27-Hydroxycholesterol, cognition, and brain imaging markers in the FINGER randomized controlled trial

Anna Sandebring-Matton, Julen Goikolea, Ingemar Björkhem, Laura Paternain, Nina Kemppainen, Tiina Laatikainen, Tiia Ngandu, Juha Rinne, Hilkka Soininen, Angel Cedazo-Minguez, Alina Solomon, Miia Kivipelto, Anna Sandebring-Matton, Julen Goikolea, Ingemar Björkhem, Laura Paternain, Nina Kemppainen, Tiina Laatikainen, Tiia Ngandu, Juha Rinne, Hilkka Soininen, Angel Cedazo-Minguez, Alina Solomon, Miia Kivipelto

Abstract

Background: 27-Hydroxycholesterol (27-OH), the main circulating oxysterol in humans and the potential missing link between peripheral hypercholesterolemia and Alzheimer's disease (AD), has not been investigated previously in relation to cognition and neuroimaging markers in the context of preventive interventions.

Methods: The 2-year Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) included older individuals (60-77 years) at increased risk for dementia but without dementia or substantial cognitive impairment from the general population. Participants were randomized to a multidomain intervention (diet, exercise, cognitive training, and vascular risk management) or control group (general health advice) in a 1:1 ratio. Outcome assessors were masked to group allocation. This FINGER exploratory sub-study included 47 participants with measures of 27-OH, cognition, brain MRI, brain FDG-PET, and PiB-PET. Linear regression models were used to assess the cross-sectional and longitudinal associations between 27-OH, cognition, and neuroimaging markers, considering several potential confounders/intervention effect modifiers.

Results: 27-OH reduction during the intervention was associated with improvement in cognition (especially memory). This was not observed in the control group. The intervention reduced 27-OH particularly in individuals with the highest 27-OH levels and younger age. No associations were found between changes in 27-OH levels and neuroimaging markers. However, at baseline, a higher 27-OH was associated with lower total gray matter and hippocampal volume, and lower cognitive scores. These associations were unaffected by total cholesterol levels. While sex seemed to influence associations at baseline, it did not affect longitudinal associations.

Conclusion: 27-OH appears to be a marker not only for dementia/AD risk, but also for monitoring the effects of preventive interventions on cholesterol metabolism.

Trial registration: ClinicalTrials.gov , NCT01041989 . Registered on 4 January 2010.

Keywords: 27-Hydroxycholesterol; Biomarkers; Cholesterol metabolism; Dementia; Multimodal intervention.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
CONSORT diagram of the FINGER exploratory 27-hydroxycholesterol sub-study. CERAD, Consortium to Establish a Registry for Alzheimer’s Disease
Fig. 2
Fig. 2
FINGER intervention effects on the change in 27-OH. Participants were divided into two groups according to their baseline 27-OH levels: the lowest 75% (quartiles 1–3, white boxplots) and the highest 25% (quartile 4, gray boxplots). The graph shows the mean change in 27-OH levels (ng/ml) between the 2-year and baseline measurements. Mann-Whitney non-parametric U test was used to analyze the differences between quartiles 1–3 and 4 of the intervention group (##< 0.01) and between quartile 4 of the control and intervention group (*p < 0.05)

References

    1. Iqbal K, Grundke-Iqbal I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 2010;6(5):420–424. doi: 10.1016/j.jalz.2010.04.006.
    1. Jack CRJ, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535–562. doi: 10.1016/j.jalz.2018.02.018.
    1. Shinohara M, Sato N. The roles of apolipoprotein E, lipids, and glucose in the pathogenesis of Alzheimer’s disease. Adv Exp Med Biol. 2019;1128:85–101. doi: 10.1007/978-981-13-3540-2_5.
    1. Sun JH, Yu JT, Tan L. The role of cholesterol metabolism in Alzheimer’s disease. Mol Neurobiol. 2015;51(3):947–965. doi: 10.1007/s12035-014-8749-y.
    1. Fan QW, Yu W, Senda T, Yanagisawa K, Michikawa M. Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J Neurochem. 2001;76(2):391–400. doi: 10.1046/j.1471-4159.2001.00063.x.
    1. Hooshmand B, Polvikoski T, Kivipelto M, Tanskanen M, Myllykangas L, Makela M, et al. CAIDE Dementia Risk Score, Alzheimer and cerebrovascular pathology: a population-based autopsy study. J Intern Med. 2018;283(6):597–603. doi: 10.1111/joim.12736.
    1. Solomon A, Kivipelto M, Wolozin B, Zhou J, Whitmer RA. Midlife serum cholesterol and increased risk of Alzheimer’s and vascular dementia three decades later. Dement Geriatr Cogn Disord. 2009;28(1):75–80. doi: 10.1159/000231980.
    1. Anstey KJ, Ashby-Mitchell K, Peters R. Updating the evidence on the association between serum cholesterol and risk of late-life dementia: review and meta-analysis. J Alzheimers Dis. 2017;56(1):215–228. doi: 10.3233/JAD-160826.
    1. Hamel E, Royea J, Ongali B, Tong XK. Neurovascular and cognitive failure in Alzheimer’s disease: benefits of cardiovascular therapy. Cell Mol Neurobiol. 2016;36(2):219–232. doi: 10.1007/s10571-015-0285-4.
    1. Pappolla MA, Bryant-Thomas TK, Herbert D, Pacheco J, Fabra Garcia M, Manjon M, et al. Mild hypercholesterolemia is an early risk factor for the development of Alzheimer amyloid pathology. Neurology. 2003;61(2):199–205. doi: 10.1212/01.WNL.0000070182.02537.84.
    1. Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014;71(2):195–200. doi: 10.1001/jamaneurol.2013.5390.
    1. Zarrouk A, Vejux A, Mackrill J, O’Callaghan Y, Hammami M, O’Brien N, et al. Involvement of oxysterols in age-related diseases and ageing processes. Ageing Res Rev. 2014;18:148–162. doi: 10.1016/j.arr.2014.09.006.
    1. Zarrouk A, Debbabi M, Bezine M, Karym EM, Badreddine A, Rouaud O, et al. Lipid biomarkers in Alzheimer’s disease. Curr Alzheimer Res. 2018;15(4):303–312. doi: 10.2174/1567205014666170505101426.
    1. Loera-Valencia R, Goikolea J, Parrado-Fernandez C, Merino-Serrais P, Maioli S. Alterations in cholesterol metabolism as a risk factor for developing Alzheimer’s disease: potential novel targets for treatment. J Steroid Biochem Mol Biol. 2019;190:104–114. doi: 10.1016/j.jsbmb.2019.03.003.
    1. Duc D, Vigne S, Pot C. Oxysterols in Autoimmunity. Int J Mol Sci. 2019;20(18):4522.
    1. Björkhem I, Cedazo-minguez A, Leoni V, Meaney S. Oxysterols and neurodegenerative diseases. Mol Aspects Med. 2009;30(3):171–179. doi: 10.1016/j.mam.2009.02.001.
    1. Leoni V. Oxysterols as markers of neurological disease--a review. Scand J Clin Lab Invest. 2009;69(1):22–25. doi: 10.1080/00365510802651858.
    1. Griffiths WJ, Wang Y. Oxysterol research: a brief review. Biochem Soc Trans. 2019;47(2):517–526. doi: 10.1042/BST20180135.
    1. Brown RB. Phospholipid packing defects and oxysterols in atherosclerosis: dietary prevention and the French paradox. Biochimie. 2019;167:145–151. doi: 10.1016/j.biochi.2019.09.020.
    1. Marwarha G, Ghribi O. Does the oxysterol 27-hydroxycholesterol underlie Alzheimer’s disease-Parkinson’s disease overlap? Exp Gerontol. 2015;68:13–18. doi: 10.1016/j.exger.2014.09.013.
    1. Ali Z, Heverin M, Olin M, Acimovic J, Lövgren-Sandblom A, Shafaati M, et al. On the regulatory role of side-chain hydroxylated oxysterols in the brain. Lessons from CYP27A1 transgenic and Cyp27a1 -/- mice 1. J Lipid Res. 2013;54(4):1033–1043. doi: 10.1194/jlr.M034124.
    1. Leoni V, Masterman T, Mousavi FS, Wretlind B, Wahlund LO, Diczfalusy U, et al. Diagnostic use of cerebral and extracerebral oxysterols. Clin Chem Lab Med. 2004;42(2):186–191. doi: 10.1515/CCLM.2004.034.
    1. Wang HL, Wang YY, Liu XG, Kuo SH, Liu N, Song QY, et al. Cholesterol, 24-hydroxycholesterol, and 27-hydroxycholesterol as surrogate biomarkers in cerebrospinal fluid in mild cognitive impairment and Alzheimer’s disease: a meta-analysis. J Alzheimers Dis. 2016;51(1):45–55. doi: 10.3233/JAD-150734.
    1. Mateos L, Ismail M-A-M, Gil-Bea F-J, Leoni V, Winblad B, Björkhem I, et al. Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer’s disease. J Alzheimers Dis. 2011;24(4):669–679. doi: 10.3233/JAD-2011-101512.
    1. Heverin M, Bogdanovic N, Lutjohann D, Bayer T, Pikuleva I, Bretillon L, et al. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J Lipid Res. 2004;45(1):186–193. doi: 10.1194/jlr.M300320-JLR200.
    1. Testa G, Staurenghi E, Zerbinati C, Gargiulo S, Iuliano L, Giaccone G, et al. Changes in brain oxysterols at different stages of Alzheimer’s disease: their involvement in neuroinflammation. Redox Biol. 2016;10:24–33. doi: 10.1016/j.redox.2016.09.001.
    1. Liu Q, An Y, Yu H, Lu Y, Feng L, Wang C, et al. Relationship between oxysterols and mild cognitive impairment in the elderly: a case – control study. 2016. pp. 1–6.
    1. van den Kommer TN, Dik MG, Comijs HC, Fassbender K, Lutjohann D, Jonker C. Total cholesterol and oxysterols: early markers for cognitive decline in elderly? Neurobiol Aging. 2009;30(4):534–545. doi: 10.1016/j.neurobiolaging.2007.08.005.
    1. Ismail M-A-M, Mateos L, Maioli S, Merino-Serrais P, Ali Z, Lodeiro M, et al. 27-Hydroxycholesterol impairs neuronal glucose uptake through an IRAP/GLUT4 system dysregulation. J Exp Med. 2017:jem.20160534 Available from: .
    1. Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, et al. 27-Hydroxycholesterol induces aberrant morphology and synaptic dysfunction in hippocampal neurons. Cereb Cortex. 2018;(November 2018):429–46 Available from: .
    1. Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. Lancet. 2015;385(9984):2255–2263. doi: 10.1016/S0140-6736(15)60461-5.
    1. Kemppainen N, Johansson J, Teuho J, Parkkola R, Joutsa J, Ngandu T, et al. Brain amyloid load and its associations with cognition and vascular risk factors in FINGER study. Neurology. 2017. 10.1212/WNL.0000000000004827 Available from: .
    1. Stephen R, Liu Y, Ngandu T, Rinne JO, Kemppainen N, Parkkola R, et al. Associations of CAIDE Dementia Risk Score with MRI, PIB-PET measures, and cognition. J Alzheimers Dis. 2017;59(2):695–705. doi: 10.3233/JAD-170092.
    1. Ngandu T, Lehtisalo J, Levälahti E, Laatikainen T, Lindström J, Peltonen M, et al. Recruitment and baseline characteristics of participants in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER)-a randomized controlled lifestyle trial. Int J Environ Res Public Health. 2014;11(9):9345–9360. doi: 10.3390/ijerph110909345.
    1. Kivipelto M, Solomon A, Ahtiluoto S, Ngandu T, Lehtisalo J, Antikainen R, et al. The Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER): study design and progress. Alzheimers Dement. 2013;9(6):657–665. doi: 10.1016/j.jalz.2012.09.012.
    1. Stephen R, Liu Y, Ngandu T, Antikainen R, Hulkkonen J, Koikkalainen J, et al. Brain volumes and cortical thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) Alzheimers Res Ther. 2019;11(1):1–10. doi: 10.1186/s13195-019-0506-z.
    1. Kivipelto M, Ngandu T, Laatikainen T, Winblad B, Soininen H, Tuomilehto J. Risk score for the prediction of dementia risk in 20 years among middle aged people: a longitudinal, population-based study. Lancet Neurol. 2006;5(9):735–741. doi: 10.1016/S1474-4422(06)70537-3.
    1. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology. 1989;39(9):1159–1165. doi: 10.1212/WNL.39.9.1159.
    1. Harrison J, Minassian SL, Jenkins L, Black RS, Koller M, Grundman M. A neuropsychological test battery for use in Alzheimer disease clinical trials. Arch Neurol. 2007;64(9):1323–1329. doi: 10.1001/archneur.64.9.1323.
    1. Jack CR, Wiste HJ, Weigand SD, Knopman DS, Mielke MM, Vemuri P, et al. Different definitions of neurodegeneration produce similar amyloid/neurodegeneration biomarker group findings. Brain. 2015;138(12):3747–3759. doi: 10.1093/brain/awv283.
    1. Wang Y, Catindig JA, Hilal S, Soon HW, Ting E, Wong TY, et al. Multi-stage segmentation of white matter hyperintensity, cortical and lacunar infarcts. Neuroimage. 2012;60(4):2379–2388. doi: 10.1016/j.neuroimage.2012.02.034.
    1. Dzeletovic S, Breuer O, Lund E, Diczfalusy U. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem. 1995;225(1):73–80. doi: 10.1006/abio.1995.1110.
    1. Björkhem I, Blomstrand R, Svensson L. Serum cholesterol determination by mass fragmentography. Clin Chim Acta. 1974;54(2):185–193. doi: 10.1016/0009-8981(74)90236-8.
    1. Picard C, Julien C, Frappier J, Miron J, Théroux L, Dea D, et al. Alterations in cholesterol metabolism–related genes in sporadic Alzheimer’s disease. Neurobiol Aging. 2018;66:180.e1–180.e9. doi: 10.1016/j.neurobiolaging.2018.01.018.
    1. Burkard I, von Eckardstein A, Waeber G, Vollenweider P, Rentsch KM. Lipoprotein distribution and biological variation of 24S- and 27-hydroxycholesterol in healthy volunteers. Atherosclerosis. 2007;194(1):71–78. doi: 10.1016/j.atherosclerosis.2006.09.026.
    1. Parrado-Fernandez C, Blennow K, Hansson M, Leoni V, Cedazo-Minguez A, Bjorkhem I. Evidence for sex difference in the CSF/plasma albumin ratio in ~20 000 patients and 335 healthy volunteers. J Cell Mol Med. 2018;22(10):5151–5154. doi: 10.1111/jcmm.13767.
    1. Parrado-Fernandez C, Leoni V, Saeed A, Rodriguez-Rodriguez P, Sandebring-Matton A, Córdoba-Beldad C. et al. Sex difference in flux of 27-hydroxycholesterol into the brain. Br J Pharmacol. 2020. 10.1111/bph.15353. Epub ahead of print. PMID: 33345295.
    1. Heverin M, Maioli S, Pham T, Mateos L, Camporesi E, Ali Z, et al. 27-Hydroxycholesterol mediates negative effects of dietary cholesterol on cognition in mice. Behav Brain Res. 2015;278:356–359. doi: 10.1016/j.bbr.2014.10.018.
    1. Mast N, Lin JB, Pikuleva IA. Marketed drugs can inhibit cytochrome P450 27A1, a potential new target for breast cancer adjuvant therapy. Mol Pharmacol. 2015;88(3):428–436. doi: 10.1124/mol.115.099598.
    1. Brown J, 3rd, Theisler C, Silberman S, Magnuson D, Gottardi-Littell N, Lee JM, et al. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J Biol Chem. 2004;279(33):34674–34681. doi: 10.1074/jbc.M402324200.
    1. Zhang X, Xi Y, Yu H, An Y, Wang Y, Tao L, et al. 27-Hydroxycholesterol promotes Aβ accumulation via altering Aβ metabolism in mild cognitive impairment patients and APP/PS1 mice. Brain Pathol. 2019;29(4):558–573. doi: 10.1111/bpa.12698.
    1. Popp J, Lewczuk P, Kölsch H, Meichsner S, Maier W, Kornhuber J, et al. Cholesterol metabolism is associated with soluble amyloid precursor protein production in Alzheimer’s disease. J Neurochem. 2012;123(2):310–316. doi: 10.1111/j.1471-4159.2012.07893.x.

Source: PubMed

3
Tilaa