COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation

Mohamed M Aboudounya, Richard J Heads, Mohamed M Aboudounya, Richard J Heads

Abstract

Causes of mortality from COVID-19 include respiratory failure, heart failure, and sepsis/multiorgan failure. TLR4 is an innate immune receptor on the cell surface that recognizes pathogen-associated molecular patterns (PAMPs) including viral proteins and triggers the production of type I interferons and proinflammatory cytokines to combat infection. It is expressed on both immune cells and tissue-resident cells. ACE2, the reported entry receptor for SARS-CoV-2, is only present on ~1-2% of the cells in the lungs or has a low pulmonary expression, and recently, the spike protein has been proposed to have the strongest protein-protein interaction with TLR4. Here, we review and connect evidence for SARS-CoV-1 and SARS-CoV-2 having direct and indirect binding to TLR4, together with other viral precedents, which when combined shed light on the COVID-19 pathophysiological puzzle. We propose a model in which the SARS-CoV-2 spike glycoprotein binds TLR4 and activates TLR4 signalling to increase cell surface expression of ACE2 facilitating entry. SARS-CoV-2 also destroys the type II alveolar cells that secrete pulmonary surfactants, which normally decrease the air/tissue surface tension and block TLR4 in the lungs thus promoting ARDS and inflammation. Furthermore, SARS-CoV-2-induced myocarditis and multiple-organ injury may be due to TLR4 activation, aberrant TLR4 signalling, and hyperinflammation in COVID-19 patients. Therefore, TLR4 contributes significantly to the pathogenesis of SARS-CoV-2, and its overactivation causes a prolonged or excessive innate immune response. TLR4 appears to be a promising therapeutic target in COVID-19, and since TLR4 antagonists have been previously trialled in sepsis and in other antiviral contexts, we propose the clinical trial testing of TLR4 antagonists in the treatment of severe COVID-19. Also, ongoing clinical trials of pulmonary surfactants in COVID-19 hold promise since they also block TLR4.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Copyright © 2021 Mohamed M. Aboudounya and Richard J. Heads.

Figures

Figure 1
Figure 1
Graphical abstract. Note that less pulmonary surfactant secretion leads to exposed TLR4 receptors on alveolar cells. HMGB1 released from lysed cells can also activate TLR4 causing excessive inflammation and fibrosis. The same model applies to a cardiac cell, except that there would be no pulmonary surfactants, and instead of the outside air, it would be the extracellular matrix. In the heart, TLR4 activation by the SARS-CoV-2 virus and/or DAMPs released from infected, necrotic cells or even upregulated at sites of injury may also cause abnormal signalling towards the canonical proinflammatory pathway rather than the alternative anti-inflammatory pathway. This would cause viral myocarditis. TLR4 activation also decreases the contractility of cardiomyocytes. In addition, SARS-CoV-2 may activate TLR4 to increase PI3K/Akt signalling in infected cells, preventing apoptosis and thus increasing time for viral replication. Aberrant inflammatory signalling could also be extended to other tissues expressing TLR4, such as the skin and kidney, where the virus would therefore cause multiple-organ injury.
Figure 2
Figure 2
Overview of the main TLR4 signalling pathways. TLR4 can be activated by LPS (classical PAMP), DAMPs, or viral PAMPs. LPS is also picked up by the LPS-binding protein (LBP) present in the blood and in extracellular fluid in tissues. LPS is transferred from LBP to the coreceptor CD14. Recognition by MD2 and TLR4 binding results in the nuclear induction of transcription factors NF-κB and AP-1 via the MyD88-dependent pathway involving IRAKs, TABs, TAK, MAP kinases, and IKK isoforms. This results in the transcription of proinflammatory cytokines and regulators of cell proliferation, survival, and differentiation. In fibroblasts, this pathway mediates myofibroblast differentiation and results in CTGF and collagen production [100], while the alternative pathway is endosomal and involves TRIF and TRAM complex formation at the TIR domain. The alternative pathway results in the expression of anti-inflammatory cytokines, interferons α and β regulated by interferon regulatory factor 3 (IRF3), in addition to some NF-κB nuclear translocation. “Cross-talk” activation between the two pathways is indicated by brown arrows. Adaptors and cascade proteins are usually in homodimers, like the TLR4 receptor [22], but were omitted here for simplicity.

References

    1. World health organization. Coronavirus disease (COVID-2019) situation reports. 2020.
    1. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Guan W. J., Ni Z. Y., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Tufan A., Avanoglu Guler A., Matucci-Cerinic M. COVID-19, immune system response, hyperinflammation and repurposing antirheumatic drugs. Turkish Journal Of Medical Sciences. 2020;50(SI-1):620–632. doi: 10.3906/sag-2004-168.
    1. Shereen M. A., Khan S., Kazmi A., Bashir N., Siddique R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. 2020;24:91–98. doi: 10.1016/j.jare.2020.03.005.
    1. Wu A., Peng Y., Huang B., et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe. 2020;27(3):325–328. doi: 10.1016/j.chom.2020.02.001.
    1. Ahmed S. F., Quadeer A. A., McKay M. R. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):p. 254. doi: 10.3390/v12030254.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
    1. Wan Y., Shang J., Graham R., Baric R. S., Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology. 2020;94(7) doi: 10.1128/JVI.00127-20.
    1. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers in Medicine. 2020;14(2):185–192. doi: 10.1007/s11684-020-0754-0.
    1. Zhou P., Yang X. L., Wang X. G., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7.
    1. Mogensen T. H., Paludan S. R. Reading the viral signature by toll-like receptors and other pattern recognition receptors. Journal of Molecular Medicine (Berlin, Germany) 2005;83(3):180–192. doi: 10.1007/s00109-004-0620-6.
    1. Seow J., Graham C., Merrick B., et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nature Microbiology. 2020;5(12):1598–1607.
    1. Dekleijn D., Pasterkamp G. Toll-like receptors in cardiovascular diseases. Cardiovascular Research. 2003;60(1):58–67. doi: 10.1016/S0008-6363(03)00348-1.
    1. Turner N. A. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs) Journal of Molecular and Cellular Cardiology. 2016;94:189–200. doi: 10.1016/j.yjmcc.2015.11.002.
    1. Rosadini C. V., Kagan J. C. Early innate immune responses to bacterial LPS. Current Opinion in Immunology. 2017;44:14–19. doi: 10.1016/j.coi.2016.10.005.
    1. Mesquita R. F., Paul M. A., Valmaseda A., et al. Protein kinase C-Calcineurin cosignaling downstream of toll-like receptor 4 downregulates fibrosis and induces wound healing gene expression in cardiac myofibroblasts. Molecular and Cellular Biology. 2014;34(4):574–594. doi: 10.1128/MCB.01098-13.
    1. Bhattacharyya S., Wang W., Qin W., et al. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight. 2018;3(13) doi: 10.1172/jci.insight.98850.
    1. MacRedmond R., Greene C., Taggart C. C., McElvaney N., O'Neill S. Respiratory epithelial cells require Toll-like receptor 4 for induction of human β-defensin 2 by lipopolysaccharide. Respiratory Research. 2005;6(1) doi: 10.1186/1465-9921-6-116.
    1. Chow J. C., Young D. W., Golenbock D. T., Christ W. J., Gusovsky F. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. The Journal of Biological Chemistry. 1999;274(16):10689–10692. doi: 10.1074/jbc.274.16.10689.
    1. Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413(6857):732–738. doi: 10.1038/35099560.
    1. Kuzmich N. N., Sivak K. V., Chubarev V. N., Porozov Y. B., Savateeva-Lyubimova T. N., Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines. 2017;5(4) doi: 10.3390/vaccines5040034.
    1. Molteni M., Gemma S., Rossetti C. The role of toll-like receptor 4 in infectious and noninfectious inflammation. Mediators of Inflammation. 2016;2016:9. doi: 10.1155/2016/6978936.6978936
    1. Roshan M. H., Tambo A., Pace N. P. The role of TLR2, TLR4, and TLR9 in the pathogenesis of atherosclerosis. International Journal of Inflammation. 2016;2016:11. doi: 10.1155/2016/1532832.1532832
    1. Patra M. C., Shah M., Choi S. Toll-like receptor-induced cytokines as immunotherapeutic targets in cancers and autoimmune diseases. Seminars in Cancer Biology. 2020;64:61–82. doi: 10.1016/j.semcancer.2019.05.002.
    1. García Bueno B., Caso J. R., Madrigal J. L. M., Leza J. C. Innate immune receptor Toll-like receptor 4 signalling in neuropsychiatric diseases. Neuroscience and Biobehavioral Reviews. 2016;64:134–147. doi: 10.1016/j.neubiorev.2016.02.013.
    1. Liu Y., Yin H., Zhao M., Lu Q. TLR2 and TLR4 in autoimmune diseases: a comprehensive review. Clinical Reviews in Allergy and Immunology. 2014;47(2, article 8402):136–147. doi: 10.1007/s12016-013-8402-y.
    1. Biancardi V. C., Bomfim G. F., Reis W. L., al-Gassimi S., Nunes K. P. The interplay between angiotensin II, TLR4 and hypertension. Pharmacological Research. 2017;120:88–96. doi: 10.1016/j.phrs.2017.03.017.
    1. Mukherjee S., Karmakar S., Babu S. P. TLR2 and TLR4 mediated host immune responses in major infectious diseases: a review. The Brazilian Journal of Infectious Diseases. 2016;20(2):193–204. doi: 10.1016/j.bjid.2015.10.011.
    1. Choudhury A., Mukherjee S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. Journal of Medical Virology. 2020;92(10):2105–2113. doi: 10.1002/jmv.25987.
    1. Zhou Z., Ren L., Zhang L., et al. Heightened innate immune responses in the respiratory tract of COVID-19 patients. Cell Host & Microbe. 2020;27(6):883–890.e2. doi: 10.1016/j.chom.2020.04.017. e2.
    1. Ziegler C. G. K., Allon S. J., Nyquist S. K., et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016–1035.e19. doi: 10.1016/j.cell.2020.04.035.
    1. Voelker D. R., Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. The Journal of Biological Chemistry. 2019;294(12):4282–4289. doi: 10.1074/jbc.AW118.003229.
    1. Agudelo C. W., Samaha G., Garcia-Arcos I. Alveolar lipids in pulmonary disease. A review. Lipids in health and disease. 2020;19(1) doi: 10.1186/s12944-020-01278-8.
    1. Chroneos Z. C., Sever-Chroneos Z., Shepherd V. L. Pulmonary surfactant: an immunological perspective. Cellular Physiology and Biochemistry. 2010;25(1):13–26. doi: 10.1159/000272047.
    1. Kolomaznik M., Nova Z., Calkovska A. Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiological Research. 2017;66(Supplement 2):S147–S157. doi: 10.33549/physiolres.933672.
    1. Kuronuma K., Mitsuzawa H., Takeda K., et al. Anionic pulmonary surfactant phospholipids inhibit inflammatory responses from alveolar macrophages and U937 cells by binding the lipopolysaccharide-interacting proteins CD14 and MD-2. The Journal of Biological Chemistry. 2009;284(38):25488–25500. doi: 10.1074/jbc.M109.040832.
    1. Abate W., Alghaithy A. A., Parton J., Jones K. P., Jackson S. K. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. Journal of Lipid Research. 2010;51(2):334–344. doi: 10.1194/jlr.M000513.
    1. Zhang B., Zhou X., Qiu Y., et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One. 2020;15(7, article e0235458) doi: 10.1371/journal.pone.0235458.
    1. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive care medicine. 2020;46(5):846–848. doi: 10.1007/s00134-020-05991-x.
    1. Jain A. COVID-19 and lung pathology. Indian Journal of Pathology & Microbiology. 2020;63(2):171–172. doi: 10.4103/IJPM.IJPM_280_20.
    1. Akhmerov A., Marban E. COVID-19 and the heart. Circulation Research. 2020;126(10):1443–1455. doi: 10.1161/CIRCRESAHA.120.317055.
    1. Zhu H., Rhee J. W., Cheng P., et al. Cardiovascular complications in patients with COVID-19: consequences of viral toxicities and host immune response. Current Cardiology Reports. 2020;22(5):p. 32. doi: 10.1007/s11886-020-01292-3.
    1. Puntmann V. O., Carerj M. L., Wieters I., et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19) JAMA cardiology. 2020;5(11) doi: 10.1001/jamacardio.2020.3557.
    1. Kuba K., Imai Y., Rao S., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine. 2005;11(8):875–879. doi: 10.1038/nm1267.
    1. Chow K. C., Hsiao C. H., Lin T. Y., Chen C. L., Chiou S. H. Detection of severe acute respiratory syndrome-associated coronavirus in pneumocytes of the lung. American Journal of Clinical Pathology. 2004;121(4):574–580. doi: 10.1309/C0EDU0RAQBTXBHCE.
    1. Short K. R., Kroeze E. J. B. V., Fouchier R. A. M., Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. The Lancet Infectious Diseases. 2014;14(1):57–69. doi: 10.1016/S1473-3099(13)70286-X.
    1. Fu J., Zhou B., Zhang L., et al. Expressions and significances of the angiotensin-converting enzyme 2 gene, the receptor of SARS-CoV-2 for COVID-19. Molecular Biology Reports. 2020;47(6, article 5478):4383–4392. doi: 10.1007/s11033-020-05478-4.
    1. Zheng Y. Y., Ma Y. T., Zhang J. Y., Xie X. COVID-19 and the cardiovascular system. Nature Reviews. Cardiology. 2020;17(5):259–260. doi: 10.1038/s41569-020-0360-5.
    1. Ferrario C. M., Jessup J., Chappell M. C., et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation. 2005;111(20):2605–2610. doi: 10.1161/CIRCULATIONAHA.104.510461.
    1. Li L., Zhou Q., Xu J. Changes of laboratory cardiac markers and mechanisms of cardiac injury in coronavirus disease 2019. BioMed Research International. 2020;2020:7. doi: 10.1155/2020/7413673.7413673
    1. Turner A. J., Hiscox J. A., Hooper N. M. ACE2: from vasopeptidase to SARS virus receptor. Trends in Pharmacological Sciences. 2004;25(6):291–294. doi: 10.1016/j.tips.2004.04.001.
    1. Nicin L., Abplanalp W. T., Mellentin H., et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. European Heart Journal. 2020;41(19):1804–1806. doi: 10.1093/eurheartj/ehaa311.
    1. Chen L., Li X., Chen M., Feng Y., Xiong C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovascular Research. 2020;116(6):1097–1100. doi: 10.1093/cvr/cvaa078.
    1. Huang W., Li T., Ling Y., et al. Effects of angiotensin converting enzyme inhibitor/angiotensin receptor blocker on clinical characteristics of coronavirus disease 2019 patients with hypertension. Zhonghua Nei Ke Za Zhi. 2020;59(9):689–694. doi: 10.3760/cma.j.cn112138-20200229-00155.
    1. Peng Y. D., Meng K. Clinical characteristics and outcomes of 112 cardiovascular disease patients infected by 2019-nCoV. Zhonghua xin xue guan bing za zhi. 2020;48
    1. Tian X., Li C., Huang A., et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerging microbes & infections. 2020;9(1):382–385. doi: 10.1080/22221751.2020.1729069.
    1. Timmers L., Sluijter J. P. G., van Keulen J. K., et al. Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circulation Research. 2008;102(2):257–264. doi: 10.1161/CIRCRESAHA.107.158220.
    1. Ha T., Li Y., Hua F., et al. Reduced cardiac hypertrophy in toll-like receptor 4-deficient mice following pressure overload. Cardiovascular Research. 2005;68(2):224–234. doi: 10.1016/j.cardiores.2005.05.025.
    1. Lin P. P., Hsieh Y. M., Kuo W. W., et al. Suppression of TLR-4-related inflammatory pathway and anti-fibrosis effects of probiotic-fermented purple sweet potato yogurt in hearts of spontaneously hypertensive rats. The Chinese Journal of Physiology. 2013;56(3):174–183. doi: 10.4077/CJP.2013.BAB118.
    1. Schattner M. Platelet TLR4 at the crossroads of thrombosis and the innate immune response. Journal of Leukocyte Biology. 2019;105(5):873–880. doi: 10.1002/JLB.MR0618-213R.
    1. Vilahur G., Juan-Babot O., Peña E., Oñate B., Casaní L., Badimon L. Molecular and cellular mechanisms involved in cardiac remodeling after acute myocardial infarction. Journal of Molecular and Cellular Cardiology. 2011;50(3):522–533. doi: 10.1016/j.yjmcc.2010.12.021.
    1. Birks E. J., Felkin L. E., Banner N. R., Khaghani A., Barton P. J. R., Yacoub M. H. Increased toll-like receptor 4 in the myocardium of patients requiring left ventricular assist devices. The Journal of Heart and Lung Transplantation. 2004;23(2):228–235. doi: 10.1016/S1053-2498(03)00106-2.
    1. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. doi: 10.1016/j.cell.2006.02.015.
    1. Guillot L., Medjane S., le-Barillec K., et al. Response of human pulmonary epithelial cells to lipopolysaccharide involves Toll-like receptor 4 (TLR4)-dependent signaling Pathways. The Journal of Biological Chemistry. 2004;279(4):2712–2718. doi: 10.1074/jbc.m305790200.
    1. Armstrong L., Medford A. R. L., Uppington K. M., et al. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. American Journal of Respiratory Cell and Molecular Biology. 2004;31(2):241–245. doi: 10.1165/rcmb.2004-0078OC.
    1. Wong M. H., Johnson M. D. Differential response of primary alveolar type I and type II cells to LPS stimulation. PLoS One. 2013;8(1, article e55545) doi: 10.1371/journal.pone.0055545.
    1. Monick M. M., Yarovinsky T. O., Powers L. S., et al. Respiratory syncytial virus up-regulates TLR4 and sensitizes airway epithelial cells to endotoxin. The Journal of Biological Chemistry. 2003;278(52):53035–53044. doi: 10.1074/jbc.M308093200.
    1. Haeberle H. A., Takizawa R., Casola A., et al. Respiratory syncytial virus-induced activation of nuclear factor-kappaB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. The Journal of Infectious Diseases. 2002;186(9):1199–1206. doi: 10.1086/344644.
    1. He Z., Gao Y., Deng Y., et al. Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS One. 2012;7(4, article e35926) doi: 10.1371/journal.pone.0035926.
    1. Imai Y., Kuba K., Neely G. G., et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235–249. doi: 10.1016/j.cell.2008.02.043.
    1. Qiu Q., Yang Z., Cao F., et al. Activation of NLRP3 inflammasome by lymphocytic microparticles via TLR4 pathway contributes to airway inflammation. Experimental Cell Research. 2020;386(2, article 111737) doi: 10.1016/j.yexcr.2019.111737.
    1. Luo M., Hu L., Li D., et al. MD-2 regulates LPS-induced NLRP3 inflammasome activation and IL-1beta secretion by a MyD88/NF-κB-dependent pathway in alveolar macrophages cell line. Molecular Immunology. 2017;90:1–10. doi: 10.1016/j.molimm.2017.06.035.
    1. Luo Y. P., Jiang L., Kang K., et al. Hemin inhibits NLRP3 inflammasome activation in sepsis-induced acute lung injury, involving heme oxygenase-1. International Immunopharmacology. 2014;20(1):24–32. doi: 10.1016/j.intimp.2014.02.017.
    1. Khodir A. E., Samra Y. A., Said E. A novel role of nifuroxazide in attenuation of sepsis-associated acute lung and myocardial injuries; role of TLR4/NLPR3/IL-1β signaling interruption. Life Sciences. 2020;256, article 117907 doi: 10.1016/j.lfs.2020.117907.
    1. Li X. X., Jiang D. Y., Huang X. X., Guo S. L., Yuan W., Dai H. P. Toll-like receptor 4 promotes fibrosis in bleomycin-induced lung injury in mice. Genetics and Molecular Research. 2015;14(4):17391–17398. doi: 10.4238/2015.December.21.8.
    1. Frantz S., Kobzik L., Kim Y. D., et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. The Journal of Clinical Investigation. 1999;104(3):271–280. doi: 10.1172/JCI6709.
    1. Yang R., Song Z., Wu S., Wei Z., Xu Y., Shen X. Toll-like receptor 4 contributes to a myofibroblast phenotype in cardiac fibroblasts and is associated with autophagy after myocardial infarction in a mouse model. Atherosclerosis. 2018;279:23–31. doi: 10.1016/j.atherosclerosis.2018.10.018.
    1. Tavener S. A., Kubes P. Cellular and molecular mechanisms underlying LPS-associated myocyte impairment. American Journal of Physiology. Heart and Circulatory Physiology. 2006;290(2):H800–H806. doi: 10.1152/ajpheart.00701.2005.
    1. Nishimura M., Naito S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biological & Pharmaceutical Bulletin. 2005;28(5):886–892. doi: 10.1248/bpb.28.886.
    1. Thompson M., Kliewer A., Maass D., et al. Increased cardiomyocyte intracellular calcium during endotoxin-induced cardiac dysfunction in guinea pigs. Pediatric Research. 2000;47(5):669–676. doi: 10.1203/00006450-200005000-00019.
    1. Zou N., Ao L., Cleveland J. C., Jr., et al. Critical role of extracellular heat shock cognate protein 70 in the myocardial inflammatory response and cardiac dysfunction after global ischemia-reperfusion. American Journal of Physiology. Heart and Circulatory Physiology. 2008;294(6):H2805–H2813. doi: 10.1152/ajpheart.00299.2008.
    1. Martin L., Derwall M., Thiemermann C., Schürholz T. Heart in sepsis : molecular mechanisms, diagnosis and therapy of septic cardiomyopathy. Anaesthesist. 2017;66(7):479–490. doi: 10.1007/s00101-017-0329-x.
    1. Akira S., Takeda K. Toll-like receptor signalling. Nature Reviews. Immunology. 2004;4(7):499–511. doi: 10.1038/nri1391.
    1. Murphy K. M. Janeway’s Immunobiology. 8th. Garland; 2012.
    1. McFadden J. P., Baker B. S., Powles A. V., Fry L. Psoriasis and extra domain A fibronectin loops. The British Journal of Dermatology. 2010;163(1):5–11. doi: 10.1111/j.1365-2133.2010.09737.x.
    1. McKeown-Longo P. J., Higgins P. J. Integration of canonical and noncanonical pathways in TLR4 signaling: complex regulation of the wound repair program. Advances in Wound Care. 2017;6(10):320–329. doi: 10.1089/wound.2017.0736.
    1. Zanoni I., Ostuni R., Marek L. R., et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147(4):868–880. doi: 10.1016/j.cell.2011.09.051.
    1. Yang Y., Lv J., Jiang S., et al. The emerging role of Toll-like receptor 4 in myocardial inflammation. Cell Death & Disease. 2016;7(5, article e2234) doi: 10.1038/cddis.2016.140.
    1. Satoh T., Akira S. Myeloid Cells in Health and Disease: A Synthesis. 6. Vol. 4. Washington, DC, USA: ASM Press; 2017. Toll-like receptor signaling and its inducible proteins; pp. 447–453.
    1. Karin M., Liu Z., Zandi E. AP-1 function and regulation. Current Opinion in Cell Biology. 1997;9(2):240–246. doi: 10.1016/S0955-0674(97)80068-3.
    1. Frantz S., Ertl G., Bauersachs J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nature Clinical Practice. Cardiovascular Medicine. 2007;4(8):444–454. doi: 10.1038/ncpcardio0938.
    1. Kagan J. C., Su T., Horng T., Chow A., Akira S., Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-β. Nature Immunology. 2008;9(4):361–368. doi: 10.1038/ni1569.
    1. Samuel C. E. Antiviral actions of interferons. Clinical microbiology reviews. 2001;14(4):778–809. doi: 10.1128/CMR.14.4.778-809.2001.
    1. Kasper L. H., Reder A. T. Immunomodulatory activity of interferon-beta. Annals of Clinical and Translational Neurology. 2014;1(8):622–631. doi: 10.1002/acn3.84.
    1. Ratajczak W., Niedźwiedzka-Rystwej P., Tokarz-Deptuła B., Deptuła W. Mechanisms of type I interferon action and its role in infections and diseases transmission in mammals. Acta Biochimica Polonica. 2017;64(2):199–205. doi: 10.18388/abp.2016_1403.
    1. Tarassishin L., Suh H. S., Lee S. C. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. Journal of Neuroinflammation. 2011;8(1) doi: 10.1186/1742-2094-8-187.
    1. Schoggins J. W., Rice C. M. Interferon-stimulated genes and their antiviral effector functions. Current Opinion in Virology. 2011;1(6):519–525. doi: 10.1016/j.coviro.2011.10.008.
    1. Grandvaux N., Servant M. J., tenOever B., et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. Journal of Virology. 2002;76(11):5532–5539. doi: 10.1128/JVI.76.11.5532-5539.2002.
    1. Burke J. P., Cunningham M. F., Watson R. W. G., Docherty N. G., Coffey J. C., O'Connell P. R. Bacterial lipopolysaccharide promotes profibrotic activation of intestinal fibroblasts. The British Journal of Surgery. 2010;97(7):1126–1134. doi: 10.1002/bjs.7045.
    1. Kaparianos A., Argyropoulou E. Local renin-angiotensin II systems, angiotensin-converting enzyme and its homologue ACE2: their potential role in the pathogenesis of chronic obstructive pulmonary diseases, pulmonary hypertension and acute respiratory distress syndrome. Current Medicinal Chemistry. 2011;18(23):3506–3515. doi: 10.2174/092986711796642562.
    1. Ye R., Liu Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Experimental and Molecular Pathology. 2020;113, article 104350 doi: 10.1016/j.yexmp.2019.104350.
    1. Tallant E. A., Ferrario C. M., Gallagher P. E. Cardioprotective role for angiotensin-(1-7) and angiotensin converting enzyme 2 in the heart. Future Cardiology. 2006;2(3):335–342. doi: 10.2217/14796678.2.3.335.
    1. Touyz R. M., Montezano A. C. Angiotensin-(1-7) and vascular function: the clinical context. Hypertension. 2018;71(1):68–69. doi: 10.1161/HYPERTENSIONAHA.117.10406.
    1. Bhattacharyya S., Midwood K. S., Yin H., Varga J. Toll-like receptor-4 signaling drives persistent fibroblast activation and prevents fibrosis resolution in scleroderma. Advances in wound care. 2017;6(10):356–369. doi: 10.1089/wound.2017.0732.
    1. He X., Qian Y., Li Z., et al. TLR4-Upregulated IL-1β and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an Autocrine Mechanism. Scientific Reports. 2016;6(1, article 31663) doi: 10.1038/srep31663.
    1. Horng T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends in Immunology. 2014;35(6):253–261. doi: 10.1016/j.it.2014.02.007.
    1. Zhang W., Xu X., Kao R., et al. Cardiac fibroblasts contribute to myocardial dysfunction in mice with sepsis: the role of NLRP3 inflammasome activation. PLoS One. 2014;9(9, article e107639) doi: 10.1371/journal.pone.0107639.
    1. Li C., Ha T., Kelley J., et al. Modulating Toll-like receptor mediated signaling by (1 → 3)-beta-D-glucan rapidly induces cardioprotection. Cardiovascular Research. 2004;61(3):538–547. doi: 10.1016/j.cardiores.2003.09.007.
    1. Olejnik J., Hume A. J., Muhlberger E. Toll-like receptor 4 in acute viral infection: too much of a good thing. PLoS Pathogens. 2018;14(12, article e1007390) doi: 10.1371/journal.ppat.1007390.
    1. Zhang Y., Rassa J. C., deObaldia M. E., Albritton L. M., Ross S. R. Identification of the receptor binding domain of the mouse mammary tumor virus envelope protein. Journal of Virology. 2003;77(19):10468–10478. doi: 10.1128/JVI.77.19.10468-10478.2003.
    1. Shirey K. A., Lai W., Patel M. C., et al. Novel strategies for targeting innate immune responses to influenza. Mucosal Immunology. 2016;9(5):1173–1182. doi: 10.1038/mi.2015.141.
    1. Totura A. L., Whitmore A., Agnihothram S., et al. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio. 2015;6(3, article e00638) doi: 10.1128/mBio.00638-15.
    1. Enayatkhani M., Hasaniazad M., Faezi S., et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. Journal of Biomolecular Structure & Dynamics. 2020:1–16. doi: 10.1080/07391102.2020.1756411.
    1. Rahman M. S., Hoque M. N., Islam M. R., et al. Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: an in silico approach. PeerJ. 2020;8, article e9572 doi: 10.7717/peerj.9572.
    1. Kar T., Narsaria U., Basak S., et al. A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports. 2020;10(1, article 67749) doi: 10.1038/s41598-020-67749-1.
    1. Samad A., Ahammad F., Nain Z., et al. Designing a multi-epitope vaccine against SARS-CoV-2: an immunoinformatics approach. Journal of Biomolecular Structure & Dynamics. 2020:1–17. doi: 10.1080/07391102.2020.1792347.
    1. Rahman N., Ali F., Basharat Z., et al. Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: an immunoinformatics approach. Vaccines. 2020;8(3):p. 423. doi: 10.3390/vaccines8030423.
    1. Oladipo E. K., Ajayi A. F., Ariyo O. E., et al. Exploration of surface glycoprotein to design multi-epitope vaccine for the prevention of Covid-19. Informatics in Medicine Unlocked. 2020;21, article 100438 doi: 10.1016/j.imu.2020.100438.
    1. Wang Y., Liu L. The membrane protein of severe acute respiratory syndrome coronavirus functions as a novel cytosolic pathogen-associated molecular pattern to promote beta interferon induction via a toll-like-receptor-related TRAF3-independent mechanism. mBio. 2016;7(1, article e01872) doi: 10.1128/mbio.01872-15.
    1. Sheahan T., Morrison T. E., Funkhouser W., et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathogens. 2008;4(12, article e1000240) doi: 10.1371/journal.ppat.1000240.
    1. Sohn K. M., Lee S. G., Kim H. J., et al. COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. Journal of Korean Medical Science. 2020;35(38, article e343) doi: 10.3346/jkms.2020.35.e343.
    1. Zhou Y., Li Y., Mu T. HMGB1 neutralizing antibody attenuates cardiac injury and apoptosis induced by hemorrhagic shock/resuscitation in rats. Biological & Pharmaceutical Bulletin. 2015;38(8):1150–1160. doi: 10.1248/bpb.b15-00026.
    1. Kogan E. A., Berezovskiy Y. S., Blagova O. V., et al. Miocarditis in patients with COVID-19 confirmed by immunohistochemical. Kardiologiia. 2020;60(7):4–10. doi: 10.18087/cardio.2020.7.n1209.
    1. Rameshrad M., Maleki-Dizaji N., Vaez H., Soraya H., Nakhlband A., Garjani A. Lipopolysaccharide induced activation of toll like receptor 4 in isolated rat heart suggests a local immune response in myocardium. Iranian Journal of Immunology. 2015;12(2):104–116.
    1. Andersson U., Ottestad W., Tracey K. J. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Molecular Medicine. 2020;26(1) doi: 10.1186/s10020-020-00172-4.
    1. Yang H., Hreggvidsdottir H. S., Palmblad K., et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(26):11942–11947. doi: 10.1073/pnas.1003893107.
    1. Riad A., Westermann D., Zietsch C., et al. TRIF is a critical survival factor in viral cardiomyopathy. Journal of Immunology. 2011;186(4):2561–2570. doi: 10.4049/jimmunol.1002029.
    1. Cameron M. J., Ran L., Xu L., et al. Interferon-mediated immunopathological events are associated with atypical innate and adaptive immune responses in patients with severe acute respiratory syndrome. Journal of Virology. 2007;81(16):8692–8706. doi: 10.1128/JVI.00527-07.
    1. Yale IMPACT Team, Lucas C., Wong P., et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821, article 2588):463–469. doi: 10.1038/s41586-020-2588-y.
    1. Broggi A., Ghosh S., Sposito B., et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020;369(6504):706–712. doi: 10.1126/science.abc3545.
    1. Martino T. A., Petric M., Weingartl H., et al. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B and by swine vesicular disease virus. Virology. 2000;271(1):99–108. doi: 10.1006/viro.2000.0324.
    1. Liu P. P., Opavsky M. A. Viral myocarditis: receptors that bridge the cardiovascular with the immune system? Circulation Research. 2000;86(3):253–254. doi: 10.1161/01.RES.86.3.253.
    1. Fuse K., Chan G., Liu Y., et al. Myeloid differentiation factor-88 plays a crucial role in the pathogenesis of coxsackievirus B3-induced myocarditis and influences type I interferon production. Circulation. 2005;112(15):2276–2285. doi: 10.1161/CIRCULATIONAHA.105.536433.
    1. Burzyn D., Rassa J. C., Kim D., Nepomnaschy I., Ross S. R., Piazzon I. Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. Journal of Virology. 2004;78(2):576–584. doi: 10.1128/JVI.78.2.576-584.2004.
    1. Giamarellos-Bourboulis E. J., Netea M. G., Rovina N., et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host & Microbe. 2020;27(6):992–1000.e3. doi: 10.1016/j.chom.2020.04.009.
    1. Schultz J. C., Hilliard A. A., Cooper L. T., Jr., Rihal C. S. Diagnosis and treatment of viral myocarditis. Mayo Clinic Proceedings. 2009;84(11):1001–1009. doi: 10.1016/S0025-6196(11)60670-8.
    1. Huber S. Viral myocarditis and dilated cardiomyopathy: etiology and pathogenesis. Current Pharmaceutical Design. 2016;22(4):408–426. doi: 10.2174/1381612822666151222160500.
    1. Fairweather D., Yusung S., Frisancho S., et al. IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication. Journal of Immunology. 2003;170(9):4731–4737. doi: 10.4049/jimmunol.170.9.4731.
    1. Hadjadj J., Yatim N., Barnabei L., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027.
    1. Diehl N., Schaal H. Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses. 2013;5(12):3192–3212. doi: 10.3390/v5123192.
    1. Ariki S., Nishitani C., Kuroki Y. Diverse functions of pulmonary collectins in host defense of the lung. Journal of Biomedicine & Biotechnology. 2012;2012:7. doi: 10.1155/2012/532071.532071
    1. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19 - preliminary report. The New England Journal of Medicine. 2020 doi: 10.1056/NEJMoa2021436.
    1. Ramamoorthy S., Cidlowski J. A. Corticosteroids: mechanisms of action in health and disease. Rheumatic Diseases Clinics of North America. 2016;42(1):15–31. doi: 10.1016/j.rdc.2015.08.002. vii.
    1. Comittee P. F. British National Formulary for Children (BNFC) UK: British Medical Asociation and the Royal Pharmaceutical Society, the Royal College of Paediatrics and Child Health, and the Neonatal and Paedeatric Formularly Committee; 2019-2020.
    1. Polin R. A., Carlo W. A., Committee on Fetus and Newborn, American Academy of Pediatrics Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156–163. doi: 10.1542/peds.2013-3443.
    1. Sardesai S., Biniwale M., Wertheimer F., Garingo A., Ramanathan R. Evolution of surfactant therapy for respiratory distress syndrome: past, present, and future. Pediatric Research. 2017;81(1-2):240–248. doi: 10.1038/pr.2016.203.
    1. NIH, US National Library of Medicine. : database webpage for search terms Pulmonary surfactants and COVID-19. 2020. .
    1. Diebold S. S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303(5663):1529–1531. doi: 10.1126/science.1093616.
    1. Kitazume-Taneike R., Taneike M., Omiya S., et al. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochemical and Biophysical Research Communications. 2019;515(3):442–447. doi: 10.1016/j.bbrc.2019.05.150.
    1. Patra R., Chandra Das N., Mukherjee S. Targeting human TLRs to combat COVID-19: a solution? Journal of Medical Virology. 2021;93(2):615–617. doi: 10.1002/jmv.26387.
    1. Brandão S. C. S., Ramos J. . O. X., Dompieri L. T., et al. Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities? Cytokine & Growth Factor Reviews. 2020 doi: 10.1016/j.cytogfr.2020.09.002.
    1. Shirey K. A., Lai W., Scott A. J., et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 2013;497(7450):498–502. doi: 10.1038/nature12118.
    1. Shimamoto A., Chong A. J., Yada M., et al. Inhibition of Toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation. 2006;114(1 Supplement):I270–I274. doi: 10.1161/CIRCULATIONAHA.105.000901.
    1. Ehrentraut H., Weber C., Ehrentraut S., et al. The toll-like receptor 4-antagonist eritoran reduces murine cardiac hypertrophy. European Journal of Heart Failure. 2011;13(6):602–610. doi: 10.1093/eurjhf/hfr035.
    1. Matsunaga N., Tsuchimori N., Matsumoto T., Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Molecular Pharmacology. 2010;79(1):34–41. doi: 10.1124/mol.110.068064.
    1. Iampietro M., Younan P., Nishida A., et al. Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathogens. 2017;13(5, article e1006397) doi: 10.1371/journal.ppat.1006397.
    1. Seki H., Tasaka S., Fukunaga K., et al. Effect of Toll-like receptor 4 inhibitor on LPS-induced lung injury. Inflammation Research. 2010;59(10):837–845. doi: 10.1007/s00011-010-0195-3.
    1. Su Q., Li L., Sun Y., Yang H., Ye Z., Zhao J. Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cellular Physiology and Biochemistry. 2018;47(4):1497–1508. doi: 10.1159/000490866.
    1. Rice T. W., Wheeler A. P., Bernard G. R., et al. A randomized, double-blind, placebo-controlled trial of TAK-242 for the treatment of severe sepsis. Critical Care Medicine. 2010;38(8):1685–1694. doi: 10.1097/CCM.0b013e3181e7c5c9.
    1. Murck H. Symptomatic protective action of glycyrrhizin (licorice) in COVID-19 infection? Frontiers in Immunology. 2020;11 doi: 10.3389/fimmu.2020.01239.
    1. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H. W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS- associated coronavirus. Lancet. 2003;361(9374):2045–2046. doi: 10.1016/S0140-6736(03)13615-X.
    1. Said E., Zaitone S. A., Eldosoky M., Elsherbiny N. M. Nifuroxazide, a STAT3 inhibitor, mitigates inflammatory burden and protects against diabetes-induced nephropathy in rats. Chemico-Biological Interactions. 2018;281:111–120. doi: 10.1016/j.cbi.2017.12.030.
    1. Jia H., Cui J., Jia X., et al. Therapeutic effects of STAT3 inhibition by nifuroxazide on murine acute graft graft-vs.-host disease: old drug, new use. Molecular Medicine Reports. 2017;16(6):9480–9486. doi: 10.3892/mmr.2017.7825.

Source: PubMed

3
Abonner