Short-Term Efficacy of High-Intensity Laser Therapy in Alleviating Pain in Patients with Knee Osteoarthritis: A Single-Blind Randomised Controlled Trial

Punpetch Siriratna, Chompoonuch Ratanasutiranont, Thongsuk Manissorn, Nonthalee Santiniyom, Waree Chira-Adisai, Punpetch Siriratna, Chompoonuch Ratanasutiranont, Thongsuk Manissorn, Nonthalee Santiniyom, Waree Chira-Adisai

Abstract

Objectives: The aim of the study is to evaluate the efficacy of high-intensity laser therapy (HILT) on pain reduction in patients with knee osteoarthritis (OA).

Methods: Forty-two patients diagnosed with primary knee OA, with a Kellgren-Lawrence classification of 2-4, were recruited into the study. The patients were randomly allocated to two groups: HILT and control. The intervention group received HILT (energy density of 22.39 J/cm2, 562.5 joule/session), while the control group received a sham laser, which was done 2-3 sessions per week for a total of 10 sessions. Both the groups also received the same conservative treatment. The main outcome measures were the visual analogue scale (VAS) and the modified Thai version of the Western Ontario and McMaster Universities Osteoarthritis Index (T-WOMAC) which were evaluated at baseline and immediately after treatment completion.

Results: At the end of the study, the overall analysis showed a significant decrease in VAS and T-WOMAC scores in both the groups; a greater decrease in scores was found in the HILT group than in the control group (p < 0.001). The between-group comparison also showed a significant difference in VAS, but not in the T-WOMAC score, favouring HILT (p < 0.05).

Conclusion: The HILT plus conservative treatment can help alleviate pain in patients with knee OA. The findings of the present study could be used in clinical practice to add HILT as another noninvasive treatment option for knee OA. This could be advantageous, particularly for individuals who are at high risk of surgery due to multiple comorbidities or older people. Trial Registration. This clinical trial registration was performed at Clinical.gov (NCT04889885).

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2022 Punpetch Siriratna et al.

Figures

Figure 1
Figure 1
Consort diagram of the study protocol.
Figure 2
Figure 2
Box plot showing overall analysis of changes in the VAS scores within the same group and compared between the groups. (a). Change in the VAS score in the control group compared before and after treatment completion. (b). Change in the VAS score in the HILT group compared before and after treatment completion. Data are shown as ns (not significant) = p value >0.05,  = p value <0.05, ∗∗ = p value <0.01, ∗∗∗ = p value <0.001, and ∗∗∗∗ = p value <0.0001. HILT, high-intensity laser therapy; VAS, visual analogue scale.
Figure 3
Figure 3
Box plot showing overall analysis of changes in the T-WOMAC scores within the same group and compared between the groups. (a). Change in the T-WOMAC score in the control group compared before and after treatment completion. (b). Change in the T-WOMAC score in the HILT group compared before and after treatment completion. Data are shown as ns (not significant) = p value >0.05,  = p value <0.05, ∗∗ = p value <0.01, ∗∗∗ = p value <0.001, and ∗∗∗∗ = p value <0.0001. HILT, high-intensity laser therapy; T-WOMAC, the modified Thai version of Western Ontario and McMaster Universities Osteoarthritis Index.

References

    1. Hunter D. J., McDougall J. J., Keefe F. J. The symptoms of osteoarthritis and the genesis of pain. Rheumatic Disease Clinics of North America . 2008;34(3):623–643. doi: 10.1016/j.rdc.2008.05.004.
    1. Jang S., Lee K., Ju J. H. Recent updates of diagnosis, pathophysiology, and treatment on osteoarthritis of the knee. International Journal of Molecular Sciences . 2021;22(5):p. 2619. doi: 10.3390/ijms22052619.
    1. Thakur M., Dickenson A. H., Baron R. Osteoarthritis pain: nociceptive or neuropathic? Nature Reviews Rheumatology . 2014;10(6):374–380. doi: 10.1038/nrrheum.2014.47.
    1. Park H. M., Kim H. S., Lee Y. J. Knee osteoarthritis and its association with mental health and health-related quality of life: a nationwide cross-sectional study. Geriatrics and Gerontology International . 2020;20(4):379–383. doi: 10.1111/ggi.13879.
    1. Törmälehto S., Mononen M. E., Aarnio E., Arokoski J. P. A., Korhonen R. K., Martikainen J. Health-related quality of life in relation to symptomatic and radiographic definitions of knee osteoarthritis: data from Osteoarthritis Initiative (OAI) 4-year follow-up study. Health and Quality of Life Outcomes . 2018;16(1):p. 154. doi: 10.1186/s12955-018-0979-7.
    1. Cleveland R. J., Alvarez C., Schwartz T. A., et al. The impact of painful knee osteoarthritis on mortality: a community-based cohort study with over 24 years of follow-up. Osteoarthritis and Cartilage . 2019;27(4):593–602. doi: 10.1016/j.joca.2018.12.008.
    1. Cui A., Li H., Wang D., Zhong J., Chen Y., Lu H. Global, regional prevalence, incidence and risk factors of knee osteoarthritis in population-based studies. EClinicalMedicine . 2020;29 doi: 10.1016/j.eclinm.2020.100587.100587
    1. Gianola S., Bargeri S., Del Castillo G., et al. Effectiveness of treatments for acute and subacute mechanical non-specific low back pain: a systematic review with network meta-analysis. British Journal of Sports Medicine . 2022;56(1):41–50. doi: 10.1136/bjsports-2020-103596.
    1. Maghbool M., Khosravi T., Vojdani S., et al. The effects of eugenol nanoemulsion on pain caused by arteriovenous fistula cannulation in hemodialysis patients: a randomized double-blinded controlled cross-over trial. Complementary Therapies in Medicine . 2020;52 doi: 10.1016/j.ctim.2020.102440.102440
    1. Bannuru R. R., Osani M. C., Vaysbrot E. E., et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage . 2019;27(11):1578–1589. doi: 10.1016/j.joca.2019.06.011.
    1. Jevsevar D. S., Brown G. A., Jones D. L., et al. The American Academy of Orthopaedic Surgeons evidence-based guideline on: treatment of osteoarthritis of the knee. The Journal of Bone & Joint Surgery . 2013;95(20):1885–1886. doi: 10.2106/00004623-201310160-00010.
    1. Kolasinski S. L., Neogi T., Hochberg M. C., et al. 2019 American College of rheumatology/arthritis foundation guideline for the management of osteoarthritis of the hand, hip, and knee. Arthritis Care & Research . 2020;72(2):149–162. doi: 10.1002/acr.24131.
    1. Mester A. Laser biostimulation. Photomedicine and Laser Surgery . 2013;31(6):237–239. doi: 10.1089/pho.2013.9876.
    1. Tomazoni S. S., Leal-Junior E. C. P., Pallotta R. C., Teixeira S., de Almeida P., Lopes-Martins R. Á. B. Effects of photobiomodulation therapy, pharmacological therapy, and physical exercise as single and/or combined treatment on the inflammatory response induced by experimental osteoarthritis. Lasers in Medical Science . 2017;32(1):101–108. doi: 10.1007/s10103-016-2091-8.
    1. Xiang A., Deng H., Cheng K., et al. Laser photobiomodulation for cartilage defect in animal models of knee osteoarthritis: a systematic review and meta-analysis. Lasers in Medical Science . 2020;35(4):789–796. doi: 10.1007/s10103-019-02937-8.
    1. Pallotta R. C., Bjordal J. M., Frigo L., et al. Infrared (810-nm) low-level laser therapy on rat experimental knee inflammation. Lasers in Medical Science . 2012;27(1):71–78. doi: 10.1007/s10103-011-0906-1.
    1. Wang P., Liu C., Yang X., et al. Effects of low-level laser therapy on joint pain, synovitis, anabolic, and catabolic factors in a progressive osteoarthritis rabbit model. Lasers in Medical Science . 2014;29(6):1875–1885. doi: 10.1007/s10103-014-1600-x.
    1. Stausholm M. B., Naterstad I. F., Joensen J., et al. Efficacy of low-level laser therapy on pain and disability in knee osteoarthritis: systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open . 2019;9(10) doi: 10.1136/bmjopen-2019-031142.e031142
    1. Ezzati K., Laakso E. L., Salari A., Hasannejad A., Fekrazad R., Aris A. The beneficial effects of high-intensity laser therapy and Co-interventions on musculoskeletal pain management: a systematic review. Journal of Lasers in Medical Sciences . 2020;11(1):81–90. doi: 10.15171/jlms.2020.14.
    1. Angelova A., Ilieva E. M. Effectiveness of high intensity laser therapy for reduction of pain in knee osteoarthritis. Pain Research and Management . 2016;2016:11. doi: 10.1155/2016/9163618.9163618
    1. Kim G. J., Choi J., Lee S., Jeon C., Lee K. The effects of high intensity laser therapy on pain and function in patients with knee osteoarthritis. Journal of Physical Therapy Science . 2016;28(11):3197–3199. doi: 10.1589/jpts.28.3197.
    1. Nazari A., Moezy A., Nejati P., Mazaherinezhad A. Efficacy of high-intensity laser therapy in comparison with conventional physiotherapy and exercise therapy on pain and function of patients with knee osteoarthritis: a randomized controlled trial with 12-week follow up. Lasers in Medical Science . 2019;34(3):505–516. doi: 10.1007/s10103-018-2624-4.
    1. Kheshie A. R., Alayat M. S. M., Ali M. M. E. High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers in Medical Science . 2014;29(4):1371–1376. doi: 10.1007/s10103-014-1529-0.
    1. Song H. J., Seo H. J., Kim D. Effectiveness of high-intensity laser therapy in the management of patients with knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Journal of Back and Musculoskeletal Rehabilitation . 2020;33(6):875–884. doi: 10.3233/bmr-191738.
    1. Kohn M. D., Sassoon A. A., Fernando N. D. Classifications in brief: kellgren-lawrence classification of osteoarthritis. Clinical Orthopaedics and Related Research . 2016;474(8):1886–1893. doi: 10.1007/s11999-016-4732-4.
    1. Hegedus B., Viharos L., Gervain M., Gálfi M. The effect of low-level laser in knee osteoarthritis: a double-blind, randomized, placebo-controlled trial. Photomedicine and Laser Surgery . 2009;27(4):577–584. doi: 10.1089/pho.2008.2297.
    1. WALT. Recommended treatment doses for low level laser therapy. 2010.
    1. Bjordal J. M., Couppé C., Chow R. T., Tunér J., Ljunggren E. A. A systematic review of low level laser therapy with location-specific doses for pain from chronic joint disorders. Australian Journal of Physiotherapy . 2003;49(2):107–116. doi: 10.1016/s0004-9514(14)60127-6.
    1. Lee J. S., Hobden E., Stiell I. G., Wells G. A. Clinically important change in the visual analog scale after adequate pain control. Academic Emergency Medicine . 2003;10(10):1128–1130. doi: 10.1197/s1069-6563(03)00372-5.
    1. Bellamy N., Buchanan W. W., Goldsmith C. H., Campbell J., Stitt L. W. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. Journal of Rheumatology . 1988;15(12):1833–1840.
    1. Bellamy N. Victoria Hospital . London, Ontario, Canada: 1995. WOMAC Osteoarthritis Index: A User’s Guide.
    1. Kuptniratsaikul V., Rattanachaiyanont M. Validation of a modified Thai version of the Western Ontario and McMaster (WOMAC) osteoarthritis index for knee osteoarthritis. Clinical Rheumatology . 2007;26(10):1641–1645. doi: 10.1007/s10067-007-0560-y.
    1. Akaltun M. S., Altindag O., Turan N., Gursoy S., Gur A. Efficacy of high intensity laser therapy in knee osteoarthritis: a double-blind controlled randomized study. Clinical Rheumatology . 2021;40(5):1989–1995. doi: 10.1007/s10067-020-05469-7.
    1. Alayat M. S. M., Aly T. H. A., Elsayed A. E. M., Fadil A. S. M. Efficacy of pulsed Nd: YAG laser in the treatment of patients with knee osteoarthritis: a randomized controlled trial. Lasers in Medical Science . 2017;32(3):503–511. doi: 10.1007/s10103-017-2141-x.
    1. Hagiwara S., Iwasaka H., Hasegawa A., Noguchi T. Pre-Irradiation of blood by gallium aluminum arsenide (830 nm) low-level laser enhances peripheral endogenous opioid analgesia in rats. Anesthesia & Analgesia . 2008;107(3):1058–1063. doi: 10.1213/ane.0b013e31817ee43e.
    1. Navratil L. H., Dylevsky I. Mechanisms of the analgesic effect of therapeutic lasers IN VIVO. Laser Therapy . 1997;9(1):33–39. doi: 10.5978/islsm.9.33.
    1. Chow R., Armati P., Laakso E. L., Bjordal J. M., Baxter G. D. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: a systematic review. Photomedicine and Laser Surgery . 2011;29(6):365–381. doi: 10.1089/pho.2010.2928.
    1. Zupin L., Ottaviani G., Rupel K., et al. Analgesic effect of Photobiomodulation Therapy: an in vitro and in vivo study. Journal of Biophotonics . 2019;12(10) doi: 10.1002/jbio.201900043.e201900043
    1. de Oliveira R. F., de Andrade Salgado D. M. R., Trevelin L. T., et al. Benefits of laser phototherapy on nerve repair. Lasers in Medical Science . 2015;30(4):1395–1406. doi: 10.1007/s10103-014-1531-6.

Source: PubMed

3
Tilaa