Transpinal and transcortical stimulation alter corticospinal excitability and increase spinal output

Maria Knikou, Maria Knikou

Abstract

The objective of this study was to assess changes in corticospinal excitability and spinal output following noninvasive transpinal and transcortical stimulation in humans. The size of the motor evoked potentials (MEPs), induced by transcranial magnetic stimulation (TMS) and recorded from the right plantar flexor and extensor muscles, was assessed following transcutaneous electric stimulation of the spine (tsESS) over the thoracolumbar region at conditioning-test (C-T) intervals that ranged from negative 50 to positive 50 ms. The size of the transpinal evoked potentials (TEPs), induced by tsESS and recorded from the right and left plantar flexor and extensor muscles, was assessed following TMS over the left primary motor cortex at 0.7 and at 1.1× MEP resting threshold at C-T intervals that ranged from negative 50 to positive 50 ms. The recruitment curves of MEPs and TEPs had a similar shape, and statistically significant differences between the sigmoid function parameters of MEPs and TEPs were not found. Anodal tsESS resulted in early MEP depression followed by long-latency MEP facilitation of both ankle plantar flexors and extensors. TEPs of ankle plantar flexors and extensors were increased regardless TMS intensity level. Subthreshold and suprathreshold TMS induced short-latency TEP facilitation that was larger in the TEPs ipsilateral to TMS. Noninvasive transpinal stimulation affected ipsilateral and contralateral actions of corticospinal neurons, while corticocortical and corticospinal descending volleys increased TEPs in both limbs. Transpinal and transcortical stimulation is a noninvasive neuromodulation method that alters corticospinal excitability and increases motor output of multiple spinal segments in humans.

Conflict of interest statement

Competing Interests: The author has declared that no competing interests exist.

Figures

Figure 1. Spatial spinal summation of MEPs…
Figure 1. Spatial spinal summation of MEPs and TEPs.
Rectified right tibialis anterior EMG following tsESS over the thoracolumbar region and TMS over the left primary motor cortex delivered at 1.3× tibialis anterior MEP resting threshold. In all paradigms TMS is the test stimuli and tsESS is the conditioning stimuli. At the conditioning-test intervals of 0 and 4 ms, the TEP following tsESS can be easily separated from the MEP based on latency and duration (A, B). However, at the negative C-T intervals of 8, 10, and 20 ms TEP and MEP do not occlude each other but are summated (C, D, E), and thus cannot be separated based on latency and duration. To counteract this neuronal phenomenon and establish the net effect of the conditioning stimulus, the control MEP values were subtracted from the conditioned TEP values and the control TEP values were subtracted from the conditioned MEP values in experiments that the conditioning stimulus was delivered at suprathreshold intensities. tsESS: transcutaneous electric stimulation of the spine. TMS: transcranial magnetic stimulation. MEP: motor evoked potential. TEP: transpinal evoked potential.
Figure 2. Recruitment curves of MEPs and…
Figure 2. Recruitment curves of MEPs and TEPs.
(A) MEPs recorded from 14 subjects from the right (R) TA, SOL, MG, and PL muscles while seated are plotted against the maximum stimulator output, which was normalized to the associated MEP resting threshold. (B) TEPs recorded from 7 subjects from the right and left TA, SOL, MG, and PL muscles while seated are plotted against the stimulation intensities, which were normalized to TEP resting threshold. TA: tibialis anterior. SOL: soleus. MG: medialis gastrocnemius. MEPs: motor evoked potentials. TEPs: transpinal evoked potentials.
Figure 3. Effects of transcutaneous electric stimulation…
Figure 3. Effects of transcutaneous electric stimulation of the spine (tsESS) on TA MEPs.
(Aa, Ba) Waveform averages of the right TA MEPs from two representative subjects under control conditions (green lines) and following tsESS (black lines) for all conditioning-test (C-T) intervals tested. The action potential within the dotted circle identifies the right TA TEP induced by the conditioning tsESS stimuli. All EMGs are shown as captured and subtraction to counteract summation of MEPs and TEPs was not applied. (Ab, Bb) Overall mean amplitude of the conditioned right TA MEPs for the same subjects (subjects 4 and 10), in which the net conditioning stimulus effect (i.e., the TEPs induced by the conditioning tsESS were subtracted) is indicated. Asterisks indicate statistically significant differences of conditioned MEPs from control values (P<0.05; one-way ANOVA). Error bars denote the SEM. TA: tibialis anterior. MEPs: motor evoked potentials. TEPs: transpinal evoked potentials. tsESS: transcutaneous electric stimulation of the spine.
Figure 4. Effects of noninvasive transpinal stimulation…
Figure 4. Effects of noninvasive transpinal stimulation on MEPs.
Amplitude of MEPs recorded from the right (R) soleus (SOL), medialis gastrocnemius (MG), tibialis anterior (TA), and peroneus longus (PL) muscles following transcutaneous electric stimulation of the spine over the thoracolumbar region from 14 subjects. On the abscissa the conditioning-test interval (ms) tested is indicated. A negative C-T interval denotes that transcutaneous electric stimulation of the spine was delivered before TMS. Asterisks indicate statistically significant differences of conditioned MEPs from control values (P<0.05; one-way ANOVA). Error bars denote the SEM.
Figure 5. Effects of subthreshold TMS on…
Figure 5. Effects of subthreshold TMS on TEPs.
(A) Waveform averages of the right (R) and left (L) soleus (SOL), medialis gastrocnemius (MG), tibialis anterior (TA), and peroneus longus (PL) TEPs from one subject under control conditions (green lines) and following subthreshold TMS (black lines) for all conditioning-test (C-T) intervals tested. (B) Overall mean amplitude of the conditioned TEPs for the same subject. Asterisks indicate statistically significant differences of conditioned TEPs from control values (P<0.05; one-way ANOVA). Error bars denote the SEM. TEPs: transpinal evoked potentials. tsESS: transcutaneous electric stimulation of the spine. TMS: transcranial magnetic stimulation.
Figure 6. Effects of subthreshold TMS on…
Figure 6. Effects of subthreshold TMS on right and left TA TEPs.
(A) Waveform averages of the right (R) and left (L) TA TEPs in two additional subjects (subject 6 and subject 14) under control conditions (green dotted lines) and following subthreshold TMS (solid black lines) for all conditioning-test (C-T) intervals tested. (B) Overall mean amplitude of the conditioned TEPs for the same subjects. Asterisks indicate statistically significant differences of conditioned TEPs from control values (P<0.05; one-way ANOVA). Error bars denote the SEM.
Figure 7. Modulation of TEPs by subthreshold…
Figure 7. Modulation of TEPs by subthreshold TMS.
Overall mean amplitude of TEPs recorded from the right (R) and left (L) soleus (SOL), medialis gastrocnemius (MG), tibialis anterior (TA), and peroneus longus (PL) muscles following transcranial magnetic stimulation (TMS) delivered at intensities that motor evoked potentials were not evoked. On the abscissa the conditioning-test (C-T) interval (ms) is indicated. A negative C-T interval denotes that TMS was delivered after transcutaneous electric stimulation of the spine. Symbols “*” and “§” denote statistically significant differences of conditioned TEPs from control values for the right or left side TEPs, respectively. Error bars denote the SEM.
Figure 8. Modulation of TEPs by suprathreshold…
Figure 8. Modulation of TEPs by suprathreshold TMS.
Overall mean amplitude of TEPs recorded from the right (R) and left (L) soleus (SOL), medialis gastrocnemius (MG), tibialis anterior (TA), and peroneus longus (PL) muscles following transcranial magnetic stimulation (TMS) delivered above TA MEP resting threshold. On the abscissa the conditioning-test (C-T) interval (ms) is indicated. A negative C-T interval denotes that TMS was delivered after transcutaneous electric stimulation of the spine. Symbols “*” and “§” denote statistically significant differences of conditioned TEPs from control values for the right or left side TEPs, respectively. Error bars denote the SEM.

References

    1. Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31: 195–218.
    1. Knikou M (2008) The H-reflex as a probe: Pathways and pitfalls. J Neurosci Methods 171: 1–12.
    1. Knikou M (2010) Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions. Clin Neurophysiol 121: 1655–1668.
    1. Maertens de Noordhout AM, Rothwell JC, Thompson PD, Day BL, Marsden CD (1988) Percutaneous electrical stimulation of lumbosacral roots in man. J Neurol Neurosurg Psychiatry 51: 174–181.
    1. Hunter JP, Ashby P (1994) Segmental effects of epidural spinal cord stimulation in humans. J Physiol Lond 474: 407–419.
    1. Courtine G, Harkema SJ, Dy CJ, Gerasimenko YP, Dyhre-Poulsen P (2007) Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans. J Physiol Lond 582: 1125–1139.
    1. Hofstoetter US, Minassian K, Hofer C, Mayr W, Rattay F, et al. (2008) Modification of reflex responses to lumbar posterior root stimulation by motor tasks in healthy subjects. Artif Organs 32: 644–648.
    1. Minassian K, Persy I, Rattay F, Dimitrijevic MR, Hofer C, et al. (2007) Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 35: 327–336.
    1. Roy FD, Bosgra D, Stein RB (2014) Interaction of transcutaneous spinal stimulation and transcranial magnetic stimulation in human leg muscles. Exp Brain Res 232: 1717–1728.
    1. Einhorn J, Li A, Hazan R, Knikou M (2013) Cervicothoracic multisegmental transpinal evoked potentials in humans. PLoS ONE 8 10: e76940.
    1. Knikou M (2013) Neurophysiological characterization of transpinal evoked potentials in human leg muscles. Bioelectromagnetics 34: 630–640.
    1. Knikou M (2013) Neurophysiological characteristics of human leg muscle action potentials evoked by transcutaneous magnetic stimulation of the spine. Bioelectromagnetics 34: 200–210.
    1. Knikou M, Hajela N, Mummidisetty CK (2013) Corticospinal excitability during walking in humans with absent and partial body weight support. Clin Neurophysiol 124: 2431–2438.
    1. Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, et al. (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91: 79–92.
    1. Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, et al. (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 52: 97–103.
    1. Capaday C (1997) Neurophysiological methods for studies of the motor system in freely moving human subjects. J Neurosci Methods 74: 201–218.
    1. Carroll TJ, Riek S, Carson RG (2001) Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation. J Neurosci Methods 112: 193–202.
    1. Klimstra M, Zehr EP (2008) A sigmoid function is the best fit for the ascending limb of the Hoffmann reflex recruitment curve. Exp Brain Res 186: 93–105.
    1. Dechent P, Frahm J (2003) Functional somatotopy of finger representations in human primary motor cortex. Hum Brain Mapp 18: 272–83.
    1. Kleinschmidt A, Nitschke MF, Frahm J (1997) Somatotopy in the human motor cortex hand area. A high-resolution functional MRI study. Eur J Neurosci 9: 2178–2186.
    1. Ellaway PH (1978) Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electroencephalogr Clin Neurophysiol 45: 302–304.
    1. Brinkworth RSA, Türker KS (2003) A method for quantifying reflex responses from intra-muscular and surface electromyogram. J Neurosci Methods 122: 179–193.
    1. Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticospinal pathway. Exp Brain Res 114: 329–338.
    1. Roy FD, Gibson G, Stein RB (2012) Effect of percutaneous stimulation at different spinal levels on the activation of sensory and motor roots. Exp Brain Res 223: 281–289.
    1. Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126: 1345–1347.
    1. Nielsen J, Petersen N (1994) Is presynaptic inhibition distributed to corticospinal fibres in man? J Physiol Lond 477: 47–58.
    1. Jackson A, Baker SN, Fetz EE (2006) Tests for presynaptic modulation of corticospinal terminals from peripheral afferents and pyramidal tract in the macaque. J Physiol Lond 573: 107–120.
    1. Lamy JC, Wargon I, Baret M, Ben Smail D, Milani P, et al. (2005) Post-activation depression in various group I spinal pathways in humans. Exp Brain Res 166: 248–262.
    1. Gerasimenko YP, Lavrov IA, Courtine G, Ichiyama RM, Dy CJ, et al. (2006) Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods 157: 253–263.
    1. Pierrot-Deseilligny E, Burke D (2012) Spinal and corticospinal mechanisms of movement. Cambridge University Press, New York.
    1. Katz R, Morin C, Pierrot-Deseilligny E, Hibino R (1977) Conditioning of H reflex by a preceding subthreshold tendon reflex stimulus. J Neurol Neurosurg Psychiatry 40: 575–580.
    1. Crayton JW, Rued RR (1980) An oscillatory component of the H-reflex. J Neurol Neurosurg Psychiatry 43: 239–242.
    1. Sharpe AN, Jackson A (2014) Upper-limb muscle responses to epidural, subdural and intraspinal stimulation of the cervical spinal cord. J Neural Eng 11 1: 016005.
    1. Konrad PE, Owen JH, Bridwell KH (1994) Magnetic stimulation of the spine to produce lower extremity EMG responses. Significance of coil position and the presence of bone. Spine 19: 2812–2818.
    1. Mills KR, Murray NMF (1986) Electrical stimulation over the human vertebral column: which neural elements are excited? Electroencephalogr Clin Neurophysiol 63: 582–589.
    1. Inghilleri M, Berardelli A, Cruccu G, Priori A, Manfredi M (1989) Corticospinal potentials after transcranial stimulation in humans. J Neurol Neurosurg Psychiatry 52: 970–974.
    1. Berardelli A, Inghilleri M, Cruccu G, Manfredi M (1990) Descending volley after electrical and magnetic transcranial stimulation in man. Neurosci Lett 112: 54–58.
    1. Burke D, Hicks R, Gandevia SC, Stephen J, Woodforth I, et al. (1993) Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. J Physiol Lond 470: 383–393.
    1. Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, et al. (2012) I-wave origin and modulation. Brain Stimul 5: 512–525.
    1. Patton HD, Amassian VE (1954) Single- and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17: 345–363.
    1. Day BL, Dressler D, Maertens de Noordhout A, Marsden CD, Nakashima K, et al. (1989) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol Lond 412: 449–473.
    1. Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, et al. (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Clin Neurophysiol 109: 397–401.
    1. Di Lazzaro V, Ziemann U (2013) The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits 7: 18.
    1. Kaneko K, Kawai S, Tagushi T, Fuchigami Y, Morita H, et al. (1997) Spatial distribution of corticospinal potentials following electric and magnetic stimulation in human spinal cord. J Neurol Sciences 151: 217–221.
    1. Poon DE, Roy FD, Gorassini MA, Stein RB (2008) Interaction of paired cortical and peripheral nerve stimulation on human motor neurons. Exp Brain Res 188: 13–21.
    1. Mrachacz-Kersting N, Fong M, Murphy BA, Sinkjær T (2007) Changes in excitability of the cortical projections to the human tibialis anterior after paired associative stimulation. J Neurophysiol 97: 1951–1958.
    1. Aguilar J, Pulecchi F, Dilena R, Oliviero A, Priori A, et al. (2011) Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats. J Physiol Lond 589: 4981–4996.
    1. Devanne H, Degardin A, Tyvaert L, Bocuillon P, Houdayer E, et al. (2009) Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans. Eur J Neurosci 30: 439–448.
    1. Roy FD, Gorassini MA (2008) Peripheral sensory activation of cortical circuits in the leg motor cortex of man. J Physiol Lond 586: 4091–4105.
    1. Duclay J, Pasquet B, Martin A, Duchateau J (2011) Specific modulation of corticospinal and spinal excitabilities during maximal voluntary isometric, shortening and lengthening contractions in synergist muscles. J Physiol Lond 589: 2901–2916.
    1. Geertsen SS, Zuur AT, Nielsen JB (2010) Voluntary activation of ankle muscles is accompanied by subcortical facilitation of their antagonists. J Physiol Lond 588: 2391–2402.
    1. Khaslavskaia S, Ladouceur M, Sinkjaer T (2002) Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 145: 309–315.
    1. Nielsen J, Morita H, Baumgarten J, Petersen N, Christensen LO (1999) On the comparability of H-reflexes and MEPs. Electroencephalogr Clin Neurophysiol 51: 93–101.
    1. Schneider C, Lavoie BA, Barbeau H, Capaday C (2004) Timing of cortical excitability changes during the reaction time of movements superimposed on tonic motor activity. J Appl Physiol 97: 2220–2227.
    1. Davey NJ, Romaiguere P, Maskill DW, Ellaway PH (1994) Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol Lond 477: 223–235.
    1. Petersen N, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, et al. (2001) Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol Lond 537: 651–656.
    1. Petersen N, Christensen LOD, Morita H, Sinkjaer T, Nielsen J (1998) Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J Physiol Lond 512: 267–276.
    1. Kaneko K, Kawai S, Fuchigami Y, Shiraishi G, Ito T (1996) Spinal cord potentials after transcranial magnetic stimulation during muscle contraction. Muscle Nerve 19: 659–661.
    1. Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50: 1074–1085.
    1. Wagner T, Rushmore J, Eden U, Valero-Cabre A (2009) Biophysical foundation underlying TMS: Setting the stage for an effective use of neurostimulation in the cognitive neurosciences. Cortex 45: 1025–1034.
    1. Wagner TA, Zahn M, Grodzinsky AJ, Pascual-Leone A (2004) Three-dimensional head model simulation of transcranial magnetic stimulation. IEEE Trans Biomed Eng 51: 1586–1598.
    1. Barker AT (1991) An introduction to the basic principles of magnetic nerve stimulation. J Clin Neurophysiol 8: 26–37.
    1. Lontis ER, Voigt M, Struijk JJ (2006) Focality assessment in transcranial magnetic stimulation with double and cone coils. J Clin Neurophysiol 23: 463–472.
    1. Deng ZD, Lisanby SH, Peterchev AV (2014) Coil design considerations for deep transcranial magnetic stimulation. Clin Neurophysiol 125: 1202–1212.
    1. Ladenbauer J, Minassian K, Hofstoetter US, Dimitrijevic MR, Rattay F (2010) Stimulation of the human lumbar spinal cord with implanted and surface electrodes: a computer simulation study. IEEE Trans Neural Syst Rehabil Eng 18: 637–45.
    1. Toschi N, Welt T, Guerrisi M, Keck ME (2009) Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation. J Psychiatr Res 43: 255–264.

Source: PubMed

3
Abonner