Ultrasound assessment of rectus femoris and anterior tibialis muscles in young trauma patients

Maria Giuseppina Annetta, Mauro Pittiruti, Davide Silvestri, Domenico Luca Grieco, Alessio Maccaglia, Michele Fabio La Torre, Nicola Magarelli, Giovanna Mercurio, Anselmo Caricato, Massimo Antonelli, Maria Giuseppina Annetta, Mauro Pittiruti, Davide Silvestri, Domenico Luca Grieco, Alessio Maccaglia, Michele Fabio La Torre, Nicola Magarelli, Giovanna Mercurio, Anselmo Caricato, Massimo Antonelli

Abstract

Purpose: Quantitative and qualitative changes of skeletal muscle are typical and early findings in trauma patients, being possibly associated with functional impairment. Early assessment of muscle changes-as evaluated by muscle ultrasonography-could yield important information about patient's outcome.

Methods: In this prospective observational study, we used ultrasonography to evaluate the morphological changes of rectus femoris (RF) and anterior tibialis (AT) muscles in a group of young, previously healthy trauma patients on enteral feeding.

Results: We studied 38 severely injured patients (median Injury Severity Score = 34; median age = 40 y.o.) over the course of the ICU stay up to 3 weeks after trauma. We found a progressive loss of muscle mass from day 0 to day 20, that was more relevant for the RF (45%) than for the AT (22%); this was accompanied by an increase in echogenicity (up to 2.5 by the Heckmatt Scale, where normal echogenicity = 1), which is an indicator of myofibers depletion.

Conclusions: Ultrasound evaluation of skeletal muscles is inexpensive, noninvasive, simple and easily repeatable. By this method, we were able to quantify the morphological changes of skeletal muscle in trauma patients. Further studies may rely on this technicque to evaluate the impact of different therapeutic strategies on muscle wasting.

Keywords: Enteral feeding; Muscle mass; Muscle ultrasonography; Trauma.

References

    1. De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodriguez P, Cerf C, et al. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med. 2007;35:2007–2015. doi: 10.1097/01.ccm.0000281450.01881.d8.
    1. Weijs PMJ, Looijaard WGPM, Dekker IM, Stapel SN, Girbes AR, et al. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients. Crit Care. 2014;18:R12. doi: 10.1186/cc13189.
    1. Hermans G, Van Mechelen H, Clerckx B, Vanhullebush T, Mesotten D, et al. Acute outcome and 1-year mortality of ICU-acquired weakness: a cohort study and propensity matched analysis. Am J Respir Crit Care Med. 2014;190:410–420. doi: 10.1164/rccm.201312-2257OC.
    1. Pathucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310(15):1591–1600. doi: 10.1001/jama.2013.278481.
    1. Fan E, Dowdy DW, Colantuoni E, Mendez-Tellez PA, Sevransky JE, Shanholtz C, et al. Physical complications in acute lung injury survivors: a 2-year longitudinal prospective study. Crit Care Med. 2013;42:849–859. doi: 10.1097/CCM.0000000000000040.
    1. Herridge MS, Tansey CM, Mattè A, Tomlinson G, Diaz-Granados N, Cooper A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293–1304. doi: 10.1056/NEJMoa1011802.
    1. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomized controlled trial. Lancet. 2009;373:1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrilow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months follow-up. Crit Care. 2013;17:R156. doi: 10.1186/cc12835.
    1. Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK. The relationship between nutritional intake and clinical outcome in critically ill patients: results of an international observational study. Intensive Care Med. 2009;35:1728–1737. doi: 10.1007/s00134-009-1567-4.
    1. Weijs PJ, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012;36:60–68. doi: 10.1177/0148607111415109.
    1. Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. JPEN J Parenter Enteral Nutr. 2016;40(6):795–805. doi: 10.1177/0148607115618449.
    1. Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med. 2013;187:247–255. doi: 10.1164/rccm.201206-0999OC.
    1. Seymour JM, Ward K, Sidhu PS, Puthucheary Z, Steier J, et al. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax. 2009;64:418–423. doi: 10.1136/thx.2008.103986.
    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–1056. doi: 10.1183/09031936.00010206.
    1. Horan TC, Andrus M, Dudeck MA. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control. 2008;36:309–332. doi: 10.1016/j.ajic.2008.03.002.
    1. Gruther W, Benesch T, Zorn C, Paternostro-Sluga T, Quittan M, Fialka-Moser V, et al. Muscle wasting in intensive care patients: ultrasound observation of the m. quadriceps femoris muscle layer. J Rehabil Med. 2008;40:185–189. doi: 10.2340/16501977-0139.
    1. Heckmatt JZ, Pier N, Dubowitz V. Real-time ultrasound imaging of the muscle. Muscle Nerve. 1988;11:56–65. doi: 10.1002/mus.880110110.
    1. Grimm A, Teschner U, Porzelius C, Ludewig K, Zielske J, et al. Muscle ultrasound for early assessment of critical illness neuromyopathy in severe sepsis. Crit Care. 2013;17:R227. doi: 10.1186/cc13050.
    1. Paris MT, Mourtzakis M, Day A, Leung R, Watharkar S, Kozar R, et al. Validation of bedside ultrasound of muscle layer thickness of the quadriceps in the critically ill patient (VALIDUM study): a prospective multicenter study. JPEN J Parenter Enteral Nutr. 2017;41(2):171–180. doi: 10.1177/0148607116637852.
    1. Campbell IT, Watt T, Withers D, England R, Sukumar S, Keegan MA, et al. Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in presence of edema. Am J Clin Nutr. 1995;62:533–539.
    1. dos Santos C, Hussain SNA, Marthur S, Gosselink R, Hart N, Herridge MS, Correa J, et al. Mechanism of chronic muscle wasting and dysfunction after an intensive care unit stay: a pilot study. Am J Respir Crit Care Med. 2016;194(7):821–830. doi: 10.1164/rccm.201512-2344OC.
    1. Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, et al. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am J Respir Crit Care Med. 2014;190:1437–1446. doi: 10.1164/rccm.201411-2011ST.
    1. Farhan H, Moreno-Duarte I, Latronico N, Zafonte R, Eikermann M. Acquired muscle weakness in the surgical intensive care unit: Nosology, epidemiology, and prevention. Anesthesiol. 2016;124:207–234. doi: 10.1097/ALN.0000000000000874.
    1. Hermans G, Casaer MP, Clerckx B, Guiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive- care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1:621–629. doi: 10.1016/S2213-2600(13)70183-8.
    1. Moisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, et al. Skeletal muscle predict ventilator-free days, ICU-free days and mortality in elderly ICU patients. Crit Care. 2013;17:R206. doi: 10.1186/cc12901.
    1. Sheean PM, Peterson SJ, Gomez Perez S, Troy KL, Patel A, Sclamberg JS, et al. The prevalence of sarcopenia in patients with respiratory failure classified as normally nourished using computed tomography and subjective global assessment. JPEN J Parenter Enteral Nutr. 2014;38:873–879. doi: 10.1177/0148607113500308.
    1. Campbell SE, Adler R, Sofka CM. Ultrasound of muscle abnormalities. Ultrasound Q. 2005;21:87–94.
    1. Pillen S, Zwartz MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–693. doi: 10.1002/mus.21015.
    1. Reeves ND, Maganaris CN, Narici MV. Ultrasonographic assessment of human skeletal muscle size. Eur J Appl Physiol. 2004;91:116–118. doi: 10.1007/s00421-003-0961-9.
    1. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen K, Leung R, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2014;38(7):886–890. doi: 10.1177/0148607113501327.
    1. Segers J, Hermans G, Charususin N, Fivez T, Vanhorebeek I, et al. Assessment of quadriceps muscle mass with ultrasound in critically ill patients: intra- and inter-observer agreement and sensitivity. Intensive Care Med. 2015;41(3):562–563. doi: 10.1007/s00134-015-3668-6.
    1. Fivez T, Hendrickx A, Van Herpe T, Vlasselaers D, Desmet L, et al. An analysis of reliability and accuracy of muscle thickness ultrasonography in critically ill children and adults. JPEN J Parenter Enteral Nutr. 2016;40:944–949. doi: 10.1177/0148607115575033.
    1. Zhong H, Roy RR, Siengthai B, Edgerton VR. Effects of inactivity on fiber size and myonuclear number in rat soleus muscle. J Appl Physiol. 2005;99:1494–1499. doi: 10.1152/japplphysiol.00394.2005.
    1. Psatha M, Wu Z, Gammie FM, Ratkevicius A, Wackerhage H, Lee JH, Redpath TW, Gilbert FJ, Ashcroft GP, Meakin JR, Aspden RM. A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. J Magn Reson Imaging. 2012;35:686–695. doi: 10.1002/jmri.22864.
    1. Henriksson-Larsen KB, Lexell J, Sjostrom M. Distribution of different fibre types in human skeletal muscles. Method for the preparation and analysis of cross-sections of whole tibialis anterior. Histochem J. 1983;15:167–178. doi: 10.1007/BF01042285.
    1. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–2867. doi: 10.1001/jama.288.22.2859.
    1. Petrasek PF, Homer-Vanniasinkam S, Walker PM. Determinants of ischemic injury to skeletal muscle. J Vasc Surg. 1994;19:623–631. doi: 10.1016/S0741-5214(94)70035-4.
    1. Krawiec BJ, Frost RA, Vary TC, Jefferson LS, Lang CH. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis. Am J Physiol Endocrinol Metab. 2005;289:E969–E980. doi: 10.1152/ajpendo.00126.2005.
    1. Parry SM, El-Ansary D, Cartwright MS, Sarwal A, Berney S, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function. J Crit Care. 2015;30:1151.e9–1151.e14. doi: 10.1016/j.jcrc.2015.05.024.
    1. Pillen S. Skeletal muscle ultrasound. Eur J Transl Myol. 2010;1(4):145–155. doi: 10.4081/bam.2010.4.145.
    1. Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, Espersen K, Hartvig Jensen T, Wiis J, et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012;31:462e8. doi: 10.1016/j.clnu.2011.12.006.
    1. Mansoor O, Breuille D, Bechereau F, Buffiere C, Pouyet C, Beaufrere B, et al. Effect of an enteral diet supplemented with a specific blend of amino acid on plasma and muscle protein synthesis in ICU patients. Clin Nutr. 2007;26:30e40. doi: 10.1016/j.clnu.2006.07.007.
    1. Hoffer LJ, Bistrian BR. Appropriate protein provision in critical illness: a systematic and narrative review. Am J Clin Nutr. 2012;96:591e600. doi: 10.3945/ajcn.111.032078.
    1. Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C. Clinical outcomes related to protein delivery in a critically ill population: a multicentre, multinational observational study. JPEN J Parenter Enteral Nutr. 2016;40:45–51. doi: 10.1177/0148607115583675.
    1. Streat SJ, Beddoe AH, Hill GL. Aggressive nutritional support does not prevent protein losses despite fat gain in septic intensive care patients. J Trauma. 1987;27:262–266. doi: 10.1097/00005373-198703000-00006.
    1. Hart DW, Wolf SE, Herndon DN, et al. Energy expenditure and caloric balance after burn. Increased feeding leads to fat rather than lean mass accretion. Ann Surg. 2002;235:152–161. doi: 10.1097/00000658-200201000-00020.
    1. Casaer MP, Langouche L, Coudyzer W, Vanbeckevoort D, De Dobbelaer B, Guiza FG, et al. Impact of early parenteral nutrition on muscle and adipose tissue compartments during critical illness. Crit Care Med. 2013;41:2298–2309. doi: 10.1097/CCM.0b013e31828cef02.
    1. Dock W. The evil sequelae of complete bed rest. JAMA. 1944;125:1083–1085. doi: 10.1001/jama.1944.02850340009004.
    1. Reid MB, Moylan JS. Beyond atrophy: redox mechanisms of muscle dysfunction in chronic inflammatory disease. J Physiol. 2011;589:2171–2179. doi: 10.1113/jphysiol.2010.203356.

Source: PubMed

3
Tilaa