Pooled Multicenter Analysis of Cardiovascular Safety and Population Pharmacokinetic Properties of Piperaquine in African Patients with Uncomplicated Falciparum Malaria

Thanaporn Wattanakul, Bernhards Ogutu, Abdunoor M Kabanywanyi, Kwaku-Poku Asante, Abraham Oduro, Alex Adjei, Ali Sie, Esperanca Sevene, Eusebio Macete, Guillaume Compaore, Innocent Valea, Isaac Osei, Markus Winterberg, Margaret Gyapong, Martin Adjuik, Salim Abdulla, Seth Owusu-Agyei, Nicholas J White, Nicholas P J Day, Halidou Tinto, Rita Baiden, Fred Binka, Joel Tarning, Thanaporn Wattanakul, Bernhards Ogutu, Abdunoor M Kabanywanyi, Kwaku-Poku Asante, Abraham Oduro, Alex Adjei, Ali Sie, Esperanca Sevene, Eusebio Macete, Guillaume Compaore, Innocent Valea, Isaac Osei, Markus Winterberg, Margaret Gyapong, Martin Adjuik, Salim Abdulla, Seth Owusu-Agyei, Nicholas J White, Nicholas P J Day, Halidou Tinto, Rita Baiden, Fred Binka, Joel Tarning

Abstract

Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicenter trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90-ms mean QTc prolongation per 100-ng/ml increase in piperaquine concentration. The effect of piperaquine on absolute QTc interval estimated a mean maximum QTc interval of 456 ms (50% effective concentration of 209 ng/ml). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98 to 2.46% risk of having QTc prolongation of >60 ms in all treatment settings. Although piperaquine administration resulted in QTc prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern. (This study has been registered at ClinicalTrials.gov under identifier NCT02199951.).

Keywords: QT prolongation; antimalarial agents; cardiovascular safety; malaria; piperaquine; population pharmacokinetic-pharmacodynamic model; population pharmacokinetics.

Copyright © 2020 Wattanakul et al.

Figures

FIG 1
FIG 1
Visual predictive check of the final piperaquine pharmacokinetic model. The open circles represent the observed piperaquine concentrations. Solid red lines represent the 50th percentiles of the observations, and dashed red lines represent the 5th and 95th percentiles of the observations. The shaded areas represent the 95% confidence intervals of each simulated percentile (n = 2,000).
FIG 2
FIG 2
Observed QTcSSB intervals, stratified by ECG measurement schedule. The solid lines and error bars represent the medians and interquartile ranges of QTcSSB intervals recorded at each ECG measurement occasion, stratified by QTc interval threshold categories.
FIG 3
FIG 3
Diagnostics of the final pharmacokinetic-pharmacodynamic model. (A and B) Goodness-of-fit plots showing observed QTcSSB interval versus individually predicted QTcSSB interval (A) and conditionally weighted residual versus time after dose (B). The solid black lines represent the line of identity, and the dashed red lines represent a local polynomial regression fitting of all observations (i.e., trend line). (C) Visual predictive check of the model describing the relationship between piperaquine concentrations and absolute QTcSSB intervals using an Emax function (n = 2,000). The open circles represent the observations. The solid red line represents the 50th percentile of the observations, and dashed red lines represent the 5th and 95th percentiles of the observations. The shaded areas represent the 95% confidence intervals of each simulated percentile.
FIG 4
FIG 4
Predicted maximum QTcSSB intervals after different dosing regimens, simulated from the final pharmacokinetic-pharmacodynamic model. The box plots represent the simulated maximum QTcSSB interval, stratified by body weight, in children weighing 5 to 25 kg (data on adults are presented in Fig. S5 in the supplemental material) after receiving the old and new dosing regimen for acute malaria treatment (3-day regimen) (A) and mass drug administration (monthly 3-day regimen) (B). The dashed red lines represent an absolute QTc interval regulatory safety cutoff of 500 ms.
FIG 5
FIG 5
Probability density of maximum QTcSSB intervals and ΔQTcSSB intervals after different dosing regimens, simulated from the final pharmacokinetic-pharmacodynamic model. The graphs shows the probability density distribution of maximum QTcSSB intervals and maximum ΔQTcSSB intervals based on a total of 480,000 simulated patients after receiving the old (gray solid lines) and new (red solid lines) dosing regimens for acute malaria treatment (3-day regimen) (A and B) and for mass drug administration (monthly 3-day regimen) (C and D).

References

    1. World Health Organization. 2018. World malaria report 2018. World Health Organization, Geneva, Switzerland.
    1. Adjei A, Narh-Bana S, Amu A, Kukula V, Nagai RA, Owusu-Agyei S, Oduro A, Macete E, Abdulla S, Halidou T, Sie A, Osei I, Sevene E, Asante KP, Mulokozi A, Compaore G, Valea I, Adjuik M, Baiden R, Ogutu B, Binka F, Gyapong M. 2016. Treatment outcomes in a safety observational study of dihydroartemisinin/piperaquine (Eurartesim) in the treatment of uncomplicated malaria at public health facilities in four African countries. Malar J 15:43. doi:10.1186/s12936-016-1099-7.
    1. Tran TH, Dolecek C, Pham PM, Nguyen TD, Nguyen TT, Le HT, Dong TH, Tran TT, Stepniewska K, White NJ, Farrar J. 2004. Dihydroartemisinin-piperaquine against multidrug-resistant Plasmodium falciparum malaria in Vietnam: randomised clinical trial. Lancet 363:18–22. doi:10.1016/S0140-6736(03)15163-X.
    1. Denis MB, Davis TM, Hewitt S, Incardona S, Nimol K, Fandeur T, Poravuth Y, Lim C, Socheat D. 2002. Efficacy and safety of dihydroartemisinin-piperaquine (Artekin) in Cambodian children and adults with uncomplicated falciparum malaria. Clin Infect Dis 35:1469–1476. doi:10.1086/344647.
    1. Ashley EA, Krudsood S, Phaiphun L, Srivilairit S, McGready R, Leowattana W, Hutagalung R, Wilairatana P, Brockman A, Looareesuwan S, Nosten F, White NJ. 2004. Randomized, controlled dose-optimization studies of dihydroartemisinin-piperaquine for the treatment of uncomplicated multidrug-resistant falciparum malaria in Thailand. J Infect Dis 190:1773–1782. doi:10.1086/425015.
    1. Valecha N, Phyo AP, Mayxay M, Newton PN, Krudsood S, Keomany S, Khanthavong M, Pongvongsa T, Ruangveerayuth R, Uthaisil C, Ubben D, Duparc S, Bacchieri A, Corsi M, Rao BHK, Bhattacharya PC, Dubhashi N, Ghosh SK, Dev V, Kumar A, Pukrittayakamee S, Pukittayakamee S. 2010. An open-label, randomised study of dihydroartemisinin-piperaquine versus artesunate-mefloquine for falciparum malaria in Asia. PLoS One 5:e11880. doi:10.1371/journal.pone.0011880.
    1. Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menéndez C, Nambozi M, Valéa I, Nabasumba C, Sasi P, Bacchieri A, Corsi M, Ubben D, Talisuna A, D'Alessandro U. 2009. Dihydroartemisinin-piperaquine and artemether-lumefantrine for treating uncomplicated malaria in African children: a randomised, non-inferiority trial. PLoS One 4:e7871. doi:10.1371/journal.pone.0007871.
    1. World Health Organization. 2015. Guidelines for the treatment of malaria, 3rd ed World Health Organization, Geneva, Switzerland.
    1. Tarning J, Zongo I, Some FA, Rouamba N, Parikh S, Rosenthal PJ, Hanpithakpong W, Jongrak N, Day NP, White NJ, Nosten F, Ouedraogo JB, Lindegardh N. 2012. Population pharmacokinetics and pharmacodynamics of piperaquine in children with uncomplicated falciparum malaria. Clin Pharmacol Ther 91:497–505. doi:10.1038/clpt.2011.254.
    1. Hoglund RM, Workman L, Edstein MD, Thanh NX, Quang NN, Zongo I, Ouedraogo JB, Borrmann S, Mwai L, Nsanzabana C, Price RN, Dahal P, Sambol NC, Parikh S, Nosten F, Ashley EA, Phyo AP, Lwin KM, McGready R, Day NP, Guerin PJ, White NJ, Barnes KI, Tarning J. 2017. Population pharmacokinetic properties of piperaquine in falciparum malaria: an individual participant data meta-analysis. PLoS Med 14:e1002212. doi:10.1371/journal.pmed.1002212.
    1. Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Sere Y, Rosenthal PJ, Ouedraogo JB. 2007. Randomized comparison of amodiaquine plus sulfadoxine-pyrimethamine, artemether-lumefantrine, and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. Clin Infect Dis 45:1453–1461. doi:10.1086/522985.
    1. Zwang J, Ashley EA, Karema C, D'Alessandro U, Smithuis F, Dorsey G, Janssens B, Mayxay M, Newton P, Singhasivanon P, Stepniewska K, White NJ, Nosten F. 2009. Safety and efficacy of dihydroartemisinin-piperaquine in falciparum malaria: a prospective multi-centre individual patient data analysis. PLoS One 4:e6358. doi:10.1371/journal.pone.0006358.
    1. Nankabirwa J, Cundill B, Clarke S, Kabatereine N, Rosenthal PJ, Dorsey G, Brooker S, Staedke SG. 2010. Efficacy, safety, and tolerability of three regimens for prevention of malaria: a randomized, placebo-controlled trial in Ugandan schoolchildren. PLoS One 5:e13438. doi:10.1371/journal.pone.0013438.
    1. Mytton OT, Ashley EA, Peto L, Price RN, La Y, Hae R, Singhasivanon P, White NJ, Nosten F. 2007. Electrocardiographic safety evaluation of dihydroartemisinin piperaquine in the treatment of uncomplicated falciparum malaria. Am J Trop Med Hyg 77:447–450. doi:10.4269/ajtmh.2007.77.447.
    1. Karunajeewa H, Lim C, Hung TY, Ilett KF, Denis MB, Socheat D, Davis TM. 2003. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin) in Cambodian children and adults with malaria. Br J Clin Pharmacol 57:93–99. doi:10.1046/j.1365-2125.2003.01962.x.
    1. Keating GM. 2012. Dihydroartemisinin/piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs 72:937–961. doi:10.2165/11203910-000000000-00000.
    1. Baiden R, Oduro A, Halidou T, Gyapong M, Sie A, Macete E, Abdulla S, Owusu-Agyei S, Mulokozi A, Adjei A, Sevene E, Compaore G, Valea I, Osei I, Yawson A, Adjuik M, Akparibo R, Ogutu B, Upunda GL, Smith P, Binka F. 2015. Prospective observational study to evaluate the clinical safety of the fixed-dose artemisinin-based combination Eurartesim (dihydroartemisinin/piperaquine), in public health facilities in Burkina Faso, Mozambique, Ghana, and Tanzania. Malar J 14:160. doi:10.1186/s12936-015-0664-9.
    1. Kabanywanyi AM, Baiden R, Ali AM, Mahende MK, Ogutu BR, Oduro A, Tinto H, Gyapong M, Sie A, Sevene E, Macete E, Owusu-Agyei S, Adjei A, Compaore G, Valea I, Osei I, Yawson A, Adjuik M, Akparibo R, Kakolwa MA, Abdulla S, Binka F. 2016. Multi-country evaluation of safety of dihydroartemisinin/piperaquine post-licensure in African public hospitals with electrocardiograms. PLoS One 11:e0164851. doi:10.1371/journal.pone.0164851.
    1. Chan XHS, Win YN, Mawer LJ, Tan JY, Brugada J, White NJ. 2018. Risk of sudden unexplained death after use of dihydroartemisinin-piperaquine for malaria: a systematic review and Bayesian meta-analysis. Lancet Infect Dis 18:913–923. doi:10.1016/S1473-3099(18)30297-4.
    1. Zhang L, Beal SL, Sheiner LB. 2003. Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn 30:387–404. doi:10.1023/b:jopa.0000012998.04442.1f.
    1. Phan DQ, Silka MJ, Lan YT, Chang RK. 2015. Comparison of formulas for calculation of the corrected QT interval in infants and young children. J Pediatr 166:960–964. doi:10.1016/j.jpeds.2014.12.037.
    1. Committee for Medicinal Products for Human Use (CHMP). 2005. ICH E14 note for guidance on the clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs (CHMP/ICH/2/04). European Medicines Agency, London, United Kingdom.
    1. Price R, Nosten F, White N. 1998. Prolongation of the QTc interval in African children treated for falciparum malaria. Am J Trop Med Hyg 59:503. doi:10.4269/ajtmh.1998.59.503.
    1. Amin AS, Herfst LJ, Delisle BP, Klemens CA, Rook MB, Bezzina CR, Underkofler HA, Holzem KM, Ruijter JM, Tan HL, January CT, Wilde AA. 2008. Fever-induced QTc prolongation and ventricular arrhythmias in individuals with type 2 congenital long QT syndrome. J Clin Investig 118:2552–2561. doi:10.1172/JCI35337.
    1. Burashnikov A, Shimizu W, Antzelevitch C. 2008. Fever accentuates transmural dispersion of repolarization and facilitates development of early afterdepolarizations and torsade de pointes under long-QT conditions. Circ Arrhythm Electrophysiol 1:202–208. doi:10.1161/CIRCEP.107.691931.
    1. Drew D, Baranchuk A, Hopman W, Brison RJ. 2017. The impact of fever on corrected QT interval. J Electrocardiol 50:570–575. doi:10.1016/j.jelectrocard.2017.04.006.
    1. Amin AS, Meregalli PG, Bardai A, Wilde AA, Tan HL. 2008. Fever increases the risk for cardiac arrest in the Brugada syndrome. Ann Intern Med 149:216–218. doi:10.7326/0003-4819-149-3-200808050-00020.
    1. Greenwood B, von Seidlein L, Jaffar S. 1997. Prolongation of the QTc interval in African children treated for falciparum malaria. Am J Trop Med Hyg 56:494–497. doi:10.4269/ajtmh.1997.56.494.
    1. Krudsood S, Looareesuwan S, Wilairatama P, Leowattana W, Tangpukdee N, Chalermrut K, Ramanathan S, Navaratnam V, Olliaro P, Vaillant M, Kiechel JR, Taylor WR. 2011. Effect of artesunate and mefloquine in combination on the Fridericia corrected QT intervals in Plasmodium falciparum infected adults from Thailand. Trop Med Int Health 16:458–465. doi:10.1111/j.1365-3156.2010.02714.x.
    1. Palhares DMF, Marcolino MS, Santos TMM, da Silva JLP, Gomes PR, Ribeiro LB, Macfarlane PW, Ribeiro A. 2017. Normal limits of the electrocardiogram derived from a large database of Brazilian primary care patients. BMC Cardiovasc Disord 17:152. doi:10.1186/s12872-017-0572-8.
    1. Piotrovsky V. 2005. Pharmacokinetic-pharmacodynamic modeling in the data analysis and interpretation of drug-induced QT/QTc prolongation. AAPS J 7:E609–E624. doi:10.1208/aapsj070363.
    1. White NJ. 2007. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis 7:549–558. doi:10.1016/S1473-3099(07)70187-1.
    1. Kervezee L, Gotta V, Stevens J, Birkhoff W, Kamerling I, Danhof M, Meijer JH, Burggraaf J. 2016. Levofloxacin-induced QTc prolongation depends on the time of drug administration. CPT Pharmacometrics Syst Pharmacol 5:466–474. doi:10.1002/psp4.12085.
    1. Vanachayangkul P, Lon C, Spring M, Sok S, Ta-Aksorn W, Kodchakorn C, Pann ST, Chann S, Ittiverakul M, Sriwichai S, Buathong N, Kuntawunginn W, So M, Youdaline T, Milner E, Wojnarski M, Lanteri C, Manning J, Prom S, Haigney M, Cantilena L, Saunders D. 2017. Piperaquine population pharmacokinetics and cardiac safety in Cambodia. Antimicrob Agents Chemother 61:e02000-16. doi:10.1128/AAC.02000-16.
    1. Chotsiri P, Wattanakul T, Hoglund R, Hanboonkunupakarn B, Pukrittayakamee S, Blessborn D, Jittamala P, White NJ, Day NPJ, Tarning J. 2017. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers. Br J Clin Pharmacol 83:2752–2766. doi:10.1111/bcp.13372.
    1. Darpo B, Ferber G, Siegl P, Laurijssens B, Macintyre F, Toovey S, Duparc S. 2015. Evaluation of the QT effect of a combination of piperaquine and a novel anti-malarial drug candidate OZ439, for the treatment of uncomplicated malaria. Br J Clin Pharmacol 80:706–715. doi:10.1111/bcp.12680.
    1. Millat-Martínez P, Ila R, Laman M, Robinson L, Karunajeewa H, Abel H, Pulai K, Sanz S, Manning L, Moore B, Bassat Q, Mitjà O. 2018. Electrocardiographic safety of repeated monthly dihydroartemisinin-piperaquine as a candidate for mass drug administration. Antimicrob Agents Chemother 62:e01153-18. doi:10.1128/AAC.01153-18.
    1. Borsini F, Crumb W, Pace S, Ubben D, Wible B, Yan GX, Funck-Brentano C. 2012. In vitro cardiovascular effects of dihydroartemisin-piperaquine combination compared with other antimalarials. Antimicrob Agents Chemother 56:3261–3270. doi:10.1128/AAC.05688-11.
    1. Funck-Brentano C, Bacchieri A, Valentini G, Pace S, Tommasini S, Voiriot P, Ubben D, Duparc S, Evene E, Felices M, Corsi M. 2019. Effects of dihydroartemisinin-piperaquine phosphate and artemether-lumefantrine on QTc interval prolongation. Sci Rep 9:777. doi:10.1038/s41598-018-37112-6.
    1. Banook Group. 2015. Solutions: cardiac safety. . Accessed 28 January 2020.
    1. European Medicines Agency. 2011. EMA/739355/2011–assessment report of Eurartesim. European Medicines Agency, London, United Kingdom: .
    1. Lindegardh N, Annerberg A, White NJ, Day NP. 2008. Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 862:227–236. doi:10.1016/j.jchromb.2007.12.011.
    1. Gisleskog PO, Karlsson MO, Beal SL. 2002. Use of prior information to stabilize a population data analysis. J Pharmacokinet Pharmacodyn 29:473–505. doi:10.1023/a:1022972420004.
    1. U.S. Department of Health and Human Services. 2005. Guidance for industry: E14 clinical evaluation of QT/QTc interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs. Food and Drug Administration, Rockville, MD.
    1. Woosley R, Romero KA. 2019. QTdrugs list . Accessed 19 June 2019.

Source: PubMed

3
Abonner