End-point kinematics using virtual reality explaining upper limb impairment and activity capacity in stroke

Netha Hussain, Katharina S Sunnerhagen, Margit Alt Murphy, Netha Hussain, Katharina S Sunnerhagen, Margit Alt Murphy

Abstract

Background: For evaluation of upper limb impairment and activity capacity, Fugl-Meyer Assessment of Upper Extremity (FMA-UE) and Action Research Arm Test (ARAT) are recommended to be included in stroke trials. To improve the understanding of mechanisms of motor recovery, and differentiate between restitution and compensation, kinematic analysis is also recommended for assessment of upper limb function after stroke.

Aim: To determine the extent to which end-point kinematic variables obtained from the target-to-target pointing task were associated with upper limb impairment or activity limitation as assessed by traditional clinical scales in individuals with stroke.

Methods: Sixty-four individuals, from acute stage up to one year after stroke, were included from the Stroke Arm Longitudinal study at the University of Gothenburg (SALGOT) cohort. They performed a target-to-target pointing task in a virtual environment using a haptic stylus which also captured the kinematic parameters. Multiple linear regression was done to determine the amount of variance explained by kinematic variables on FMA-UE and ARAT scores after controlling for confounding variables.

Results: Mean velocity and number of velocity peaks explained 11 and 9% of the FMA-UE score uniquely and 16% when taken together. Movement time and number of velocity peaks explained 13 and 10% of the ARAT score respectively.

Conclusion: The kinematic variables of movement time, velocity and smoothness explain only a part of the variance captured by using clinical observational scales, reinforcing the importance of multi-level assessment using both kinematic analysis and clinical scales in upper limb evaluation after stroke.

Trial registration: The trial was registered with register number NCT01115348 at clinicaltrials.gov , on May 4, 2010. URL: https://ichgcp.net/clinical-trials-registry/NCT01115348 .

Keywords: Kinematics; Outcome assessment; Stroke rehabilitation; Upper extremity movement; Virtual reality.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of the inclusion process
Fig. 2
Fig. 2
A participant performing the target-to-target pointing task

References

    1. Lawrence ES, Coshall C, Dundas R, Stewart J, Rudd AG, Howard R, et al. Estimates of the prevalence of acute stroke impairments and disability in a multiethnic population. Stroke. 2001;32(6):1279–1284. doi: 10.1161/01.STR.32.6.1279.
    1. Jorgensen HS, HN HOR, Vive-Larsen J, Stoier M, Olsen TS. Outcome and time course of recovery in stroke. Part I: outcome. The Copenhagen stroke study. Arch Phys Med Rehabil. 1995;76(5):399–405. doi: 10.1016/S0003-9993(95)80567-2.
    1. Persson HC. Upper extremity functioning during the first year after stroke [Thesis] Gothenburg: University of Gothenburg; 2015.
    1. G. Broeks J, Lankhorst GJ, Rumping K, Prevo AJH. The long-term outcome of arm function after stroke: results of a follow-up study. Disabil Rehabil. 2009;21(8):357–364. doi: 10.1080/096382899297459.
    1. Murray CJL, Vos T, Lozano R, AlMazroa MA, Memish ZA. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010 (vol 380, pg 2197, 2012) Lancet. 2013;381(9867):628.
    1. Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation. Lancet. 2011;377(9778):1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. WHO . International classification of functioning, disability, and health : ICF. Geneva: World Health Organization; 2001.
    1. Kwakkel G, Lannin NA, Borschmann K, English C, Ali M, Churilov L, et al. Standardized measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the stroke recovery and rehabilitation roundtable. Int J Stroke. 2017;12(5):451–461. doi: 10.1177/1747493017711813.
    1. Otaka E, Otaka Y, Kasuga S, Nishimoto A, Yamazaki K, Kawakami M, et al. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. J Neuroeng Rehabil. 2015;12:66. doi: 10.1186/s12984-015-0059-8.
    1. Longhi M, Merlo A, Prati P, Giacobbi M, Mazzoli D. Instrumental indices for upper limb function assessment in stroke patients: a validation study. J Neuroeng Rehabil. 2016;13(1):52. doi: 10.1186/s12984-016-0163-4.
    1. Bosecker C, Dipietro L, Volpe B, Krebs HI. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke. Neurorehabil Neural Repair. 2010;24(1):62–69. doi: 10.1177/1545968309343214.
    1. Tran VD, Dario P, Mazzoleni S. Kinematic measures for upper limb robot-assisted therapy following stroke and correlations with clinical outcome measures: a review. Med Eng Phys. 2018;53:13–31. doi: 10.1016/j.medengphy.2017.12.005.
    1. Johansson GM, Grip H, Levin MF, Hager CK. The added value of kinematic evaluation of the timed finger-to-nose test in persons post-stroke. J Neuroeng Rehabil. 2017;14(1):11. doi: 10.1186/s12984-017-0220-7.
    1. van Dokkum L, Hauret I, Mottet D, Froger J, Metrot J, Laffont I. The contribution of kinematics in the assessment of upper limb motor recovery early after stroke. Neurorehabil Neural Repair. 2014;28(1):4–12. doi: 10.1177/1545968313498514.
    1. Wu CY, Liing RJ, Chen HC, Chen CL, Lin KC. Arm and trunk movement kinematics during seated reaching within and beyond arm's length in people with stroke: a validity study. Phys Ther. 2014;94(6):845–856. doi: 10.2522/ptj.20130101.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. Neurorehabil Neural Repair. 2012;26(9):1106–1115. doi: 10.1177/1545968312448234.
    1. Subramanian SK, Yamanaka J, Chilingaryan G, Levin MF. Validity of movement pattern kinematics as measures of arm motor impairment poststroke. Stroke. 2010;41(10):2303–2308. doi: 10.1161/STROKEAHA.110.593368.
    1. Li KY, Lin KC, Chen CK, Liing RJ, Wu CY, Chang WY. Concurrent and predictive validity of arm kinematics with and without a trunk restraint during a reaching task in individuals with stroke. Arch Phys Med Rehabil. 2015;96(9):1666–1675. doi: 10.1016/j.apmr.2015.04.013.
    1. Celik O, O'Malley MK, Boake C, Levin HS, Yozbatiran N, Reistetter TA. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans Neural Syst Rehabil Eng. 2010;18(4):433–444. doi: 10.1109/TNSRE.2010.2047600.
    1. Bardorfer A, Munih M, Zupan A, Primozic A. Upper limb motion analysis using haptic interface. Ieee-Asme T Mech. 2001;6(3):253–260. doi: 10.1109/3516.951363.
    1. Feys P, Alders G, Gijbels D, Boeck JD, Weyer TD, Coninx K, et al., editors. Arm training in Multiple Sclerosis using Phantom: Clinical relevance of robotic outcome measures. 2009 IEEE International Conference on Rehabilitation Robotics; 2009 23-26 June 2009.
    1. Bowler M, Amirabdollahian F, Dautenhahn K. Using an embedded reality approach to improve test reliability for NHPT tasks. IEEE Int Conf Rehabil Robot 2011;2011:5975343.
    1. Broeren J, Samuelsson H, Stibrant-Sunnerhagen K, Blomstrand C, Rydmark M. Neglect assessment as an application of virtual reality. Acta Neurol Scand. 2007;116(3):157–163. doi: 10.1111/j.1600-0404.2007.00821.x.
    1. Alt Murphy M, Persson HC, Danielsson A, Broeren J, Lundgren-Nilsson A, Sunnerhagen KS. SALGOT--stroke arm longitudinal study at the University of Gothenburg, prospective cohort study protocol. BMC Neurol. 2011;11:56. doi: 10.1186/1471-2377-11-56.
    1. Silva AJ, Ramirez OAD, Vega VP, Oliver JPO. PHANToM OMNI haptic device: kinematic and manipulability. 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA) 2009 p 193–8.
    1. Hussain N, Alt Murphy M, Sunnerhagen KS. Upper limb kinematics in stroke and healthy controls using target-to-target task in virtual reality. Front Neurol. 2018;9:300. doi: 10.3389/fneur.2018.00300.
    1. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
    1. Sanford J, Moreland J, Swanson LR, Stratford PW, Gowland C. Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Phys Ther. 1993;73(7):447–454. doi: 10.1093/ptj/73.7.447.
    1. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63(10):1606–10. doi: 10.1093/ptj/63.10.1606.
    1. Sullivan KJ, Tilson JK, Cen SY, Rose DK, Hershberg J, Correa A, et al. Fugl-Meyer assessment of sensorimotor function after stroke: standardized training procedure for clinical practice and clinical trials. Stroke. 2011;42(2):427–432. doi: 10.1161/STROKEAHA.110.592766.
    1. J. G. De Weerdt W. Measuring recovery of arm-hand function in stroke patients: A comparison of the Brunnstrom-Fugl-Meyer test and the Action Research Arm test 1985. 65–70 p.
    1. Hsueh IP, Hsieh CL. Responsiveness of two upper extremity function instruments for stroke inpatients receiving rehabilitation. Clin Rehabil. 2002;16(6):617–624. doi: 10.1191/0269215502cr530oa.
    1. Hsieh CL, Hsueh IP, Chiang FM, Lin PH. Inter-rater reliability and validity of the action research arm test in stroke patients. Age Ageing. 1998;27(2):107–113. doi: 10.1093/ageing/27.2.107.
    1. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. doi: 10.1177/1545968307305353.
    1. Brott T, Adams HP, Jr, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20(7):864–870. doi: 10.1161/01.STR.20.7.864.
    1. Pandyan AD, Johnson GR, Price CI, Curless RH, Barnes MP, Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth scales as measures of spasticity. Clin Rehabil. 1999;13(5):373–383. doi: 10.1191/026921599677595404.
    1. Daniel WW. Biostatistics: basic concepts and methodology for the health sciences. 10 ed: Wiley; 2010. 777 p.
    1. Nijland R, van Wegen E, Verbunt J, van Wijk R, van Kordelaar J, Kwakkel G. A comparison of two validated tests for upper limb function after stroke: the Wolf Motor function test and the action research arm test. J Rehabil Med. 2010;42(7):694–696. doi: 10.2340/16501977-0560.
    1. Balasubramanian S, Colombo R, Sterpi I, Sanguineti V, Burdet E. Robotic assessment of upper limb motor function after stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S255–S269. doi: 10.1097/PHM.0b013e31826bcdc1.
    1. de los Reyes-Guzman A, Dimbwadyo-Terrer I, Trincado-Alonso F, Monasterio-Huelin F, Torricelli D, Gil-Agudo A Quantitative assessment based on kinematic measures of functional impairments during upper extremity movements: a review. Clin Biomech (Bristol, Avon) 2014;29(7):719–727. doi: 10.1016/j.clinbiomech.2014.06.013.
    1. Collins KC, Kennedy NC, Clark A, Pomeroy VM. Getting a kinematic handle on reach-to-grasp: a meta-analysis. Physiotherapy. 2018;104(2):153–166. doi: 10.1016/j.physio.2017.10.002.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Kinematic variables quantifying upper-extremity performance after stroke during reaching and drinking from a glass. Neurorehabil Neural Repair. 2011;25(1):71–80. doi: 10.1177/1545968310370748.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke. Neurorehabil Neural Repair. 2013;27(9):844–853. doi: 10.1177/1545968313491008.
    1. Colombo R, Pisano F, Micera S, Mazzone A, Delconte C, Carrozza MC, et al. Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb. Neurorehabil Neural Repair. 2008;22(1):50–63. doi: 10.1177/1545968307303401.
    1. Mazzoleni S, Sale P, Tiboni M, Franceschini M, Carrozza MC, Posteraro F. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil. 2013;92(10):e26–e37. doi: 10.1097/PHM.0b013e3182a1e852.
    1. Tobler-Ammann BC, de Bruin ED, Fluet MC, Lambercy O, de Bie RA, Knols RH. Concurrent validity and test-retest reliability of the virtual peg insertion test to quantify upper limb function in patients with chronic stroke. J Neuroeng Rehabil. 2016;13:8. doi: 10.1186/s12984-016-0116-y.
    1. Zimmerman ME. Speed–Accuracy Tradeoff. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of Clinical Neuropsychology. New York, NY: Springer New York; 2011. p. 2344.
    1. Nordin N, Xie SQ, Wunsche B. Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review. J Neuroeng Rehabil. 2014;11:137. doi: 10.1186/1743-0003-11-137.
    1. Seidler RD, Noll DC, Thiers G. Feedforward and feedback processes in motor control. Neuroimage. 2004;22(4):1775–1783. doi: 10.1016/j.neuroimage.2004.05.003.
    1. Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity Centre for community-dwelling persons with stroke :the possibilities of 3-dimensional computer games. Cerebrovasc Dis. 2008;26(3):289–296. doi: 10.1159/000149576.

Source: PubMed

3
Abonner