Cortical spreading depression as a target for anti-migraine agents

Cinzia Costa, Alessandro Tozzi, Innocenzo Rainero, Letizia Maria Cupini, Paolo Calabresi, Cenk Ayata, Paola Sarchielli, Cinzia Costa, Alessandro Tozzi, Innocenzo Rainero, Letizia Maria Cupini, Paolo Calabresi, Cenk Ayata, Paola Sarchielli

Abstract

Spreading depression (SD) is a slowly propagating wave of neuronal and glial depolarization lasting a few minutes, that can develop within the cerebral cortex or other brain areas after electrical, mechanical or chemical depolarizing stimulations. Cortical SD (CSD) is considered the neurophysiological correlate of migraine aura. It is characterized by massive increases in both extracellular K⁺ and glutamate, as well as rises in intracellular Na⁺ and Ca²⁺. These ionic shifts produce slow direct current (DC) potential shifts that can be recorded extracellularly. Moreover, CSD is associated with changes in cortical parenchymal blood flow. CSD has been shown to be a common therapeutic target for currently prescribed migraine prophylactic drugs. Yet, no effects have been observed for the antiepileptic drugs carbamazepine and oxcarbazepine, consistent with their lack of efficacy on migraine. Some molecules of interest for migraine have been tested for their effect on CSD. Specifically, blocking CSD may play an enabling role for novel benzopyran derivative tonabersat in preventing migraine with aura. Additionally, calcitonin gene-related peptide (CGRP) antagonists have been recently reported to inhibit CSD, suggesting the contribution of CGRP receptor activation to the initiation and maintenance of CSD not only at the classic vascular sites, but also at a central neuronal level. Understanding what may be lying behind this contribution, would add further insights into the mechanisms of actions for "gepants", which may be pivotal for the effectiveness of these drugs as anti-migraine agents. CSD models are useful tools for testing current and novel prophylactic drugs, providing knowledge on mechanisms of action relevant for migraine.

Figures

Figure 1
Figure 1
Mechanisms and structures involved in the pathogenesis of migraine with aura. CSD underlies aura symptoms. Initiation and propagation of CSD are determined by massive increases in extracellular potassium ion concentration and excitatory glutamate. CSD biochemical changes may trigger the activations of meningeal trigeminal endings and trigemino-vascular system, causing the headache phase. The latter can occur through matrix metalloproteases activation that increases vascular permeability and also through the release of nociceptive molecules from mastcells, including proinflammatory cytokines. The pain phase is due to peripheral and central sensitization of the trigeminal system, as well as to the release of CGRP, both peripherally and centrally. CGRP is considered a key mediator in migraine and, together with NO, is the main molecule responsible for vasodilation consequential to neurogenic inflammation. CGRP is also released from cortical slices during CSD and this calcium-dependent release can mediate the dilatation of cortical arterioles. Periacqueduttal gray matter (PAG), locus coeruleus (LC), nucleus of raphe magnum (NRM) are brainstem structures implicated in the processing of trigeminal pain. Functional and structural PAG abnormalities occurring in migraineurs, contribute to the hyper-excitability of trigeminal nociceptive pathways. Functional alteration of noradrenergic nuclei of the LC are believed to be involved in cortical vasomotor instability. Thus, dysfunction in brainstem pain-inhibiting circuitry may explain many facets of the headache phases, even in MwA. CSD participates in this dysregulation by antagonizing the suppressive effect exerted by NRM on the responses of trigeminal neurons. In this scenario, amitriptyline may influence CSD by preserving 5-HT and perhaps NA neurotransmission in the cortex and/or inhibiting high-voltage-activated (HVA) Ca2+ channels and Ca2+ currents. Propranolol, on the other hand, may reduce neuronal excitability and susceptibility to CSD via a beta-adrenergic blockage. Original brain template was designed by Patrick J. Linch, medical illustrator and C. Carl Jeffe, MD, cardiologist.
Figure 2
Figure 2
Main potential targets of currently utilized preventive drugs and those under-investigation for migraine. The mechanisms mediating CSD inhibition by several migraine preventive drugs are not completely understood. However, it is believed that this inhibitory action is exerted by influencing ion channels and neurotransmission. In particular, topiramate and valproate are believed to exert their antagonizing effects on CSD by blocking Na+ channels, inhibiting glutamatergic transmission and increasing GABaergic transmission. Topiramate, but not valproate, can also block L-type Ca2+ channels. Lamotrigine has a marked suppressive effect on CSD, which may be due to its selective action on Na+ channels. Furthermore, gabapentin is able to modulate the activities of P/Q- and, to a lesser extent, N-type high voltage-activated channels located presynaptically at the cortical level and controls the neurotransmitter release, in particular that of glutamate. This effect and the modulation of GABA-mediated transmission might explain CSD inhibition by gabapentin. Magnesium exerts an inhibitory effect on CSD by interfering with NMDA receptor function and reducing glutamatergic transmission as well as regulating glutamate uptake by astrocytes and modulating NO system in the cortex. The blockage of L-type Ca2+ channels may also account for the inhibitory effects of flunarizine on CSD (not shown). The novel benzopyran compound tonabersat seems to inhibit CSD in experimental models and has shown some efficacy in the prophylactic treatment of MwA. It is not known if tonabersat acts on gap-junctions in CNS, as it has already been demonstrated for trigeminal ganglion. CSD inhibition can also be achieved by CGRP-R blockage due to CGRP antagonists, such as olcegepant. This class of drugs might exert its inhibitory effects at both cortical neuronal and cerebrovascular levels.

References

    1. Somjen GG. Aristides Leão's discovery of cortical spreading depression. J Neurophysiol. 2005;14:2–4. doi: 10.1152/classicessays.00031.2005.
    1. Fabricius M, Fuhr S, Bhatia R, Boutelle M, Hashemi P, Strong AJ, Lauritzen M. Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex. Brain. 2006;14:778–790. doi: 10.1093/brain/awh716.
    1. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ. Clinical relevance of cortical spreading depression in neurological disorders: migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab. 2011;14:17–35. doi: 10.1038/jcbfm.2010.191.
    1. Dreier JP. The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med. 2011;14:439–447. doi: 10.1038/nm.2333.
    1. Somjen GG. Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev. 2001;14:1065–1096.
    1. Strong AJ, Dardis R. In: Advances and Technical Standards in Neurosurgery, Springer, Wien, vol 30. Pickard JD, editor. 2005. Depolarisation phenomena in traumatic and ischaemic brain injury; pp. 3–49. (Austria vol).
    1. Diener HC. Positron emission tomography studies in headache. Headache. 1997;14:622–625. doi: 10.1046/j.1526-4610.1997.3710622.x.
    1. Tfelt-Hansen PC. History of migraine with aura and cortical spreading depression from 1941 and onwards. Cephalalgia. 2010;14:780–792.
    1. Sánchez del Rio M, Alvarez Linera J. Functional neuroimaging of headaches. Lancet Neurol. 2004;14:645–651. doi: 10.1016/S1474-4422(04)00904-4.
    1. Smith JM, Bradley DP, James MF, Huang CL. Physiological studies of cortical spreading depression. Biol Rev Camb Philos Soc. 2006;14:457–481. doi: 10.1017/S1464793106007081.
    1. Smith JM, James MF, Fraser JA, Huang CL. Translational imaging studies of cortical spreading depression in experimental models for migraine aura. Expert Rev Neurother. 2008;14:759–768. doi: 10.1586/14737175.8.5.759.
    1. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci. 2010;14:8807–8814. doi: 10.1523/JNEUROSCI.0511-10.2010.
    1. Hansen JM. Familial hemiplegic migraine. Dan Med Bull. 2010;14:B4183.
    1. Bolay H, Berman NE, Akcali D. Sex-related differences in animal models of migraine headache. Headache. 2011;14:891–904. doi: 10.1111/j.1526-4610.2011.01903.x.
    1. Eikermann-Haerter K, Kudo C, Moskowitz MA. Cortical spreading depression and estrogen. Headache. 2007;14(Suppl 2):S79–S85.
    1. Eikermann-Haerter K, Ayata C. Cortical spreading depression and migraine. Curr Neurol Neurosci Rep. 2010;14:167–173. doi: 10.1007/s11910-010-0099-1.
    1. Eikermann-Haerter K, Can A, Ayata C. Pharmacological targeting of spreading depression in migraine. Expert Rev Neurother. 2012;14:297–306. doi: 10.1586/ern.12.13.
    1. Merikangas KR. Contributions of epidemiology to our understanding of migraine. Headache. 2013;14:230–246. doi: 10.1111/head.12038.
    1. Headache Classification Committee of The International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia. 2004;14(1):1–160. doi: 10.1111/j.1468-2982.2004.00711.x.
    1. Montagna P. Migraine genetics. Expert Rev Neurother. 2008;14:1321–1330. doi: 10.1586/14737175.8.9.1321.
    1. Pietrobon D. Familial hemiplegic migraine. Neurotherapeutics. 2007;14:274–284. doi: 10.1016/j.nurt.2007.01.008.
    1. Lashley KS. Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatry. 1941;14:331–339. doi: 10.1001/archneurpsyc.1941.02280200137007.
    1. Leão AAP. Spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;14:359–390.
    1. Leão AAP. Pial circulation and spreading depression of activity in the cerebral cortex. J Neurophysiol. 1944;14:391–396.
    1. Leão AAP. Further observations on the spreading depression of activity in the cerebral cortex. J Neurophysiol. 1947;14:409–414.
    1. Wolff HG. Headache mechanisms. Bull U S Army Med Dep. 1948;14:641–653.
    1. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;14:344–352. doi: 10.1002/ana.410090406.
    1. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;14:199–210. doi: 10.1093/brain/117.1.199.
    1. Olesen J, Friberg L, Olsen TS, Iversen HK, Lassen NA, Andersen AR, Karle A. Timing and topography of cerebral blood flow, aura, and headache during migraine attacks. Ann Neurol. 1990;14:791–798. doi: 10.1002/ana.410280610.
    1. Cutrer FM, Sorensen AG, Weisskoff RM, Ostergaard L, Sanchez del Rio M, Lee EJ, Rosen BR, Moskowitz MA. Perfusion-weighted imaging defects during spontaneous migrainous aura. Ann Neurol. 1998;14:25–31. doi: 10.1002/ana.410430108.
    1. Cutrer FM, O'Donnell A, Sanchez del Rio M. Functional neuroimaging: enhanced understanding of migraine pathophysiology. Neurology. 2000;14(Suppl 2):S36–S45.
    1. Cao Y, Welch KM, Aurora S, Vikingstad EM. Functional MRI-BOLD of visually triggered headache in patients with migraine. Arch Neurol. 1999;14:548–554. doi: 10.1001/archneur.56.5.548.
    1. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, Kwong KK, Cutrer FM, Rosen BR, Tootell RB, Sorensen AG, Moskowitz MA. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci USA. 2001;14:4687–4692. doi: 10.1073/pnas.071582498.
    1. Oberndorfer S, Wöber C, Nasel C, Asenbaum S, Lahrmann H, Fueger B, Grisold W. Familial hemiplegic migraine: follow-up findings of diffusion-weighted magnetic resonance imaging (MRI), perfusion-MRI and [99mTc] HMPAO-SPECT in a patient with prolonged hemiplegic aura. Cephalalgia. 2004;14:533–539. doi: 10.1111/j.1468-2982.2003.00706.x.
    1. Jäger HR, Giffin NJ, Goadsby PJ. Diffusion- and perfusion-weighted MR imaging in persistent migrainous visual disturbances. Cephalalgia. 2005;14:323–332. doi: 10.1111/j.1468-2982.2004.00858.x.
    1. Belvís R, Ramos R, Villa C, Segura C, Pagonabarraga J, Ormazabal I, Kulisevsky J. Brain apparent water diffusion coefficient magnetic resonance image during a prolonged visual aura. Headache. 2010;14:1045–1049. doi: 10.1111/j.1526-4610.2010.01672.x.
    1. Mourand I, Menjot de Champfleur N, Carra-Dallière C, Le Bars E, Roubertie A, Bonafé A, Thouvenot E. Perfusion-weighted MR imaging in persistent hemiplegic migraine. Neuroradiology. 2012;14:255–260. doi: 10.1007/s00234-011-0946-z.
    1. Bereczki D, Kollár J, Kozák N, Viszokay K, Barta Z, Sikula J, Magyar MT. Cortical spreading edema in persistent visual migraine aura. Headache. 2008;14:1226–1229. doi: 10.1111/j.1526-4610.2008.01183.x.
    1. Smith M, Cros D, Sheen V. Hyperperfusion with vasogenic leakage by fMRI in migraine with prolonged aura. Neurology. 2002;14:1308–1310.
    1. Arnold G, Reuter U, Kinze S, Wolf T, Einhäupl KM. MWA shows gadolinium enhancement which is reversed following prophylactic treatment. Cephalalgia. 1998;14:644–646. doi: 10.1046/j.1468-2982.1998.1809644.x.
    1. Bowyer SM, Aurora KS, Moran JE, Tepley N, Welch KM. Magnetoencephalographic fields from patients with spontaneous and induced migraine aura. Ann Neurol. 2001;14:582–587. doi: 10.1002/ana.1293.
    1. Hall SD, Barnes GR, Hillebrand A, Furlong PL, Singh KD, Holliday IE. Spatio-temporal imaging of cortical desynchronization in migraine visual aura: a magnetoencephalography case study. Headache. 2004;14:204–208. doi: 10.1111/j.1526-4610.2004.04048.x.
    1. Grafstein B. Mechanism of spreading cortical depression. J Neurophysiol. 1956;14:154–171.
    1. Strong AJ. Dr. Bernice Grafstein's paper on the mechanism of spreading depression. J Neurophysiol. 2005;14:5–7. doi: 10.1152/classicessays.00032.2005.
    1. Martins-Ferreira H, Nedergaard M, Nicholson C. Perspectives on spreading depression. Brain Res Brain Res Rev. 2000;14:215–234. doi: 10.1016/S0165-0173(99)00083-1.
    1. de Azeredo FA. Transient changes in energy metabolites and intracellular pH during spreading depression in the chick retina. Metab Brain Dis. 1991;14:75–82. doi: 10.1007/BF00999905.
    1. Gault LM, Lin CW, LaManna JC, Lust WD. Changes in energy metabolites, cGMP and intracellular pH during cortical spreading depression. Brain Res. 1994;14:176–180. doi: 10.1016/0006-8993(94)91835-X.
    1. Footitt DR, Newberry NR. Cortical spreading depression induces an LTP-like effect in rat neocortex in vitro. Brain Res. 1998;14:339–342. doi: 10.1016/S0006-8993(97)01359-0.
    1. Világi I, Klapka N, Luhmann HJ. Optical recording of spreading depression in rat neocortical slices. Brain Res. 2001;14:288–296. doi: 10.1016/S0006-8993(01)02196-5.
    1. Peeters M, Gunthorpe MJ, Strijbos PJ, Goldsmith P, Upton N, James MF. Effects of pan- and subtype-selective N-methyl-D-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J Pharmacol Exp Ther. 2007;14:564–572. doi: 10.1124/jpet.106.117101.
    1. Petzold GC, Haack S, von Bohlen Und Halbach O, Priller J, Lehmann TN, Heinemann U, Dirnagl U, Dreier JP. Nitric oxide modulates spreading depolarization threshold in the human and rodent cortex. Stroke. 2008;14:1292–1299. doi: 10.1161/STROKEAHA.107.500710.
    1. McLachlan RS. Suppression of spreading depression of Leao in neocortex by an N-methyl-D-aspartate receptor antagonist. Can J Neurol Sci. 1992;14:487–491.
    1. Obrenovitch TP, Zilkha E. Inhibition of cortical spreading depression by L-701,324, a novel antagonist at the glycine site of the N-methyl-D-aspartate receptor complex. Br J Pharmacol. 1996;14:931–937. doi: 10.1111/j.1476-5381.1996.tb15283.x.
    1. Jing APG, Somjen GG. Role of calcium channels in spreading depression in rat hippocampal slices. Brain Res. 1993;14:251–259. doi: 10.1016/0006-8993(93)90376-X.
    1. Footitt DR, Newberry NR. Cortical spreading depression induces an LTP-like effect in rat neocortex in vitro. Brain. 1998;14:339–342. doi: 10.1016/S0006-8993(97)01359-0.
    1. Hernándéz-Cáceres J, Macias-González R, Brozek G, Bures J. Systemic ketamine blocks cortical spreading depression but does not delay the onset of terminal anoxic depolarization in rats. Brain Res. 1987;14:360–364. doi: 10.1016/0006-8993(87)91652-0.
    1. Marrannes R, Willems R, De Prins E, Wauquier A. Evidence for a role of the N-methyl-D-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain Res. 1988;14:226–240. doi: 10.1016/0006-8993(88)90690-7.
    1. Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab. 1992;14:223–229. doi: 10.1038/jcbfm.1992.32.
    1. Nellgård B, Wieloch T. NMDA-receptor blockers but not NBQX, an AMPA-receptor antagonist, inhibit spreading depression in the rat brain. Acta Physiol Scand. 1992;14:497–503. doi: 10.1111/j.1748-1716.1992.tb09451.x.
    1. Gorji A, Scheller D, Straub H, Tegtmeier F, Köhling R, Höhling JM, Tuxhorn I, Ebner A, Wolf P, Werner Panneck H, Oppel F, Speckmann EJ. Spreading depression in human neocortical slices. Brain Res. 2001;14:74–83. doi: 10.1016/S0006-8993(01)02557-4.
    1. Berger M, Speckmann EJ, Pape HC, Gorji A. Spreading depression enhances human neocortical excitability in vitro. Cephalalgia. 2008;14:558–562. doi: 10.1111/j.1468-2982.2008.01556.x.
    1. Tottene A, Urbani A, Pietrobon D. Role of different voltage-gated Ca2+ channels in cortical spreading depression: specific requirement of P/Q-type Ca2+ channels. Channels (Austin) 2011;14:110–114. doi: 10.4161/chan.5.2.14149.
    1. Petzold GC, Scheibe F, Braun JS, Freyer D, Priller J, Dirnagl U, Dreier JP. Nitric oxide modulates calcium entry through P/Q-type calcium channels and N-methyl-d-aspartate receptors in rat cortical neurons. Brain Res. 2005;14:9–14. doi: 10.1016/j.brainres.2005.09.048.
    1. Zhou N, Gordon GR, Feighan D, MacVicar BA. Transient swelling, acidification, and mitochondrial depolarization occurs in neurons but not astrocytes during spreading depression. Cereb Cortex. 2010;14:2614–2624. doi: 10.1093/cercor/bhq018.
    1. Herreras O, Somjen GG. Analysis of potential shifts associated with recurrent spreading depression and prolonged unstable SD induced by microdyalisis of elevated K+ in hippocampus of anesthetized rats. Brain Res. 1993;14:283–294. doi: 10.1016/0006-8993(93)91412-L.
    1. Richter F, Ebersberger A, Schaible HG. Blockade of voltage-gated calcium channels in rat inhibits repetitive cortical spreading depression. Neurosci Lett. 2002;14:123–126. doi: 10.1016/S0304-3940(02)01120-5.
    1. Sugaya E, Takato M, Noda Y. Neuronal and glial activity during spreading depression in cerebral cortex of cat. J Neurophysiol. 1975;14(4):822–841.
    1. Tuckwell HC, Hermansen CL. Ion and transmitter movements during spreading cortical depression. Int J Neurosci. 1981;14:109–135. doi: 10.3109/00207458108985795.
    1. Somjen GG, Aitken PG. The ionic and metabolic responses associated with neuronal depression of Leão's type in cerebral cortex and in hippocampal formation. An Acad Bras Cienc. 1984;14(4):495–504.
    1. Tozzi A, de Iure A, Di Filippo M, Costa C, Caproni S, Pisani A, Bonsi P, Picconi B, Cupini LM, Materazzi S, Geppetti P, Sarchielli P, Calabresi P. Critical role of calcitonin gene-related peptide receptors in cortical spreading depression. Proc Natl Acad Sci USA. 2012;14:18985–18990. doi: 10.1073/pnas.1215435109.
    1. Akerman S, Holland PR, Goadsby PJ. Mechanically-induced cortical spreading depression associated regional cerebral blood flow changes are blocked by Na+ ion channel blockade. Brain Res. 2008;14:27–36.
    1. Addae JI, Evans SM, Ali N, Stone TW. NMDA-induced changes in a cortical network in vivo are prevented by AMPA. Brain Res. 2000;14:211–215. doi: 10.1016/S0006-8993(00)02233-2.
    1. Anderson TR, Andrew RD. Spreading depression: imaging and blockade in the rat neocortical brain slice. J Neurophysiol. 2002;14:2713–2725. doi: 10.1152/jn.00321.2002.
    1. Addae JI, Ali N, Stone TW. Effects of AMPA and clomethiazole on spreading depression cycles in the rat neocortex in vivo. Eur J Pharmacol. 2011;14:41–46. doi: 10.1016/j.ejphar.2010.11.021.
    1. Holland PR, Akerman S, Goadsby PJ. Cortical spreading depression-associated cerebral blood flow changes induced by mechanical stimulation are modulated by AMPA and GABA receptors. Cephalalgia. 2010;14:519–527.
    1. Haghir H, Kovac S, Speckmann EJ, Zilles K, Gorji A. Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience. 2009;14:1340–1352. doi: 10.1016/j.neuroscience.2009.07.067.
    1. Van Harreveld A, Ochs S. Electrical and vascular concomitants of spreading depression. Am J Physiol. 1957;14:159–166.
    1. Wahl M, Lauritzen M, Schilling L. Change of cerebrovascular reactivity after cortical spreading depression in cats and rats. Brain Res. 1987;14:72–80. doi: 10.1016/0006-8993(87)90682-2.
    1. Fabricius M, Akgoren N, Lauritzen M. Arginine-nitric oxide pathway and cerebrovascular regulation in cortical spreading depression. Am J Physiol. 1995;14:H23–H29.
    1. Duckrow RB. Regional cerebral blood flow during spreading cortical depression in conscious rats. J Cereb Blood Flow Metab. 1991;14:150–154. doi: 10.1038/jcbfm.1991.18.
    1. Duckrow RB. A brief hypoperfusion precedes spreading depression if nitric oxide synthesis is inhibited. Brain Res. 1993;14:190–195. doi: 10.1016/0006-8993(93)91265-T.
    1. Piper RD, Lambert GA, Duckworth JW. Cortical blood flow changes during spreading depression in cats. Am J Physiol. 1991;14:H96–H102.
    1. Lauritzen M, Jørgensen MB, Diemer NH, Gjedde A, Hansen AJ. Persistent oligemia of rat cerebral cortex in the wake of spreading depression. Ann Neurol. 1982;14:469–474. doi: 10.1002/ana.410120510.
    1. Goadsby PJ. The oligemic phase of cortical spreading depression is not blocked by tirilazad mesylate (U-74006F) Brain Res. 1992;14:140–143. doi: 10.1016/0006-8993(92)91353-G.
    1. Ba AM, Guiou M, Pouratian N, Muthialu A, Rex DE, Cannestra AF, Chen JW, Toga AW. Multiwavelength optical intrinsic signal imaging of cortical spreading depression. J Neurophysiol. 2002;14:2726–2735. doi: 10.1152/jn.00729.2001.
    1. Guiou M, Sheth S, Nemoto M, Walker M, Pouratian N, Ba A, Toga AW. Cortical spreading depression produces long-term disruption of activity-related changes in cerebral blood volume and neurovascular coupling. J Biomed Opt. 2005;14(1):11004. doi: 10.1117/1.1852556.
    1. O'Farrell AM, Rex DE, Muthialu A, Pouratian N, Wong GK, Cannestra AF, Chen JW, Toga AW. Characterization of optical intrinsic signals and blood volume during cortical spreading depression. Neuroreport. 2000;14:2121–2125. doi: 10.1097/00001756-200007140-00013.
    1. Ayata C, Shin HK, Salomone S, Ozdemir-Gursoy Y, Boas DA, Dunn AK, Moskowitz MA. Pronounced hypoperfusion during spreading depression in mouse cortex. J Cereb Blood Flow Metab. 2004;14:1172–1182.
    1. Brennan KC, Beltrán-Parrazal L, López-Valdés HE, Theriot J, Toga AW, Charles AC. Distinct vascular conduction with cortical spreading depression. J Neurophysiol. 2007;14:4143–4151. doi: 10.1152/jn.00028.2007.
    1. Chang JC, Shook LL, Biag J, Nguyen EN, Toga AW, Charles AC, Brennan KC. Biphasic direct current shift, haemoglobin desaturation and neurovascular uncoupling in cortical spreading depression. Brain. 2010;14:996–1012. doi: 10.1093/brain/awp338.
    1. Wang M, Obrenovich TP, Ureniak J. Effects of the nitric oxide donor, DEA/NO on cortical spreading depression. Neuropharmacology. 2003;14:949–957. doi: 10.1016/S0028-3908(03)00082-0.
    1. Kleeberg J, Petzold GC, Major S, Dirnagl U, Dreier JP. ET-1 induces cortical spreading depression via activation of the ETA receptor/phospholipase C pathway in vivo. Am J Physiol Heart Circ Physiol. 2004;14:H1339–H1346.
    1. Dreier JP, Kleeberg J, Alam M, Major S, Kohl-Bareis M, Petzold GC, Victorov I, Dirnagl U, Obrenovitch TP, Priller J. Endothelin-1-induced spreading depression in rats is associated with a microarea of selective neuronal necrosis. Exp Biol Med (Maywood) 2007;14:204–213.
    1. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell. 1996;14:543–552. doi: 10.1016/S0092-8674(00)81373-2.
    1. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, van de Ven RC, Tottene A, van der Kaa J, Plomp JJ, Frants RR, Ferrari MD. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron. 2004;14:701–710. doi: 10.1016/S0896-6273(04)00085-6.
    1. Pietrobon D. Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol. 2005;14:257–265. doi: 10.1016/j.conb.2005.05.010.
    1. Stam AH, Haan J, van den Maagdenberg AM, Ferrari MD, Terwindt GM. Migraine and genetic and acquired vasculopathies. Cephalalgia. 2009;14:1006–1017. doi: 10.1111/j.1468-2982.2009.01940.x.
    1. Uchitel OD, Inchauspe CG, Urbano FJ, Di Guilmi MN. CaV2.1 voltage activated calcium channels and synaptic transmission in familial hemiplegic migraine pathogenesis. J Physiol Paris. 2012;14:12–22. doi: 10.1016/j.jphysparis.2011.10.004.
    1. Inchauspe CG, Urbano FJ, Di Guilmi MN, Forsythe ID, Ferrari MD, van den Maagdenberg AM, Uchitel OD. Gain of function in FHM-1 Cav 2.1 knock-in mice is related to the shape of the action potential. J Neurophysiol. 2010;14:291–299. doi: 10.1152/jn.00034.2010.
    1. Pietrobon D. Cav2.1 channelopathies. Pflugers Arch. 2010;14:375–393. doi: 10.1007/s00424-010-0802-8.
    1. Pietrobon D. Insights into migraine mechanisms and CaV2.1 calcium channel function from mouse models of familial hemiplegic migraine. J Physiol. 2010;14:1871–1878. doi: 10.1113/jphysiol.2010.188003.
    1. Tottene A, Fellin T, Pagnutti S, Luvisetto S, Striessnig J, Fletcher C, Pietrobon D. Familial hemiplegic migraine mutations increase Ca2+ influx through single human Cav2.1 channels and decrease maximal Cav2.1 current density in neurons. Proc Natl Acad Sci USA. 2002;14:13284–13289. doi: 10.1073/pnas.192242399.
    1. Tottene A, Conti R, Fabbro A, Vecchia D, Shapovalova M, Santello M, van den Maagdenberg AM, Ferrari MD, Pietrobon D. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Ca(v)2.1 knockin migraine mice. Neuron. 2009;14(5):762–773. doi: 10.1016/j.neuron.2009.01.027.
    1. van den Maagdenberg AM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE, Barrett CF, Gherardini L, van de Ven RC, Todorov B, Broos LA, Tottene A, Gao Z, Fodor M, De Zeeuw CI, Frants RR, Plesnila N, Plomp JJ, Pietrobon D, Ferrari MD. High cortical spreading depression susceptibility and migraine-associated symptoms in Cav2.1 S218L mice. Ann Neurol. 2010;14:85–98. doi: 10.1002/ana.21815.
    1. Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the α1A subunit of P/Q type calcium channels. Neuroscience. 2000;14:639–645.
    1. Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso T, Casari G. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011;14(6):e1002129. doi: 10.1371/journal.pgen.1002129.
    1. Eikermann-Haerter K, Yuzawa I, Dilekoz E, Joutel A, Moskowitz MA, Ayata C. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann Neurol. 2011;14:413–418. doi: 10.1002/ana.22281.
    1. Nagel-Leiby S, Welch KM, Grunfeld S, D’Andrea G. Ovarian steroid levels in migraine with and without aura. Cephalalgia. 1990;14:147–152. doi: 10.1046/j.1468-2982.1990.1003147.x.
    1. MacGregor EA. Oestrogen and attacks of migraine with and without aura. Lancet Neurol. 2004;14:354–361. doi: 10.1016/S1474-4422(04)00768-9.
    1. Ertresvag JM, Zwart JA, Helde G, Johnsen HJ, Bovim G. Headache and transient focal neurological symptoms during pregnancy, a prospective cohort. Acta Neurol Scand. 2005;14:233–237. doi: 10.1111/j.1600-0404.2005.00350.x.
    1. Granella F, Sances G, Zanferrari C, Costa A, Martignoni E, Manzoni GC. Migraine without aura and reproductive life events: a clinical epidemiological study in 1300 women. Headache. 1993;14:385–389. doi: 10.1111/j.1526-4610.1993.hed3307385.x.
    1. Calton GJ, Burnett JW. Danazol and migraine. N Engl J Med. 1984;14:721–722.
    1. Jonsson B, Von Reis G, Sahlgren E. Testosterone therapy of headache. Acta Psychiatr Neurol Scand. 1951;14:102–105.
    1. Moehlig RC. Methyl testosterone for migraine of women; report of sixty cases. J Mich State Med Soc. 1955;14:577–579.
    1. Vincent FM. Migraine responsive to danazol. Neurology. 1985;14:618.
    1. Lichten EM, Bennett RS, Whitty AJ, Daoud Y. Efficacy of danazol in the control of hormonal migraine. J Reprod Med. 1991;14(6):419–424.
    1. Arango O, Bielsa O, Pascual-Calvet J, Herrero M, Gelabert-Mas A. Disappearance of migraine crises in two patients with male infertility treated with human chorionic gonadotropin/human menopausal gonadotrophin. Rev Neurol. 1996;14:977–979.
    1. Pringsheim T, Gooren L. Migraine prevalence in male to female transsexuals on hormone therapy. Neurology. 2004;14:593–594.
    1. Eikermann-Haerter K, Dileköz E, Kudo C, Savitz SI, Waeber C, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C. Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Invest. 2009;14:99–109.
    1. Eikermann-Haerter K, Baum MJ, Ferrari MD, van den Maagdenberg AM, Moskowitz MA, Ayata C. Androgenic suppression of spreading depression in familial hemiplegic migraine type 1 mutant mice. Ann Neurol. 2009;14:564–568. doi: 10.1002/ana.21779.
    1. Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc. 2005;14:1326–1338. doi: 10.4065/80.10.1326.
    1. Lian XY, Stringer JL. Energy failure in astrocytes increases the vulnerability of neurons to spreading depression. Eur J Neurosci. 2004;14:2446–2454. doi: 10.1111/j.0953-816X.2004.03289.x.
    1. Lian XY, Stringer JL. Astrocytes contribute to regulation of extracellular calcium and potassium in the rat cerebral cortex during spreading depression. J Pharmacol Exp Ther. 2007;14:564–572. doi: 10.1124/jpet.106.117101.
    1. Giaume C, McCarthy KD. Control of gap-junctional communication in astrocytic networks. Trends Neurosci. 1996;14:319–325. doi: 10.1016/0166-2236(96)10046-1.
    1. Bennett MVL, Contreras JE, Bukauskas FF, Sáez JC. New roles for astrocytes: gap junction hemichannels have something to communicate. Trends Neurosci. 2003;14:610–617. doi: 10.1016/j.tins.2003.09.008.
    1. Nagy JI, Dudek FE, Rash JE. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev. 2004;14:191–215. doi: 10.1016/j.brainresrev.2004.05.005.
    1. Ye Z-C, Wyeth MS, Baltan-Tekkok S, Ransom BR. Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J Neurosci. 2003;14:3588–3596.
    1. Peters O, Schipke CG, Hashimoto Y, Kettenmann H. Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J Neurosci. 2003;14(30):9888–9896.
    1. Stout CE, Costantin JL, Naus CCG, Charles AC. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem. 2002;14:10482–10488. doi: 10.1074/jbc.M109902200.
    1. Grafstein B, Liu S, Cotrina ML, Goldman SA, Nedergaard M. Meningeal cells can communicate with astrocytes by calcium signaling. Ann Neurol. 2000;14:18–25. doi: 10.1002/1531-8249(200001)47:1<18::AID-ANA6>;2-N.
    1. Gursoy-Ozdemir Y, Qiu J, Matsuoka N, Bolay H, Bermpohl D, Jin H, Wang X, Rosenberg GA, Lo EH, Moskowitz MA. Cortical spreading depression activates and upregulates MMP-9. J Clin Invest. 2004;14:1447–1455.
    1. Martins-Oliveira A, Speciali JG, Dach F, Marcaccini AM, Gonçalves FM, Gerlach RF, Tanus-Santos JE. Different circulating metalloproteinases profiles in women with migraine with and without aura. Clin Chim Acta. 2009;14:60–64. doi: 10.1016/j.cca.2009.07.008.
    1. Gao HM, Li L, Zhang KL, Chen XH, Tian SQ, Zhang ZL. Impact of migraine attacks on the blood–brain barrier. Chin Med J (Engl) 2010;14:2559–2561.
    1. Martins-Oliveira A, Gonçalves FM, Speciali JG, Fontana V, Izidoro-Toledo TC, Belo VA, Dach F, Tanus-Santos JE. Specific matrix metalloproteinase 9 (MMP-9) haplotype affect the circulating MMP-9 levels in women with migraine. J Neuroimmunol. 2012;14:89–94. doi: 10.1016/j.jneuroim.2012.07.016.
    1. Gonçalves FM, Martins-Oliveira A, Lacchini R, Belo VA, Speciali JG, Dach F, Tanus-Santos JE. Matrix metalloproteinase (MMP)-2 gene polymorphisms affect circulating MMP-2 levels in patients with migraine with aura. Gene. 2013;14:35–40. doi: 10.1016/j.gene.2012.09.109.
    1. Gupta VK. CSD, BBB and MMP-9 elevations: animal experiments versus clinical phenomena in migraine. Expert Rev Neurother. 2009;14:1595–1614. doi: 10.1586/ern.09.103.
    1. Levy D. Endogenous mechanisms underlying the activation and sensitization of meningeal nociceptors: the role of immuno-vascular interactions and cortical spreading depression. Curr Pain Headache Rep. 2012;14:270–277. doi: 10.1007/s11916-012-0255-1.
    1. Lambert GA, Truong L, Zagami AS. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia. 2011;14(14):1439–1451. doi: 10.1177/0333102411422383.
    1. Ji R-R, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;14:696–705. doi: 10.1016/j.tins.2003.09.017.
    1. Goadsby PJ, Akerman S. The trigeminovascular system does not require a peripheral sensory input to be activated–migraine is a central disorder. Focus on 'Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system'. Cephalalgia. 2012;14:3–5. doi: 10.1177/0333102411430267.
    1. Strassman AM, Raimond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headache. Nature. 1996;14:560–564. doi: 10.1038/384560a0.
    1. Karatas H, Erdener SE, Gursoy-Ozdemir Y, Lule S, Eren-Koçak E, Sen ZD, Dalkara T. Spreading depression triggers headache by activating neuronal Panx1 channels. Science. 2013;14:1092–1095. doi: 10.1126/science.1231897.
    1. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G. The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem. 2009;14:18143–18151. doi: 10.1074/jbc.M109.004804.
    1. Müller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med. 2004;14:332–343. doi: 10.1111/j.1365-2796.2003.01296.x.
    1. Faraco G, Fossati S, Bianchi ME, Patrone M, Pedrazzi M, Sparatore B, Moroni F, Chiarugi A. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem. 2007;14:590–603. doi: 10.1111/j.1471-4159.2007.04788.x.
    1. Pontremoli S, Melloni E. Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. J Immunol. 2007;14:8525–8532.
    1. Read SJ, Parsons AA. Sumatriptan modifies cortical free radical release during cortical spreading depression. A novel antimigraine action for sumatriptan? Brain Res. 2000;14:44–53. doi: 10.1016/S0006-8993(00)02400-8.
    1. Read SJ, Hirst WD, Upton N, Parsons AA. Cortical spreading depression produces increased cGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res. 2001;14:69–77. doi: 10.1016/S0006-8993(00)03191-7.
    1. Ayata C. Spreading depression: from serendipity to targeted therapy in migraine prophylaxis. Cephalalgia. 2009;14:1095–1114. doi: 10.1111/j.1468-2982.2009.01982.x.
    1. Kaube H, Goadsby PJ. Anti-migraine compounds fail to modulate the propagation of cortical spreading depression in the cat. Eur Neurol. 1994;14:30–35. doi: 10.1159/000117004.
    1. Ayata C, Jin H, Kudo C, Dalkara T, Moskowitz MA. Suppression of cortical spreading depression in migraine prophylaxis. Ann Neurol. 2006;14:652–661. doi: 10.1002/ana.20778.
    1. Unekawa M, Tomita Y, Toriumi H, Suzuki N. Suppressive effect of chronic peroral topiramate on potassium-induced cortical spreading depression in rats. Cephalalgia. 2012;14:518–527. doi: 10.1177/0333102412444015.
    1. Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport. 2005;14:1383–1387. doi: 10.1097/01.wnr.0000175250.33159.a9.
    1. Hoffmann U, Dileköz E, Kudo C, Ayata C. Gabapentin suppresses cortical spreading depression susceptibility. J Cereb Blood Flow Metab. 2010;14:1588–1592. doi: 10.1038/jcbfm.2010.92.
    1. D'Andrea G, Granella F, Cadaldini M, Manzoni GC. Effectiveness of lamotrigine in the prophylaxis of migraine with aura: an open pilot study. Cephalalgia. 1999;14:64–66. doi: 10.1111/j.1468-2982.1999.1901064.x.
    1. Lampl C, Buzath A, Klinger D, Neumann K. Lamotrigine in the prophylactic treatment of migraine aura–a pilot study. Cephalalgia. 1999;14:58–63. doi: 10.1111/j.1468-2982.1999.1901058.x.
    1. Lampl C, Katsarava Z, Diener HC, Limmroth V. Lamotrigine reduces migraine aura and migraine attacks in patients with migraine with aura. J Neurol Neurosurg Psychiatry. 2005;14:1730–1732. doi: 10.1136/jnnp.2005.063750.
    1. Steiner TJ, Findley LJ, Yuen AW. Lamotrigine versus placebo in the prophylaxis of migraine with and without aura. Cephalalgia. 1997;14:109–112. doi: 10.1046/j.1468-2982.1997.1702109.x.
    1. Gupta P, Singh S, Goyal V, Shukla G, Behari M. Low-dose topiramate versus lamotrigine in migraine prophylaxis (the Lotolamp study) Headache. 2007;14:402–412.
    1. Bogdanov VB, Multon S, Chauvel V, Bogdanova OV, Prodanov D, Makarchuk MY, Schoenen J. Migraine preventive drugs differentially affect cortical spreading depression in rat. Neurobiol Dis. 2011;14:430–435. doi: 10.1016/j.nbd.2010.10.014.
    1. Marrannes R, Wauquier A, Reid K, De Prins E. The Prelude to The Migraine Attack. UK: Effects of drugs on cortical spreading depression. Baillière Tindal Oxford; 1986. pp. 158–173.
    1. Hansen A, Lauritzen M, Tfelt-Hansen P. In: The Pharmacological Basis of Migraine Therapy. Amery WK, Nueten JM, Waquier A, editor. London, UK: Putman; 1984. Spreading cortical depression and antimigraine drugs; pp. 161–170.
    1. Reid KH, Marrannes R, Wauquier A. Effects of flunarizine on rat cerebral cortex. Drug Dev Res. 1987;14:107–116. doi: 10.1002/ddr.430100210.
    1. Wauquier A, Ashton D, Marrannes R. The effects of flunarizine in experimental models related to the pathogenesis of migraine. Cephalalgia. 1985;14(2):119–123.
    1. Marrannes R, De Prins E, Fransen J, Clincke G. In: Migraine: Basic Mechanisms and Treatment. Lehmenkuhler A, Grotemeyer KH, Tegtmeier F, editor. Urban & Schwarzenberg: MD, USA; 1993. Neuropharmacology of spreading depression; pp. 431–443.
    1. Shimazawa M, Hara H, Watano T, Sukamoto T. Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats. Br J Pharmacol. 1995;14:1359–1368. doi: 10.1111/j.1476-5381.1995.tb16624.x.
    1. Sarchielli P, Coata G, Firenze C, Morucci P, Abbritti G, Gallai V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia. 1992;14:21–27. doi: 10.1046/j.1468-2982.1992.1201021.x.
    1. Gallai V, Sarchielli P, Morucci P, Abbritti G. Magnesium content of mononuclear blood cells in migraine patients. Headache. 1994;14:160–165. doi: 10.1111/j.1526-4610.1994.hed3403160.x.
    1. Gallai V, Sarchielli P, Morucci P, Abbritti G. Red blood cell magnesium levels in migraine patients. Cephalalgia. 1993;14:94–101. doi: 10.1046/j.1468-2982.1993.1302094.x.
    1. Mauskop A, Altura BM. Role of magnesium in the pathogenesis and treatment of migraines. Clin Neurosci. 1998;14:24–27.
    1. Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989;14:590–593. doi: 10.1111/j.1526-4610.1989.hed2909590.x.
    1. Bigal ME, Bordini CA, Tepper SJ, Speciali JG. Intravenous magnesium sulphate in the acute treatment of migraine without aura and migraine with aura. A randomized, double-blind, placebo-controlled study. Cephalalgia. 2002;14:345–353. doi: 10.1046/j.1468-2982.2002.00364.x.
    1. van der Hel WS, van den Bergh WM, Nicolay K, Tulleken KA, Dijkhuizen RM. Suppression of cortical spreading depressions after magnesium treatment in the rat. Neuroreport. 1998;14:2179–2182. doi: 10.1097/00001756-199807130-00006.
    1. Silberstein S, Saper J, Berenson F, Somogyi M, McCague K, D’Souza J. Oxcarbazepine in migraine headache: a double-blind, randomized, placebo-controlled study. Neurology. 2008;14:548–555. doi: 10.1212/01.wnl.0000297551.27191.70.
    1. Durham PL, Garrett FG. Neurological mechanisms of migraine: potential of the gap-junction modulator tonabersat in prevention of migraine. Cephalalgia. 2009;14(Suppl 2):1–6.
    1. Silberstein SD, Schoenen J, Göbel H, Diener HC, Elkind AH, Klapper JA, Howard RA. Tonabersat, a gap-junction modulator: efficacy and safety in two randomized, placebo-controlled, dose-ranging studies of acute migraine. Cephalalgia. 2009;14(Suppl 2):17–27.
    1. Goadsby PJ, Ferrari MD, Csanyi A, Olesen J, Mills JG. Tonabersat TON-01-05 Study Group. Randomized, double-blind, placebo-controlled, proof-of-concept study of the cortical spreading depression inhibiting agent tonabersat in migraine prophylaxis. Cephalalgia. 2009;14:742–750. doi: 10.1111/j.1468-2982.2008.01804.x.
    1. Dahlöf CG, Hauge AW, Olesen J. Efficacy and safety of tonabersat, a gap-junction modulator, in the acute treatment of migraine: a double-blind, parallel-group, randomized study. Cephalalgia. 2009;14(Suppl 2):7–16.
    1. Hauge AW, Asghar MS, Schytz HW, Christensen K, Olesen J. Effects of tonabersat on migraine with aura: a randomised, double-blind, placebo-controlled crossover study. Lancet Neurol. 2009;14:718–723. doi: 10.1016/S1474-4422(09)70135-8.
    1. Bradley DP, Smith MI, Netsiri C, Smith JM, Bockhorst KH, Hall LD, Huang CL, Leslie RA, Parsons AA, James MF. Diffusion-Weighted MRI Used to Detect in Vivo Modulation of Cortical Spreading Depression: Comparison of Sumatriptan and Tonabersat. Exp Neurol. 2001;14:342–353. doi: 10.1006/exnr.2001.7809.
    1. Damodaram S, Thalakoti S, Freeman SE, Garrett FG, Durham PL. Tonabersat inhibits trigeminal ganglion neuronal-satellite glial cell signaling. Headache. 2009;14:5–20. doi: 10.1111/j.1526-4610.2008.01262.x.
    1. Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ. Acid-sensing ion channel 1: a novel therapeutic target for migraine with aura. Ann Neurol. 2012;14:559–563. doi: 10.1002/ana.23653.
    1. Durham PL, Masterson CG. Two mechanisms involved in trigeminal CGRP release: implications for migraine treatment. Headache. 2013;14:67–80. doi: 10.1111/j.1526-4610.2012.02262.x.
    1. Yan J, Edelmayer RM, Wei X, De Felice M, Porreca F, Dussor G. Dural afferents express acid-sensing ion channels: A role for decreased meningeal pH in migraine headache. Pain. 2011;14:106–113. doi: 10.1016/j.pain.2010.09.036.
    1. Raddant AC, Russo AF. Calcitonin gene-related peptide in migraine: intersection of peripheral inflammation and central modulation. Expert Rev Mol Med. 2011;14:e36.
    1. Seybold VS. The role of peptides in central sensitization. Handb Exp Pharmacol. 2009;14:451–491. doi: 10.1007/978-3-540-79090-7_13.
    1. Wahl M, Schilling L, Parsons AA, Kaumann A. Involvement of calcitonin gene-related peptide (CGRP) and nitric oxide (NO) in the pial artery dilatation elicited by cortical spreading depression. Brain Res. 1994;14:2004–2010.
    1. Colonna DM, Meng W, Deal DD, Busija DW. Calcitonin gene-related peptide promotes cerebrovascular dilation during cortical spreading depression in rabbits. Am J Physiol. 1994;14:H1095–H1102.
    1. De Corato A, Lisi L, Capuano A, Tringali G, Tramutola A, Navarra P, Dello Russo C. Trigeminal satellite cells express functional calcitonin gene-related peptide receptors, whose activation enhances interleukin-1β pro-inflammatory effects. J Neuroimmunol. 2011;14:39–46. doi: 10.1016/j.jneuroim.2011.05.013.
    1. Piper RD P, Edvinsson L, Ekman R, Lambert GA. Cortical spreading depression does not result in the release of calcitonin gene-related peptide into the external jugular vein of the cat: relevance to human migraine. Cephalalgia. 1993;14:180–183. doi: 10.1046/j.1468-2982.1993.1303180.x.
    1. Hansen JM, Hauge AW, Olesen J, Ashina M. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia. 2010;14:1179–1186. doi: 10.1177/0333102410368444.
    1. Negro A, Lionetto L, Simmaco M, Martelletti P. CGRP receptor antagonists: an expanding drug class for acute migraine? Expert Opin Investig Drugs. 2012;14:807–818. doi: 10.1517/13543784.2012.681044.
    1. Hoffmann J, Goadsby PJ. New Agents for Acute Treatment of Migraine: CGRP Receptor Antagonists, iNOS Inhibitors. Curr Treat Options Neurol. 2012;14:50–59. doi: 10.1007/s11940-011-0155-4.
    1. Diener HC, Barbanti P, Dahlöf C, Reuter U, Habeck J, Podhorna J. BI 44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia. 2011;14:573–584. doi: 10.1177/0333102410388435.
    1. Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S. Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol. 2012;14:207–214. doi: 10.1016/j.expneurol.2012.05.002.
    1. Hirota K, Sikand KS, Lambert DG. Interaction of ketamine with mu2 opioid receptors in SH-SY5Y human neuroblastoma cells. J Anesth. 1999;14:107–109. doi: 10.1007/s005400050035.
    1. Narita M, Yoshizawa K, Aoki K, Takagi M, Miyatake M, Suzuki T. A putative sigma1 receptor antagonist NE-100 attenuates the discriminative stimulus effects of ketamine in rats. Addict Biol. 2001;14:373–376. doi: 10.1080/13556210020077091.
    1. Gorelova NA, Koroleva VI, Amemori T, Pavlík V, Burĕs J. Ketamine blockade of cortical spreading depression in rats. Electroencephalogr Clin Neurophysiol. 1987;14:440–447. doi: 10.1016/0013-4694(87)90213-6.
    1. Rashidy-Pour A, Motaghed-Larijani Z, Bures J. Tolerance to ketamine-induced blockade of cortical spreading depression transfers to MK-801 but not to AP5 in rats. Brain Res. 1995;14:64–69. doi: 10.1016/0006-8993(95)00692-J.
    1. Kaube H, Herzog J, Käufer T, Dichgans M, Diener HC. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology. 2000;14:139–141. doi: 10.1212/WNL.55.1.139.
    1. Afridi SK, Giffin NJ, Kaube H, Goadsby PJ. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;14:642–647. doi: 10.1212/WNL.0b013e3182824e66.
    1. Dhir A, Lossin C, Rogawski MA. Propofol hemisuccinate suppresses cortical spreading depression. Neurosci Lett. 2012;14:67–70. doi: 10.1016/j.neulet.2012.02.058.
    1. Kudo C, Toyama M, Boku A, Hanamoto H, Morimoto Y, Sugimura M, Niwa H. Anesthetic effects on susceptibility to cortical spreading depression. Neuropharmacol. 2013;14:32–36.
    1. Kudo C, Nozari A, Moskowitz MA, Ayata C. The impact of anesthetics and hyperoxia on cortical spreading depression. Exp Neurol. 2008;14:201–206. doi: 10.1016/j.expneurol.2008.03.026.
    1. Summ O, Holland PR, Akerman S, Goadsby PJ. TRPV1 receptor blockade is ineffective in different in vivo models of migraine. Cephalalgia. 2011;14:172–180. doi: 10.1177/0333102410375626.
    1. Kazemi H, Rahgozar M, Speckmann EJ, Gorji A. Effect of cannabinoid receptor activation on spreading depression. Iran J Basic Med Sci. 2012;14:926–936.

Source: PubMed

3
Abonner