMed Central PMCID: PMC3457779.
    1. Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, et al. The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell. 2014;158(3):564–78. doi: ; PubMed Central PMCID: PMCPMC4249939.
    1. Wendt MK, Smith JA, Schiemann WP. Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene. 2010;29(49):6485–98. Epub 2010/08/31. doi: ; PubMed Central PMCID: PMC3076082.
    1. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature medicine. 2008;14(5):518–27. Epub 2008/04/29. doi: .
    1. Hu M, Polyak K. Molecular characterisation of the tumour microenvironment in breast cancer. European journal of cancer. 2008;44(18):2760–5. Epub 2008/11/26. doi: ; PubMed Central PMCID: PMC2729518.
    1. Pepin F, Bertos N, Laferriere J, Sadekova S, Souleimanova M, Zhao H, et al. Gene expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes. Breast cancer research: BCR. 2012;14(4):R120 Epub 2012/08/22. doi: .
    1. Gnerlich J, Jeffe DB, Deshpande AD, Beers C, Zander C, Margenthaler JA. Surgical removal of the primary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988–2003 SEER data. Annals of surgical oncology. 2007;14(8):2187–94. Epub 2007/05/25. doi: .
    1. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Developmental cell. 2010;18(6):884–901. Epub 2010/07/16. doi: ; PubMed Central PMCID: PMC2905377.
    1. McAllister SS, Weinberg RA. Tumor-host interactions: a far-reaching relationship. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 2010;28(26):4022–8. Epub 2010/07/21. doi: .
    1. Castano Z, Tracy K, McAllister SS. The tumor macroenvironment and systemic regulation of breast cancer progression. The International journal of developmental biology. 2011;55(7–9):889–97. Epub 2011/12/14. doi: .
    1. DeFilippis RA, Tlsty TD. Hello out there…is anybody listening? Cancer discovery. 2012;2(12):1084–6. Epub 2012/12/12. doi: .
    1. Elkabets M, Gifford AM, Scheel C, Nilsson B, Reinhardt F, Bray MA, et al. Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. The Journal of clinical investigation. 2011;121(2):784–99. Epub 2011/01/27. doi: ; PubMed Central PMCID: PMC3026724.
    1. Kuznetsov HS, Marsh T, Markens BA, Castano Z, Greene-Colozzi A, Hay SA, et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer discovery. 2012;2(12):1150–65. Epub 2012/08/17. doi: ; PubMed Central PMCID: PMC3517696.
    1. McAllister SS, Gifford AM, Greiner AL, Kelleher SP, Saelzler MP, Ince TA, et al. Systemic endocrine instigation of indolent tumor growth requires osteopontin. Cell. 2008;133(6):994–1005. Epub 2008/06/17. doi: .
    1. Dumeaux V, Ursini-Siegel J, Flatberg A, Fjosne HE, Frantzen JO, Holmen MM, et al. Peripheral blood cells inform on the presence of breast cancer: A population-based case-control study. Int J Cancer. 2014. Epub 2014/06/17. doi: .
    1. Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, et al. Systemic Immunity Is Required for Effective Cancer Immunotherapy. Cell. 2017;168(3):487–502 e15. doi: .
    1. Dumeaux V, Olsen KS, Nuel G, Paulssen RH, Borresen-Dale AL, Lund E. Deciphering normal blood gene expression variation—The NOWAC postgenome study. PLoS Genet. 2010;6(3):e1000873 Epub 2010/03/20. doi: ; PubMed Central PMCID: PMC2837385.
    1. Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T, et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. The pharmacogenomics journal. 2004;4(3):193–207. Epub 2004/03/24. doi: .
    1. Radich JP, Mao M, Stepaniants S, Biery M, Castle J, Ward T, et al. Individual-specific variation of gene expression in peripheral blood leukocytes. Genomics. 2004;83(6):980–8. Epub 2004/06/05. doi: .
    1. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA, et al. Individuality and variation in gene expression patterns in human blood. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(4):1896–901. Epub 2003/02/13. doi: ; PubMed Central PMCID: PMC149930.
    1. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study. PLoS Med. 2016;13(12):e1002194 doi: ; PubMed Central PMCID: PMCPMC5154505.
    1. Witten DM, Tibshirani R. A framework for feature selection in clustering. J Am Stat Assoc. 2010;105(490):713–26. doi: ; PubMed Central PMCID: PMCPMC2930825.
    1. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559 Epub 2008/12/31. doi: ; PubMed Central PMCID: PMC2631488.
    1. Yip AM, Horvath S. Gene network interconnectedness and the generalized topological overlap measure. BMC bioinformatics. 2007;8:22 doi: ; PubMed Central PMCID: PMCPMC1797055.
    1. Langfelder P, Zhang B, Horvath S. Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics. 2008;24(5):719–20. doi: .
    1. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22(13):1600–7. Epub 2006/04/12. doi: .
    1. Bianchini G, Iwamoto T, Qi Y, Coutant C, Shiang CY, Wang B, et al. Prognostic and therapeutic implications of distinct kinase expression patterns in different subtypes of breast cancer. Cancer research. 2010;70(21):8852–62. doi: .
    1. Abbas AR, Baldwin D, Ma Y, Ouyang W, Gurney A, Martin F, et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 2005;6(4):319–31. doi: .
    1. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(11):2498–504. doi: ; PubMed Central PMCID: PMCPMC403769.
    1. Nikolsky Y, Sviridov E, Yao J, Dosymbekov D, Ustyansky V, Kaznacheev V, et al. Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer research. 2008;68(22):9532–40. doi: .
    1. Dumeaux V, Borresen-Dale AL, Frantzen JO, Kumle M, Kristensen VN, Lund E. Gene expression analyses in breast cancer epidemiology: the Norwegian Women and Cancer postgenome cohort study. Breast cancer research: BCR. 2008;10(1):R13 Epub 2008/02/15. doi: ; PubMed Central PMCID: PMC2374969.
    1. Gruvberger S, Ringner M, Chen Y, Panavally S, Saal LH, Borg A, et al. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer research. 2001;61(16):5979–84. Epub 2001/08/17. .
    1. Chaussabel D, Baldwin N. Democratizing systems immunology with modular transcriptional repertoire analyses. Nat Rev Immunol. 2014;14(4):271–80. doi: ; PubMed Central PMCID: PMCPMC4118927.
    1. Chaussabel D, Pascual V, Banchereau J. Assessing the human immune system through blood transcriptomics. BMC biology. 2010;8:84 Epub 2010/07/14. doi: ; PubMed Central PMCID: PMC2895587.
    1. Li S, Rouphael N, Duraisingham S, Romero-Steiner S, Presnell S, Davis C, et al. Molecular signatures of antibody responses derived from a systems biology study of five human vaccines. Nat Immunol. 2014;15(2):195–204. doi: ; PubMed Central PMCID: PMCPMC3946932.
    1. Banchereau R, Hong S, Cantarel B, Baldwin N, Baisch J, Edens M, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016;165(3):551–65. doi: .
    1. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature. 2010;466(7309):973–7. doi: ; PubMed Central PMCID: PMCPMC3492754.
    1. Mejias A, Dimo B, Suarez NM, Garcia C, Suarez-Arrabal MC, Jartti T, et al. Whole blood gene expression profiles to assess pathogenesis and disease severity in infants with respiratory syncytial virus infection. PLoS Med. 2013;10(11):e1001549 doi: ; PubMed Central PMCID: PMCPMC3825655.
    1. Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2014;20(14):3818–29. doi: ; PubMed Central PMCID: PMCPMC4102637.
    1. Rijhsinghani AG, Thompson K, Bhatia SK, Waldschmidt TJ. Estrogen blocks early T cell development in the thymus. Am J Reprod Immunol. 1996;36(5):269–77. .
    1. Zoller AL, Kersh GJ. Estrogen induces thymic atrophy by eliminating early thymic progenitors and inhibiting proliferation of beta-selected thymocytes. J Immunol. 2006;176(12):7371–8. .
    1. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTbetaR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nature communications. 2016;7:12369 doi: ; PubMed Central PMCID: PMCPMC4980457.
    1. Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8(5):362–71. doi: .
    1. Lund E, Dumeaux V, Braaten T, Hjartaker A, Engeset D, Skeie G, et al. Cohort profile: The Norwegian Women and Cancer Study—NOWAC—Kvinner og kreft. Int J Epidemiol. 2008;37(1):36–41. Epub 2007/07/24. doi: .
    1. Staaf J, Jonsson G, Ringner M, Vallon-Christersson J, Grabau D, Arason A, et al. High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer. Breast cancer research: BCR. 2010;12(3):R25 Epub 2010/05/13. doi: ; PubMed Central PMCID: PMC2917012.
    1. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Statistical applications in genetics and molecular biology. 2004;3:Article3. Epub 2006/05/02. doi: .
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B. 1995;57:289–300.
    1. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(43):15545–50. Epub 2005/10/04. doi: ; PubMed Central PMCID: PMC1239896.
    1. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, Ur-Rehman S, et al. The European Genome-phenome Archive of human data consented for biomedical research. Nature genetics. 2015;47(7):692–5. doi: .

Source: PubMed

3
Abonner