Detectable Viral Load in Late Pregnancy among Women in the Rwanda Option B+ PMTCT Program: Enrollment Results from the Kabeho Study

Michelle M Gill, Heather J Hoffman, Emily A Bobrow, Placidie Mugwaneza, Dieudonne Ndatimana, Gilles F Ndayisaba, Cyprien Baribwira, Laura Guay, Anita Asiimwe, Michelle M Gill, Heather J Hoffman, Emily A Bobrow, Placidie Mugwaneza, Dieudonne Ndatimana, Gilles F Ndayisaba, Cyprien Baribwira, Laura Guay, Anita Asiimwe

Abstract

There are limited viral load (VL) data available from programs implementing "Option B+," lifelong antiretroviral treatment (ART) to all HIV-positive pregnant and postpartum women, in resource-limited settings. Extent of viral suppression from a prevention of mother-to-child transmission of HIV program in Rwanda was assessed among women enrolled in the Kigali Antiretroviral and Breastfeeding Assessment for the Elimination of HIV (Kabeho) Study. ARV drug resistance testing was conducted on women with VL>2000 copies/ml. In April 2013-January 2014, 608 pregnant or early postpartum HIV-positive women were enrolled in 14 facilities. Factors associated with detectable enrollment VL (>20 copies/ml) were examined using generalized estimating equations. The most common antiretroviral regimen (56.7%, 344/607) was tenofovir/lamivudine/efavirenz. Median ART duration was 13.5 months (IQR 3.0-48.8); 76.1% of women were on ART at first antenatal visit. Half of women (315/603) had undetectable RNA-PCR VL and 84.6% (510) had <1,000 copies/ml. Detectable VL increased among those on ART > 36 months compared to those on ART 4-36 months (72/191, 37.7% versus 56/187, 29.9%), though the difference was not significant. The odds of having detectable enrollment VL decreased significantly as duration on ART at enrollment increased (AOR = 0.99, 95% CI: 0.9857, 0.9998, p = 0.043). There was a higher likelihood of detectable VL for women with lower gravidity (AOR = 0.90, 95% CI: 0.84, 0.97, p = 0.0039), no education (AOR = 2.25, (95% CI: 1.37, 3.70, p = 0.0004), nondisclosure to partner (AOR = 1.97, 95% CI: 1.21, 3.21, p = 0.0063) and side effects (AOR = 2.63, 95% CI: 1.72, 4.03, p<0.0001). ARV drug resistance mutations were detected in all of the eleven women on ART > 36 months with genotyping available. Most women were receiving ART at first antenatal visit, with relatively high viral suppression rates. Shorter ART duration was associated with higher VL, with a concerning increasing trend for higher viremia and drug resistance among women on ART for >3 years.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Kabeho Study Cohort Screening and…
Fig 1. Kabeho Study Cohort Screening and Enrollment Diagram.
Fig 2. Distribution of viral load results…
Fig 2. Distribution of viral load results at enrollment by time on ART.
(A) Time on ART for all study women with duration and VL information available. (B) Time on ART only for study women on ART

Fig 3. Distribution of viral load results…

Fig 3. Distribution of viral load results at enrollment by time on ART among women…

Fig 3. Distribution of viral load results at enrollment by time on ART among women with and without HIV drug resistance (major NRTI and NNRTI mutations only).
Fig 3. Distribution of viral load results…
Fig 3. Distribution of viral load results at enrollment by time on ART among women with and without HIV drug resistance (major NRTI and NNRTI mutations only).

References

    1. World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. Geneva, Switzerland: WHO Department of HIV/AIDS;2013.
    1. Rwanda Biomedical Center. National Guidelines for Prevention and Management of HIV, STIs & Other Blood Borne Infections. Kigali, Rwanda: Ministry of Health, Republic of Rwanda; 2013.
    1. Hoffman RM, Black V, Technau K, van der Merwe KJ, Currier J, Coovadia A, et al. Effects of Highly Active Antiretroviral Therapy Duration and Regimen on Risk for Mother-to-Child Transmission of HIV in Johannesburg, South Africa. J Acquir Immune Defic Syndr. 2010;54: 35–41. 10.1097/QAI.0b013e3181cf9979
    1. Chibwesha CJ, Giganti MJ, Putta N, Chintu N, Mulindwa J, Dorton BJ, et al. Optimal Time on HAART for Prevention of Mother-to-Child Transmission of HIV. J Acquir Immune Defic Syndr. 2011;58: 224–8. 10.1097/QAI.0b013e318229147e
    1. Townsend C, Byrne L, Cortina-Borja M, Thorne C, de Ruiter A, Lyall H, et al. Earlier initiation of ART and further decline in mother-to-child HIV transmission rates, 2000–2011. AIDS. 2014;28: 1049–1057. 10.1097/QAD.0000000000000212
    1. Warszawski J,Tubianae R, Le Chenadeca J, Blanche S, Teglas JP, Dollfus C, et al. Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS French Perinatal Cohort. AIDS. 2008;22: 289–299. 10.1097/QAD.0b013e3282f3d63c
    1. Mandelbrot L, Tubiana R, Le Chenadec, J, Dollfus C, Faye A, Rouzioux C, et al. No perinatal transmission of HIV-1 in women efficiently treated since conception. Abstract presented at the Conference on Retroviruses and Opportunistic Infections; Seattle, Washington, USA; 2015 Feb 23–26.
    1. Myer L, Phillips T, Ramjith J, Bekker LG, McIntyre JA, and Abrams EJ. Viral Suppression After Antiretroviral Therapy Initiation in Pregnancy in South Africa. Abstract presented at the Conference on Retroviruses and Opportunistic Infections; Seattle, Washington, USA; 2015 Feb 23–26.
    1. Denoeud-Ndam L, Fourcade C, Ogouyemi-Hounto A, Azon-Kouanou A, d'Almeida M, Azondékon A, et al. Predictive factors of plasma HIV suppression during pregnancy: a prospective cohort study in Benin. PloS ONE. 2013;8: e59446 10.1371/journal.pone.0059446
    1. Read PJ, Mandaliab S, Khan P, Harrisson U, Naftalin C, Gilleece Y, et al. When should HAART be initiated in pregnancy to achieve an undetectable HIV viral load by delivery? AIDS. 2012;26: 1095–1103. 10.1097/QAD.0b013e3283536a6c
    1. Patel D, Cortina-Borja M, Thorne C, and Newell ML. Time to undetectable viral load after highly active antiretroviral therapy initiation among HIV-infected pregnant women. Clin Infect Dis. 2007;44: 1647–1656 10.1086/518284
    1. Aziz N, Sokoloff A, Kornak J, Leva NV, Mendiola ML, Levison J, et al. Time to viral load suppression in antiretroviral-naive and -experienced HIV-infected pregnant women on highly active antiretroviral therapy: implications for pregnant women presenting late in gestation. BJOG.2013;120: 1534–1547. 10.1111/1471-0528.12226
    1. Myer L, Phillips TK, Hsiao NY, Zerbe A, Petro G, Bekker LG, et al. Plasma viraemia in HIV-positive pregnant women entering antenatal care in South Africa. J Int AIDS Soc. 2015;18:20045 10.7448/IAS.18.1.20045
    1. Myer L, Phillips TK, McIntyre JA, Hsiao NY, Petro G, Zerbe A, et al. HIV viraemia and mother-to-child transmission risk after antiretroviral therapy initiation in pregnancy in Cape Town, South Africa. HIV Med. 2016.
    1. Mancinelli S, Galluzzo CM, Andreotti M, Liotta G, Jere H, Sagno JB, et al. Virological Response and Drug Resistance 1 and 2 Years Post-Partum in HIV-Infected Women Initiated on Life-Long Antiretroviral Therapy in Malawi. AIDS Res Hum Retroviruses. 2016;32:737–42. 10.1089/AID.2015.0366
    1. Haas AD, Msukwa MT, Egger M, Tenthani L, Tweya H, Jahn A, et al. Adherence to antiretroviral therapy during and after pregnancy: Cohort study on women receiving care in Malawi’s “Option B+” programme. Clinical Infectious Disease, Epub, 2016.
    1. World Health Organization. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. Geneva, Switzerland: WHO Department of HIV/AIDS;2015.
    1. Stanford HIV Drug Resistance Database. Major HIV-1 Drug Resistance Mutations. 2015.
    1. Katz IT, Shapiro R, Li D, Govindarajulu U, Thompson B, Watts DH, et al. Risk Factors for Detectable HIV-1 RNA at Delivery Among Women Receiving Highly Active Antiretroviral Therapy in the Women and Infants Transmission Study. J Acquir Immune Defic Syndr. 2010;54: 27–34. 10.1097/QAI.0b013e3181caea89
    1. Jobanputra K, Parker LA, Azih C, Okello V, Maphalala G, Kershberger B, et al. Factors associated with virological failure and suppression after enhanced adherence counselling, in children, adolescents and adults on antiretroviral therapy for HIV in Swaziland. PLoS ONE. 2015;10: e0116144 10.1371/journal.pone.0116144
    1. Stadeli KM, Richman DD. (2012). Rates of emergence of HIV drug resistance in resource-limited settings: a systematic review. Antivir Ther. 2012;18:115–23. 10.3851/IMP2437
    1. Hoffmann CJ, Cohn S, Mashabela F, Hoffmann JD, McIlleron H, Denti P, et al. Treatment Failure, Drug Resistance, and CD4 T-Cell Count Decline Among Postpartum Women on Antiretroviral Therapy in South Africa. J Acquir Immune Defic Syndr. 2016; 71:31–7. 10.1097/QAI.0000000000000811
    1. Ngarina M, Kilewo C, Karlsson K, Aboud S, Karlsson A, Marrone G, et al. Virologic and immunologic failure, drug resistance and mortality during the first 24 months postpartum among HIV-infected women initiated on antiretroviral therapy for life in the Mitra plus Study, Dar es Salaam, Tanzania. BMC Infect Dis. 2015;15:175 10.1186/s12879-015-0914-z
    1. Labhardt ND, Bader J, Ramoeletsi M, Kamele M, Lejone TI, Cheleboi M, et al. Clinical and socio-demographic predictors for virologic failure in rural Southern Africa: preliminary findings from CART-1. J Int AIDS Soc. 2014;17(4 Suppl 3): 19666 10.7448/IAS.17.4.19666
    1. Jasseron C, Mandelbrot L, Dollfus C, Trocmé N, Tubiana R, Teglas JP, et al. Non-Disclosure of a Pregnant Woman’s HIV Status to Her Partner is Associated with Non-Optimal Prevention of Mother-to-Child Transmission. AIDS Behav. 2013;17: 488–97. 10.1007/s10461-011-0084-y
    1. Musiime S, Muhairwe F, Rutagengwa A, Mutimura E, Anastos K, Hoover DR, et al. Adherence to Highly Active Antiretroviral Treatment in HIV-Infected Rwandan Women. PLoS ONE. 2011;6: e27832 10.1371/journal.pone.0027832
    1. Nielsen-Saines K, Watts DH, Veloso VG, Bryson YJ, Joao EC, Pilotto JH, et al. Three postpartum antiretroviral regimens to prevent intrapartum HIV infection. N Engl J Med. 2012;366: 2368–79. 10.1056/NEJMoa1108275

Source: PubMed

3
Abonner