Impact of Dental Implant Surface Modifications on Osseointegration

Ralf Smeets, Bernd Stadlinger, Frank Schwarz, Benedicta Beck-Broichsitter, Ole Jung, Clarissa Precht, Frank Kloss, Alexander Gröbe, Max Heiland, Tobias Ebker, Ralf Smeets, Bernd Stadlinger, Frank Schwarz, Benedicta Beck-Broichsitter, Ole Jung, Clarissa Precht, Frank Kloss, Alexander Gröbe, Max Heiland, Tobias Ebker

Abstract

Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions.

Figures

Figure 1
Figure 1
Mechanical stability of a dental implant after insertion. Primary stability decreases subsequently to implant insertion while secondary stability increases. After 2-3 weeks, the implant stability is the lowest in a phase called implant stability dip.
Figure 2
Figure 2
Roxolid implant with SLA surface (Straumann Holding AG, Basel, Switzerland). Roxolid dental implants (a) are made of titanium zirconium alloy. Large grit-blasting generates the macrolevel aspects of the surface (b), while the microtopographic features (c) are induced by acid-etching with HCl/H2SO4. Courtesy of Straumann Holding AG.
Figure 3
Figure 3
FRIADENT plus surface (DENTSPLY Implants, Mannheim, Germany). The surface of the FRIADENT plus surface (a) is created by large grit-blasting, etching, and a proprietary neutralizing technique. The hydrophilic surface features grooves that are interspersed with micropores (b). Courtesy of DENTSPLY Implants.
Figure 4
Figure 4
3i T3 (BIOMET 3i, Palm Beach Gardens, FL, USA). Small calcium phosphate particles are deposited on a double acid-etched surface in 3i dental implants (a). These particles are 20–100 nm (c) in size and form about half of the implant's total surface (b). Courtesy of BIOMET 3i.
Figure 5
Figure 5
Laser-Lok implant (BioHorizons, Birmingham, AL, USA). A pattern of microchannels around the implant collar (b) is created by laser ablation. These cell-sized microchannels have been shown to act as a biological seal around the implant by fostering the attachment of connective tissue (c). Courtesy of BioHorizons IPH Inc.
Figure 6
Figure 6
TiUnite surface (Nobel Biocare Holding AG, Zürich, Switzerland). The NobelReplace dental implant (a) is equipped with the TiUnite surface. The porous microstructure of the surface (b) has been suggested to promote osseointegration by providing additional retention in bone formation (c). Courtesy of Nobel Biocare.
Figure 7
Figure 7
OsseoSpeed implant (DENTSPLY Implants, Mannheim, Germany). The nanolevel aspect (c) of the OsseoSpeed dental implant (a, b) is the result of titanium oxide blasting followed by etching with hydrofluoric acid. Accumulation of fluoride on the surface is a beneficial side effect of the manufacturing process. Courtesy of DENTSPLY Implants.
Figure 8
Figure 8
Concept of hydrophilicity. The hydrophilic surface on the left exhibits a water contact angle α < 90°, whereas the hydrophobic surface on the right shows a contact angle of β > 90°.
Figure 9
Figure 9
SLActive (Straumann Holding AG, Basel, Switzerland). In SLActive dental implants, the degree of hydrophilicity has been enhanced by rinsing under nitrogen protection and storage in saline solution. The SLActive surface (a, b) possesses elements of nanotopography. Courtesy of Straumann Holding AG.
Figure 10
Figure 10
Hydrophilic effects of UV treatment. Pure titanium discs were subjected to photofunctionalization using UV light. Droplets of water (20 μL) were placed on untreated (a) and photofunctionalized discs (b). The water contact angle is drastically decreased by UV treatment (b), illustrating the hydrophilic effects of photofunctionalization. Courtesy of Henningsen.

References

    1. Brånemark P.-I., Adell R., Breine U., Hansson B. O., Lindström J., Ohlsson A. Intra-osseous anchorage of dental prostheses: I. Experimental studies . Scandinavian Journal of Plastic and Reconstructive Surgery. 1969;3(2):81–100. doi: 10.3109/02844316909036699.
    1. Brånemark P. I., Adell R., Albrektsson T., Lekholm U., Lundkvist S., Rockler B. Osseointegrated titanium fixtures in the treatment of edentulousness. Biomaterials. 1983;4(1):25–28. doi: 10.1016/0142-9612(83)90065-0.
    1. Junker R., Dimakis A., Thoneick M., Jansen J. A. Effects of implant surface coatings and composition on bone integration: a systematic review. Clinical Oral Implants Research. 2009;20(supplement 4):185–206. doi: 10.1111/j.1600-0501.2009.01777.x.
    1. Esposito M., Ardebili Y., Worthington H. V. Interventions for replacing missing teeth: different types of dental implants. The Cochrane Database of Systematic Reviews. 2014;7 doi: 10.1002/14651858.cd003815.pub4.CD003815
    1. Dohan Ehrenfest D. M., Coelho P. G., Kang B.-S., Sul Y.-T., Albrektsson T. Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in Biotechnology. 2010;28(4):198–206. doi: 10.1016/j.tibtech.2009.12.003.
    1. Chrcanovic B. R., Albrektsson T., Wennerberg A. Reasons for failures of oral implants. Journal of Oral Rehabilitation. 2014;41(6):443–476. doi: 10.1111/joor.12157.
    1. Smeets R., Henningsen A., Jung O., Heiland M., Hammächer C., Stein J. M. Definition, etiology, prevention and treatment of peri-implantitis—a review. Head and Face Medicine. 2014;10(1, article 34) doi: 10.1186/1746-160x-10-34.
    1. Gómez-de Diego R., Mang-de la Rosa M. D. R., Romero-Pérez M.-J., Cutando-Soriano A., López-Valverde-centeno A. Indications and contraindications of dental implants in medically compromised patients: update. Medicina Oral, Patologia Oral y Cirugia Bucal. 2014;19(5):e483–e489. doi: 10.4317/medoral.19565.19565
    1. Albrektsson T., Jacobsson M. Bone-metal interface in osseointegration. The Journal of Prosthetic Dentistry. 1987;57(5):597–607. doi: 10.1016/0022-3913(87)90344-1.
    1. von Wilmowsky C., Moest T., Nkenke E., Stelzle F., Schlegel K. A. Implants in bone: part I. A current overview about tissue response, surface modifications and future perspectives. Oral and Maxillofacial Surgery. 2014;18(3):243–257. doi: 10.1007/s10006-013-0398-1.
    1. Terheyden H., Lang N. P., Bierbaum S., Stadlinger B. Osseointegration—communication of cells. Clinical Oral Implants Research. 2012;23(10):1127–1135. doi: 10.1111/j.1600-0501.2011.02327.x.
    1. Schwartz Z., Nasazky E., Boyan B. D. Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration. The Alpha Omegan. 2005;98(2):9–19.
    1. Schenk R. K., Buser D. Osseointegration: a reality. Periodontology 2000. 1998;17(1):22–35. doi: 10.1111/j.1600-0757.1998.tb00120.x.
    1. von Wilmowsky C., Moest T., Nkenke E., Stelzle F., Schlegel K. A. Implants in bone—part II: research on implant osseointegration—material testing, mechanical testing, imaging and histoanalytical methods. Oral and Maxillofacial Surgery. 2014;18(4):355–372. doi: 10.1007/s10006-013-0397-2.
    1. Ozkurt Z., Kazazoglu E. Clinical success of zirconia in dental applications. Journal of Prosthodontics. 2010;19(1):64–68. doi: 10.1111/j.1532-849x.2009.00513.x.
    1. Le Guéhennec L., Soueidan A., Layrolle P., Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials. 2007;23(7):844–854. doi: 10.1016/j.dental.2006.06.025.
    1. Coelho P. G., Jimbo R., Tovar N., Bonfante E. A. Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dental Materials. 2015;31(1):37–52. doi: 10.1016/j.dental.2014.10.007.
    1. Verborgt O., Gibson G. J., Schaffler M. B. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. Journal of Bone and Mineral Research. 2000;15(1):60–67. doi: 10.1359/jbmr.2000.15.1.60.
    1. Marin C., Granato R., Suzuki M., Gil J. N., Janal M. N., Coelho P. G. Histomorphologic and histomorphometric evaluation of various endosseous implant healing chamber configurations at early implantation times: a study in dogs. Clinical Oral Implants Research. 2010;21(6):577–583. doi: 10.1111/j.1600-0501.2009.01853.x.
    1. Buser D., Janner S. F. M., Wittneben J.-G., Brägger U., Ramseier C. A., Salvi G. E. 10-Year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clinical Implant Dentistry and Related Research. 2012;14(6):839–851. doi: 10.1111/j.1708-8208.2012.00456.x.
    1. Abraham C. M. A brief historical perspective on dental implants, their surface coatings and treatments. The Open Dentistry Journal. 2014;8(1):50–55. doi: 10.2174/1874210601408010050.
    1. Albrektsson T., Wennerberg A. Oral implant surfaces: part 1—review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. The International Journal of Prosthodontics. 2004;17(5):536–543.
    1. Fischer K., Stenberg T. Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant-supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clinical Implant Dentistry and Related Research. 2012;14(6):808–815. doi: 10.1111/j.1708-8208.2011.00389.x.
    1. Shibata Y., Tanimoto Y. A review of improved fixation methods for dental implants—part I: surface optimization for rapid osseointegration. Journal of Prosthodontic Research. 2015;59(1):20–33. doi: 10.1016/j.jpor.2014.11.007.
    1. Wennerberg A., Galli S., Albrektsson T. Current knowledge about the hydrophilic and nanostructured SLActive surface. Clinical, Cosmetic and Investigational Dentistry. 2011;3:59–67.
    1. Dohan Ehrenfest D. M., Vazquez L., Park Y.-J., Sammartino G., Bernard J.-P. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. The Journal of Oral Implantology. 2011;37(5):525–542. doi: 10.1563/aaid-joi-d-11-00080.
    1. Buser D., Schenk R. K., Steinemann S., Fiorellini J. P., Fox C. H., Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of Biomedical Materials Research. 1991;25(7):889–902. doi: 10.1002/jbm.820250708.
    1. Li D., Ferguson S. J., Beutler T., et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. Journal of Biomedical Materials Research. 2002;60(2):325–332. doi: 10.1002/jbm.10063.
    1. Cochran D. L., Jackson J. M., Bernard J.-P., et al. A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface. The International Journal of Oral & Maxillofacial Implants. 2011;26(6):1324–1332.
    1. Lixin X., Hu X., Mehrhof J., Nelson K. Clinical evaluation of a fixed (retrievable) implant-supported prosthesis in the edentulous jaw: a 5-year report. Quintessence International. 2010;41(4):277–283.
    1. Rupp F., Scheideler L., Rehbein D., Axmann D., Geis-Gerstorfer J. Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials. 2004;25(7-8):1429–1438. doi: 10.1016/j.biomaterials.2003.08.015.
    1. Streckbein P., Kleis W., Buch R. S. R., Hansen T., Weibrich G. Bone healing with or without platelet-rich plasma around four different dental implant surfaces in beagle dogs. Clinical Implant Dentistry and Related Research. 2014;16(4):479–486. doi: 10.1111/cid.12026.
    1. Neugebauer J., Traini T., Thams U., Piattelli A., Zöller J. E. Peri-implant bone organization under immediate loading state. Circularly polarized light analyses: a minipig study. Journal of Periodontology. 2006;77(2):152–160. doi: 10.1902/jop.2006.040360.
    1. Novaes A. B., Jr., Papalexiou V., Grisi M. F. M., Souza S. S. L. S., Taba M., Jr., Kajiwara J. K. Influence of implant microstructure on the osseointegration of immediate implants placed in periodontally infected sites: a histomorphometric study in dogs. Clinical Oral Implants Research. 2004;15(1):34–43. doi: 10.1046/j.1600-0501.2003.00968.x.
    1. Degidi M., Piattelli A., Gehrke P., Carinci F. Clinical outcome of 802 immediately loaded 2-stage submerged implants with a new grit-blasted and acid-etched surface: 12-month follow-up. The International Journal of Oral & Maxillofacial Implants. 2006;21(5):763–768.
    1. Mendonça G., Mendonça D. B. S., Aragão F. J. L., Cooper L. F. Advancing dental implant surface technology—from micron- to nanotopography. Biomaterials. 2008;29(28):3822–3835. doi: 10.1016/j.biomaterials.2008.05.012.
    1. Webster T. J., Ejiofor J. U. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731–4739. doi: 10.1016/j.biomaterials.2003.12.002.
    1. Bonfante E. A., Granato R., Marin C., et al. Biomechanical testing of microblasted, acid-etched/microblasted, anodized, and discrete crystalline deposition surfaces: an experimental study in beagle dogs. The International Journal of Oral & Maxillofacial Implants. 2013;28(1):136–142. doi: 10.11607/jomi.2331.
    1. Franchi M., Bacchelli B., Martini D., et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials. 2004;25(12):2239–2246. doi: 10.1016/j.biomaterials.2003.09.017.
    1. Kitsugi T., Nakamura T., Oka M., Senaha Y., Goto T., Shibuya T. Bone-bonding behavior of plasma-sprayed coatings of BioglassR, AW-glass ceramic, and tricalcium phosphate on titanium alloy. Journal of Biomedical Materials Research. 1996;30(2):261–269.
    1. Rodriguez y Baena R., Arciola C. R., Selan L., et al. Evaluation of bacterial adhesion on machined titanium, osseotite® and nanotite® discs. The International Journal of Artificial Organs. 2012;35(10):754–761. doi: 10.5301/ijao.5000143.
    1. Mendes V. C., Moineddin R., Davies J. E. The effect of discrete calcium phosphate nanocrystals on bone-bonding to titanium surfaces. Biomaterials. 2007;28(32):4748–4755. doi: 10.1016/j.biomaterials.2007.07.020.
    1. Mendes V. C., Moineddin R., Davies J. E. Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. Journal of Biomedical Materials Research—Part A. 2009;90(2):577–585. doi: 10.1002/jbm.a.32126.
    1. Calvo-Guirado J. L., Satorres-Nieto M., Aguilar-Salvatierra A., et al. Influence of surface treatment on osseointegration of dental implants: histological, histomorphometric and radiological analysis in vivo. Clinical Oral Investigations. 2015;19(2):509–517. doi: 10.1007/s00784-014-1241-2.
    1. Östman P.-O., Wennerberg A., Ekestubbe A., Albrektsson T. Immediate occlusal loading of NanoTite™ tapered implants: a prospective 1-year clinical and radiographic study. Clinical Implant Dentistry and Related Research. 2013;15(6):809–818. doi: 10.1111/j.1708-8208.2011.00437.x.
    1. Östman P.-O., Hupalo M., del Castillo R., et al. Immediate provisionalization of nanotite implants in support of single-tooth and unilateral restorations: one-year interim report of a prospective, multicenter study. Clinical Implant Dentistry and Related Research. 2010;12(supplement 1):e47–e55. doi: 10.1111/j.1708-8208.2009.00166.x.
    1. Nevins M., Kim D. M., Jun S.-H., Guze K., Schupbach P., Nevins M. L. Histologic evidence of a connective tissue attachment to laser microgrooved abutments: a canine study. The International Journal of Periodontics & Restorative Dentistry. 2010;30(3):245–255.
    1. Pecora G. E., Ceccarelli R., Bonelli M., Alexander H., Ricci J. L. Clinical evaluation of laser microtexturing for soft tissue and bone attachment to dental implants. Implant Dentistry. 2009;18(1):57–66. doi: 10.1097/ID.0b013e31818c5a6d.
    1. Guarnieri R., Serra M., Bava L., Grande M., Farronato D., Iorio-Siciliano V. The impact of a laser-microtextured collar on crestal bone level and clinical parameters under various placement and loading protocols. The International Journal of Oral & Maxillofacial Implants. 2014;29(2):354–363. doi: 10.11607/jomi.3250.
    1. Botos S., Yousef H., Zweig B., Flinton R., Weiner S. The effects of laser microtexturing of the dental implant collar on crestal bone levels and peri-implant health. The International Journal of Oral & Maxillofacial Implants. 2011;26(3):492–498.
    1. Farronato D., Mangano F., Briguglio F., Iorio-Siciliano V., Riccitiello F., Guarnieri R. Influence of Laser-Lok surface on immediate functional loading of implants in single-tooth replacement: a 2-year prospective clinical study. The International Journal of Periodontics & Restorative Dentistry. 2014;34(1):79–89. doi: 10.11607/prd.1747.
    1. Sul Y.-T., Johansson C. B., Röser K., Albrektsson T. Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials. 2002;23(8):1809–1817. doi: 10.1016/s0142-9612(01)00307-6.
    1. Rocci A., Rocci M., Rocci C., et al. Immediate loading of Brånemark system TiUnite and machined-surface implants in the posterior mandible, part II: a randomized open-ended 9-year follow-up clinical trial. The International Journal of Oral & Maxillofacial Implants. 2013;28(3):891–895. doi: 10.11607/jomi.2397.
    1. Zechner W., Tangl S., Fürst G., et al. Osseous healing characteristics of three different implant types: a histologic and histomorphometric study in mini-pigs. Clinical Oral Implants Research. 2003;14(2):150–157. doi: 10.1034/j.1600-0501.2003.140203.x.
    1. Sul Y.-T., Byon E., Wennerberg A. Surface characteristics of electrochemically oxidized implants and acid-etched implants: surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness. The International Journal of Oral & Maxillofacial Implants. 2008;23(4):631–640.
    1. Guida L., Oliva A., Basile M. A., Giordano M., Nastri L., Annunziata M. Human gingival fibroblast functions are stimulated by oxidized nano-structured titanium surfaces. Journal of Dentistry. 2013;41(10):900–907. doi: 10.1016/j.jdent.2013.07.009.
    1. Ivanoff C.-J., Widmark G., Johansson C., Wennerberg A. Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone. The International Journal of Oral & Maxillofacial Implants. 2003;18(3):341–348.
    1. Jungner M., Lundqvist P., Lundgren S. Oxidized titanium implants (Nobel Biocare® TiUnite™) compared with turned titanium implants (Nobel Biocare® mark III™) with respect to implant failure in a group of consecutive patients treated with early functional loading and two-stage protocol. Clinical Oral Implants Research. 2005;16(3):308–312. doi: 10.1111/j.1600-0501.2005.01101.x.
    1. Quirynen M., Van Assche N. RCT comparing minimally with moderately rough implants. Part 2: microbial observations. Clinical Oral Implants Research. 2012;23(5):625–634. doi: 10.1111/j.1600-0501.2011.02255.x.
    1. Collaert B., Wijnen L., De Bruyn H. A 2-year prospective study on immediate loading with fluoride-modified implants in the edentulous mandible. Clinical Oral Implants Research. 2011;22(10):1111–1116. doi: 10.1111/j.1600-0501.2010.02077.x.
    1. Coelho P. G., Granjeiro J. M., Romanos G. E., et al. Basic research methods and current trends of dental implant surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;88(2):579–596. doi: 10.1002/jbm.b.31264.
    1. Ellingsen J. E., Johansson C. B., Wennerberg A., Holmén A. Improved retention and bone-to-implant contact with fluoride-modified titanium implants. The International Journal of Oral and Maxillofacial Implants. 2004;19(5):659–666.
    1. Heitz-Mayfield L. J. A., Darby I., Heitz F., Chen S. Preservation of crestal bone by implant design. A comparative study in minipigs. Clinical Oral Implants Research. 2013;24(3):243–249. doi: 10.1111/j.1600-0501.2012.02513.x.
    1. Choi J.-Y., Lee H.-J., Jang J.-U., Yeo I.-S. Comparison between bioactive fluoride modified and bioinert anodically oxidized implant surfaces in early bone response using rabbit tibia model. Implant Dentistry. 2012;21(2):124–128. doi: 10.1097/ID.0b013e318249f283.
    1. Mertens C., Steveling H. G. Early and immediate loading of titanium implants with fluoride-modified surfaces: results of 5-year prospective study. Clinical Oral Implants Research. 2011;22(12):1354–1360. doi: 10.1111/j.1600-0501.2010.02123.x.
    1. Raes F., Cosyn J., De Bruyn H. Clinical, aesthetic, and patient-related outcome of immediately loaded single implants in the anterior maxilla: a prospective study in extraction sockets, healed ridges, and grafted sites. Clinical Implant Dentistry and Related Research. 2013;15(6):819–835. doi: 10.1111/j.1708-8208.2011.00438.x.
    1. Zhao G., Schwartz Z., Wieland M., et al. High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research—Part A. 2005;74(1):49–58. doi: 10.1002/jbm.a.30320.
    1. Schwarz F., Wieland M., Schwartz Z., et al. Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2009;88(2):544–557. doi: 10.1002/jbm.b.31233.
    1. Stadlinger B., Lode A. T., Eckelt U., et al. Surface-conditioned dental implants: an animal study on bone formation. Journal of Clinical Periodontology. 2009;36(10):882–891. doi: 10.1111/j.1600-051x.2009.01466.x.
    1. Schwarz F., Herten M., Sager M., Wieland M., Dard M., Becker J. Histological and immunohistochemical analysis of initial and early osseous integration at chemically modified and conventional SLA® titanium implants: preliminary results of a pilot study in dogs. Clinical Oral Implants Research. 2007;18(4):481–488. doi: 10.1111/j.1600-0501.2007.01341.x.
    1. Buser D., Broggini N., Wieland M., et al. Enhanced bone apposition to a chemically modified SLA titanium surface. Journal of Dental Research. 2004;83(7):529–533. doi: 10.1177/154405910408300704.
    1. Ferguson S. J., Broggini N., Wieland M., et al. Biomechanical evaluation of the interfacial strength of a chemically modified sandblasted and acid-etched titanium surface. Journal of Biomedical Materials Research Part A. 2006;78(2):291–297. doi: 10.1002/jbm.a.30678.
    1. Calvo-Guirado J. L., Ortiz-Ruiz A. J., Negri B., López-Marí L., Rodriguez-Barba C., Schlottig F. Histological and histomorphometric evaluation of immediate implant placement on a dog model with a new implant surface treatment. Clinical Oral Implants Research. 2010;21(3):308–315. doi: 10.1111/j.1600-0501.2009.01841.x.
    1. Heberer S., Kilic S., Hossamo J., Raguse J.-D., Nelson K. Rehabilitation of irradiated patients with modified and conventional sandblasted acid-etched implants: preliminary results of a split-mouth study. Clinical Oral Implants Research. 2011;22(5):546–551. doi: 10.1111/j.1600-0501.2010.02050.x.
    1. Al-Nawas B., Brägger U., Meijer H. J. A., et al. A double-blind Randomized Controlled Trial (RCT) of titanium-13Zirconium versus titanium grade iv small-diameter bone level implants in edentulous mandibles—results from a 1-year observation period. Clinical Implant Dentistry and Related Research. 2012;14(6):896–904. doi: 10.1111/j.1708-8208.2010.00324.x.
    1. Ganeles J., Zöllner A., Jackowski J., ten Bruggenkate C., Beagle J., Guerra F. Immediate and early loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: 1-year results from a prospective multicenter study. Clinical Oral Implants Research. 2008;19(11):1119–1128. doi: 10.1111/j.1600-0501.2008.01626.x.
    1. Morton D., Bornstein M. M., Wittneben J.-G., et al. Early loading after 21 days of healing of nonsubmerged titanium implants with a chemically modified sandblasted and acid-etched surface: two-year results of a prospective two-center study. Clinical Implant Dentistry and Related Research. 2010;12(1):9–17. doi: 10.1111/j.1708-8208.2009.00204.x.
    1. Zöllner A., Ganeles J., Korostoff J., Guerra F., Krafft T., Brägger U. Immediate and early non-occlusal loading of Straumann implants with a chemically modified surface (SLActive) in the posterior mandible and maxilla: Interim results from a prospective multicenter randomized-controlled study. Clinical Oral Implants Research. 2008;19(5):442–450. doi: 10.1111/j.1600-0501.2007.01517.x.
    1. Gao Y., Liu Y., Zhou L., et al. The effects of different wavelength UV photofunctionalization on micro-arc oxidized titanium. PLoS ONE. 2013;8(7) doi: 10.1371/journal.pone.0068086.e68086
    1. Altmann B., Kohal R.-J., Steinberg T., et al. Distinct cell functions of osteoblasts on uv-functionalized titanium- and zirconia-based implant materials are modulated by surface topography. Tissue Engineering—Part C: Methods. 2013;19(11):850–863. doi: 10.1089/ten.tec.2012.0695.
    1. Park K.-H., Koak J.-Y., Kim S.-K., Han C.-H., Heo S.-J. The effect of ultraviolet-C irradiation via a bactericidal ultraviolet sterilizer on an anodized titanium implant: a study in rabbits. The International Journal of Oral & Maxillofacial Implants. 2013;28(1):57–66. doi: 10.11607/jomi.2638.
    1. Minamikawa H., Ikeda T., Att W., et al. Photofunctionalization increases the bioactivity and osteoconductivity of the titanium alloy Ti6Al4V. Journal of Biomedical Materials Research Part A. 2014;102(10):3618–3630. doi: 10.1002/jbm.a.35030.
    1. Funato A., Yamada M., Ogawa T. Success rate, healing time, and implant stability of photofunctionalized dental implants. The International Journal of Oral & Maxillofacial Implants. 2013;28(5):1261–1271. doi: 10.11607/jomi.3263.
    1. Hori N., Ueno T., Suzuki T., et al. Ultraviolet light treatment for the restoration of age-related degradation of titanium bioactivity. The International Journal of Oral & Maxillofacial Implants. 2010;25(1):49–62.
    1. Aita H., Hori N., Takeuchi M., et al. The effect of ultraviolet functionalization of titanium on integration with bone. Biomaterials. 2009;30(6):1015–1025. doi: 10.1016/j.biomaterials.2008.11.004.
    1. Hirakawa Y., Jimbo R., Shibata Y., Watanabe I., Wennerberg A., Sawase T. Accelerated bone formation on photo-induced hydrophilic titanium implants: an experimental study in the dog mandible. Clinical Oral Implants Research. 2013;24(100):139–144. doi: 10.1111/j.1600-0501.2011.02401.x.
    1. Funato A., Ogawa T. Photofunctionalized dental implants: a case series in compromised bone. The International Journal of Oral & Maxillofacial Implants. 2013;28(6):1589–1601. doi: 10.11607/jomi.3232.
    1. Hägi T. T., Enggist L., Michel D., Ferguson S. J., Liu Y., Hunziker E. B. Mechanical insertion properties of calcium-phosphate implant coatings. Clinical Oral Implants Research. 2010;21(11):1214–1222. doi: 10.1111/j.1600-0501.2010.01916.x.
    1. Carreira A. C., Lojudice F. H., Halcsik E., Navarro R. D., Sogayar M. C., Granjeiro J. M. Bone morphogenetic proteins: facts, challenges, and future perspectives. Journal of Dental Research. 2014;93(4):335–345. doi: 10.1177/0022034513518561.
    1. Venkatesan J., Kim S.-K. Chitosan composites for bone tissue engineering—an overview. Marine Drugs. 2010;8(8):2252–2266. doi: 10.3390/md8082252.
    1. Choi A. H., Ben-Nissan B., Matinlinna J. P., Conway R. C. Current perspectives: calcium phosphate nanocoatings and nanocomposite coatings in dentistry. Journal of Dental Research. 2013;92(10):853–859. doi: 10.1177/0022034513497754.
    1. Marco F., Milena F., Gianluca G., Vittoria O. Peri-implant osteogenesis in health and osteoporosis. Micron. 2005;36(7-8):630–644. doi: 10.1016/j.micron.2005.07.008.
    1. Trisi P., Keith D. J., Rocco S. Human histologic and histomorphometric analyses of hydroxyapatite-coated implants after 10 years of function: a case report. The International Journal of Oral & Maxillofacial Implants. 2005;20(1):124–130.
    1. Albrektsson T. Hydroxyapatite-coated implants: a case against their use. Journal of Oral and Maxillofacial Surgery. 1998;56(11):1312–1326. doi: 10.1016/s0278-2391(98)90616-4.
    1. Esposito M., Dojcinovic I., Germon L., et al. Safety and efficacy of a biomimetic monolayer of permanently bound multi-phosphonic acid molecules on dental implants: 1 year post-loading results from a pilot quadruple-blinded randomised controlled trial. European Journal of Oral Implantology. 2013;6(3):227–236.
    1. von Salis-Soglio M., Stübinger S., Sidler M., et al. A novel multi-phosphonate surface treatment of titanium dental implants: a study in sheep. Journal of Functional Biomaterials. 2014;5(3):135–157. doi: 10.3390/jfb5030135.
    1. Liu Y., de Groot K., Hunziker E. B. BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model. Bone. 2005;36(5):745–757. doi: 10.1016/j.bone.2005.02.005.
    1. Ramazanoglu M., Lutz R., Ergun C., von Wilmowsky C., Nkenke E., Schlegel K. A. The effect of combined delivery of recombinant human bone morphogenetic protein-2 and recombinant human vascular endothelial growth factor 165 from biomimetic calcium-phosphate-coated implants on osseointegration. Clinical Oral Implants Research. 2011;22(12):1433–1439. doi: 10.1111/j.1600-0501.2010.02133.x.
    1. Susin C., Qahash M., Polimeni G., et al. Alveolar ridge augmentation using implants coated with recombinant human bone morphogenetic protein-7 (rhBMP-7/rhOP-1): histological observations. Journal of Clinical Periodontology. 2010;37(6):574–581. doi: 10.1111/j.1600-051x.2010.01554.x.
    1. Kim J.-E., Kang S.-S., Choi K.-H., et al. The effect of anodized implants coated with combined rhBMP-2 and recombinant human vascular endothelial growth factors on vertical bone regeneration in the marginal portion of the peri-implant. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2013;115(6):e24–e31. doi: 10.1016/j.oooo.2011.10.040.
    1. De Ranieri A., Virdi A. S., Kuroda S., et al. Local application of rhTGF-β2 enhances peri-implant bone volume and bone-implant contact in a rat model. Bone. 2005;37(1):55–62. doi: 10.1016/j.bone.2005.03.011.
    1. Shim I. K., Chung H. J., Jung M. R., et al. Biofunctional porous anodized titanium implants for enhanced bone regeneration. Journal of Biomedical Materials Research—Part A. 2014;102(10):3639–3648. doi: 10.1002/jbm.a.35026.
    1. Zhang W., Jin Y., Qian S., et al. Vacuum extraction enhances rhPDGF-BB immobilization on nanotubes to improve implant osseointegration in ovariectomized rats. Nanomedicine: Nanotechnology, Biology, and Medicine. 2014;10(8):1809–1818. doi: 10.1016/j.nano.2014.07.002.
    1. Murray I. R., West C. C., Hardy W. R., et al. Natural history of mesenchymal stem cells, from vessel walls to culture vessels. Cellular and Molecular Life Sciences. 2014;71(8):1353–1374. doi: 10.1007/s00018-013-1462-6.
    1. de Barros R. R. M., Novaes A. B., Korn P., et al. Bone formation in a local defect around dental implants coated with extracellular matrix components. Clinical Implant Dentistry and Related Research. 2015;17(4):742–757. doi: 10.1111/cid.12179.
    1. Korn P., Schulz M. C., Hintze V., et al. Chondroitin sulfate and sulfated hyaluronan-containing collagen coatings of titanium implants influence peri-implant bone formation in a minipig model. Journal of Biomedical Materials Research—Part A. 2014;102(7):2334–2344. doi: 10.1002/jbm.a.34913.
    1. Schliephake H., Scharnweber D., Dard M., Sewing A., Aref A., Roessler S. Functionalization of dental implant surfaces using adhesion molecules. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2005;73(1):88–96. doi: 10.1002/jbm.b.30183.
    1. Schliephake H., Aref A., Scharnweber D., Bierbaum S., Sewing A. Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. Part I: organic coatings. Clinical Oral Implants Research. 2009;20(1):31–37. doi: 10.1111/j.1600-0501.2008.01603.x.
    1. Broggini N., Tosatti S., Ferguson S. J., et al. Evaluation of chemically modified SLA implants (modSLA) biofunctionalized with integrin (RGD)- and heparin (KRSR)-binding peptides. Journal of Biomedical Materials Research—Part A. 2012;100(3):703–711. doi: 10.1002/jbm.a.34004.
    1. Holmberg K. V., Abdolhosseini M., Li Y., Chen X., Gorr S.-U., Aparicio C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomaterialia. 2013;9(9):8224–8231. doi: 10.1016/j.actbio.2013.06.017.
    1. Warnke P. H., Voss E., Russo P. A. J., et al. Antimicrobial peptide coating of dental implants: biocompatibility assessment of recombinant human beta defensin-2 for human cells. The International Journal of Oral & Maxillofacial Implants. 2013;28(4):982–988. doi: 10.11607/jomi.2594.
    1. Compton J. T., Lee F. Y. A review of osteocyte function and the emerging importance of sclerostin. The Journal of Bone & Joint Surgery—American Volume. 2014;96(19):1659–1668. doi: 10.2106/jbjs.m.01096.
    1. Virdi A. S., Irish J., Sena K., et al. Sclerostin antibody treatment improves implant fixation in a model of severe osteoporosis. The Journal of Bone & Joint Surgery—American Volume. 2015;97(2):133–140. doi: 10.2106/jbjs.n.00654.
    1. Stadlinger B., Korn P., Tödtmann N., et al. Osseointegration of biochemically modified implants in an osteoporosis rodent model. European Cells & Materials. 2012;25:326–340.
    1. Russell R. G. G., Watts N. B., Ebetino F. H., Rogers M. J. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporosis International. 2008;19(6):733–759. doi: 10.1007/s00198-007-0540-8.
    1. Bilezikian J. P. Efficacy of bisphosphonates in reducing fracture risk in postmenopausal osteoporosis. The American Journal of Medicine. 2009;122(supplement 2):S14–S21. doi: 10.1016/j.amjmed.2008.12.003.
    1. Peter B., Pioletti D. P., Laïb S., et al. Calcium phosphate drug delivery system: influence of local zoledronate release on bone implant osteointegration. Bone. 2005;36(1):52–60. doi: 10.1016/j.bone.2004.10.004.
    1. Abtahi J., Tengvall P., Aspenberg P. A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants. Bone. 2012;50(5):1148–1151. doi: 10.1016/j.bone.2012.02.001.

Source: PubMed

3
Abonner