Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis

Maren C Podszun, Ahmad S Alawad, Shilpa Lingala, Nevitt Morris, Wen-Chun A Huang, Shanna Yang, Megan Schoenfeld, Adam Rolt, Ronald Ouwerkerk, Kristin Valdez, Regina Umarova, Yanling Ma, Syeda Zaheen Fatima, Dennis D Lin, Lakshmi S Mahajan, Niharika Samala, Pierre-Christian Violet, Mark Levine, Robert Shamburek, Ahmed M Gharib, David E Kleiner, H Martin Garraffo, Hongyi Cai, Peter J Walter, Yaron Rotman, Maren C Podszun, Ahmad S Alawad, Shilpa Lingala, Nevitt Morris, Wen-Chun A Huang, Shanna Yang, Megan Schoenfeld, Adam Rolt, Ronald Ouwerkerk, Kristin Valdez, Regina Umarova, Yanling Ma, Syeda Zaheen Fatima, Dennis D Lin, Lakshmi S Mahajan, Niharika Samala, Pierre-Christian Violet, Mark Levine, Robert Shamburek, Ahmed M Gharib, David E Kleiner, H Martin Garraffo, Hongyi Cai, Peter J Walter, Yaron Rotman

Abstract

Oxidative stress (OS) in non-alcoholic fatty liver disease (NAFLD) promotes liver injury and inflammation. Treatment with vitamin E (α-tocopherol, αT), a lipid-soluble antioxidant, improves liver injury but also decreases steatosis, thought to be upstream of OS, through an unknown mechanism. To elucidate the mechanism, we combined a mechanistic human trial interrogating pathways of intrahepatic triglyceride (IHTG) accumulation and in vitro experiments. 50% of NAFLD patients (n = 20) treated with αT (200-800 IU/d) for 24 weeks had a ≥ 25% relative decrease in IHTG by magnetic resonance spectroscopy. Paired liver biopsies at baseline and week 4 of treatment revealed a decrease in markers of hepatic de novo lipogenesis (DNL) that strongly predicted week 24 response. In vitro, using HepG2 cells and primary human hepatocytes, αT inhibited glucose-induced DNL by decreasing SREBP-1 processing and lipogenic gene expression. This mechanism is dependent on the antioxidant capacity of αT, as redox-silenced methoxy-αT is unable to inhibit DNL in vitro. OS by itself was sufficient to increase S2P expression in vitro, and S2P is upregulated in NAFLD livers. In summary, we utilized αT to demonstrate a vicious cycle in which NAFLD generates OS, which feeds back to augment DNL and increases steatosis. Clinicaltrials.gov: NCT01792115.

Keywords: NAFLD; Non-alcoholic fatty liver disease; Oxidative stress; S1P; S2P; Vitamin E; de novo lipogenesis.

Conflict of interest statement

The authors have declared no conflict of interest.

Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
αT treatment decreases hepatic DNL in patients with NAFLD. Markers of DNL (C16:1, C16:1/C16:0 and C16:0/C18:2) were quantified in triglycerides from human liver samples before and after 4 weeks of αT treatment (n = 16). Responders (≥25% reduction of IHTG at week 24) had significantly decreased hepatic C16:1 (A) and C16:1/C16:0 ratio (B) and numerically lower C16:0/C18:2 (C). Week 4 changes in hepatic TG C16:1/C16:0 ratio predict change in IHTG content at week 24 (D). DNL markers were measured in VLDL at baseline and week 24 (n = 20). At week 24, responders had a non-significant decrease in VLDL C16:1 (E) and C16:0/C18:2 (G) with little effect on VLDL C16:1/C16:0 (F). A-C, E-G. mean ± SD. Change from baseline to week 4 presented as fold-change (FC). IHTG, intrahepatic triglyceride.
Fig. 2
Fig. 2
αT inhibits de novo lipogenesis (DNL) in vitro. HepG2 cells were incubated with normal growth medium (NGM, white) or high glucose medium (HGM, 25 mmol/L glucose, blue shades) for 48 h. Incorporation of 14C-Glucose into lipids was used as a measure of DNL. Concurrent incubation of cells with 25–100 μmol/L αT decreased cellular triglycerides (A) and DNL (C). αT (100 μmol/L) inhibits HGM-induced upregulation of fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) mRNA expression in HepG2 (D) and primary human hepatocytes (PHH, n = 3 donors) (E). PHH experiments were normalized within each donor. All n = 3 experiments; A-C mean ± SD, D-E mean ± SEM. All samples were compared to HGM solvent control (S·C.). Bars not sharing the same letter are significantly different p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 3
Fig. 3
αT decreases SREBP-1 maturation. HepG2 cells incubated with normal growth medium (NGM, white) or high glucose medium (HGM, 25 mmol/L, blue shades) with or without αT (100 μmol/L) for 48 h αT decreased HGM-induced maturation of SREBP-1 without affecting precursor protein levels (A,B) and decreased HGM-induced nuclear translocation (C,D). αT did not affect SCAP or Insig2 (A–B). αT inhibits HGM-driven upregulation S2P at protein (A–B) but not mRNA (E) level. qPCR results were normalized to 18s (E). A - representative Western blot images for respective proteins; B – corresponding quantification. C- representative imaging of nuclear SREBP-1 in cells; D – Corresponding quantification. All data mean ± SEM. B, E n = 3; D n = 2. Solvent Control (S·C.). Bars not sharing the same letter are significantly different p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 4
Fig. 4
αT inhibits de novo lipogenesis through an antioxidant effect. HepG2 cells incubated with normal growth medium (NGM, white) or high glucose medium (HGM, 25 mmol/L, blue shades) with or without αT (100 μmol/L), γ-tocopherol (γT, 75 μmol/L), methoxy-α-tocopherol (m-αT, 100 μmol/L) or trolox (100 μmol/L) for 48 h. HGM significantly induced 4-HNE adduct formation (A, B) and oxidation of ClickIT linoleic acid probe (C, D). Structural formulas of investigated compounds (E). αT, but not m-αT is able to quench oxygen radicals in the ORAC assay (F). γT and trolox inhibit HGM-induced 4-HNE adduct formation, while m-αT does not (G, H). αT and γT are able to decrease glucose-induced triglyceride formation (I) and DNL (J), while m-αT and trolox are ineffective. B, D, H mean ± SEM; I,J mean ± SD. B,D,H n = 2; I-J n = 3. A, C, G show representative images; B, D, I show corresponding quantification. Solvent Control (S·C.). Bars not sharing the same letter are significantly different p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 5
Fig. 5
Oxidative stress increases S2P protein. HepG2 cells were incubated with cumene hydroperoxide (CHP, 0.5 μmol/L, grey) overnight. CHP increased 4-HNE adducts (A,B) without changes in viability (C) and increased S2P protein expression (D,E) without changes in mRNA (F). CHP requires high glucose media (25 mmol/L glucose) to induce triglyceride accumulation (I) and increase SREBP-1 nuclear translocation (G,H). Control (n = 9) and NAFLD (n = 9) liver tissue samples were obtained through the Liver Tissue and Cell Distribution System (LTCDS). NAFLD patients had significantly higher protein levels of S2P (J,K) as well as 4-HNE (M) compared to controls without changes in S2P mRNA (L). qPCR data was normalized to 18s. B,I mean ± SEM, n = 2; C, mean ± SD, n = 2; E,F mean ± SEM, n = 3; G mean ± SD, n = 3; K, L, M mean ± SEM, n = 17. Bars not sharing the same letter are significantly different p < 0.05.
Fig. 6
Fig. 6
Proposed mechanism and NAFLD progression model. (Left) SREBP-1 resides complexed with SCAP and INSIG in the ER. Upon activation, INSIG dissociates and SCAP facilitates transport to Golgi where cleavage by S1P and S2P leads to mature SREBP-1 which translocates to the nucleus and activates lipogenic genes. Vitamin E blocks SREBP-1 translocation through reduced protein expression of S1P and S2P by lowering oxidative stress (OS). (Right) Intra-hepatic triglyceride accumulation (IHTG) induces OS which can lead to progression to non-alcoholic steatohepatitis (NASH) and fibrosis. Our data supports a bi-directional model in which oxidative stress contributes to disease progression and exacerbates IHTG.

References

    1. Younossi Z., Anstee Q.M., Marietti M., Hardy T., Henry L., Eslam M., George J., Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018;15:11–20. doi: 10.1038/nrgastro.2017.109.
    1. Masarone M., Rosato V., Dallio M., Gravina A.G., Aglitti A., Loguercio C., Federico A., Persico M. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev. 2018:9547613. doi: 10.1155/2018/9547613. (2018)
    1. Burton G.W., Joyce A., Ingold K.U. First proof that vitamin E is major lipid-soluble, chain-breaking antioxidant in human blood plasma. Lancet (North Am. Ed.) 1982;2:327.
    1. Institute of Medicine . Natl. Acad. Press. Washingt. DC; 2000. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids; pp. 186–283.
    1. Wang X., Quinn P.J. Vitamin E and its functions in membranes. Prog. Lipid Res. 1999;38:309–336.
    1. Irías-Mata A., Sus N., Flory S., Stock D., Woerner D., Podszun M., Frank J. α-Tocopherol transfer protein does not regulate the cellular uptake and intracellular distribution of α- and γ-tocopherols and -tocotrienols in cultured liver cells. Redox Biol. 2018;19:28–36. doi: 10.1016/j.redox.2018.07.027.
    1. Sanyal A.J., Chalasani N., V Kowdley K., McCullough A., Diehl A.M., Bass N.M., Neuschwander-Tetri B. a, Lavine J.E., Tonascia J., Unalp A., Van Natta M., Clark J., Brunt E.M., Kleiner D.E., Hoofnagle J.H., Robuck P.R. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010;362:1675–1685. doi: 10.1056/NEJMoa0907929.
    1. Vilar‐Gomez E., Vuppalanchi R., Gawrieh S., Ghabril M., Saxena R., Cummings O.W., Chalasani N. Vitamin E improves transplant‐free survival and hepatic decompensation among patients with nonalcoholic steatohepatitis and advanced fibrosis. Hepatology. 2020;71:495–509. doi: 10.1002/hep.30368.
    1. Lavine J.E. Vitamin E treatment of nonalcoholic steatohepatitis in children: a pilot study. J. Pediatr. 2000;136:734–738. doi: 10.1067/mpd.2000.
    1. Bril F., Biernacki D.M., Kalavalapalli S., Lomonaco R., Subbarayan S.K., Lai J., Tio F., Suman A., Orsak B.K., Hecht J., Cusi K. Role of vitamin E for nonalcoholic steatohepatitis in patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2019;42:1481–1488. doi: 10.2337/dc19-0167.
    1. Raso G.M., Esposito E., Iacono A., Pacilio M., Cuzzocrea S., Canani R.B., Calignano A., Meli R. Comparative therapeutic effects of metformin and vitamin E in a model of non-alcoholic steatohepatitis in the young rat. Eur. J. Pharmacol. 2009;604:125–131. doi: 10.1016/j.ejphar.2008.12.013.
    1. Podszun M.C., Grebenstein N., Spruss A., Schlueter T., Kremoser C., Bergheim I., Frank J. Dietary α-tocopherol and atorvastatin reduce high-fat-induced lipid accumulation and down-regulate CD36 protein in the liver of Guinea pigs. J. Nutr. Biochem. 2014;25:573–579. doi: 10.1016/j.jnutbio.2014.01.008.
    1. Galli F., Azzi A., Birringer M., Cook-Mills J.M., Eggersdorfer M., Frank J., Lorkowski S., Özer N.K. Vitamin E: emerging aspects and new directions. Free Radic. Biol. Med. 2016;102:16–36. doi: 10.1016/j.freeradbiomed.2016.09.017.
    1. Boscoboinik D., Szewczyk A., Henseys C., Azzi A. Inhibition of cell proliferation by α-tocopherol. J. Biol. Chem. 1991;266:6188–6194.
    1. Williams J.C., Forster L.A., Tull S.P., Wong M., Bevan R.J., Ferns G.A. Dietary vitamin E supplementation inhibits thrombin-induced platelet aggregation, but not monocyte adhesiveness, in patients with hypercholesterolaemia. Int. J. Exp. Pathol. 1997;78:259–266.
    1. Teupser D., Thiery J., Seidel D. Alpha-tocopherol down-regulates scavenger receptor activity in macrophages. Atherosclerosis. 1999;144:109–115.
    1. Muriel P. Role of free radicals in liver diseases. Hepatol. Int. 2009;3:526–536. doi: 10.1007/s12072-009-9158-6.
    1. Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 2005;115:1343–1351. doi: 10.1172/JCI200523621.
    1. Masschelin P.M., Cox A.R., Chernis N., Hartig S.M. The impact of oxidative stress on adipose tissue energy balance. Front. Physiol. 2020;10:1–8. doi: 10.3389/fphys.2019.01638.
    1. Pan M., Cederbaum A.I., Zhang Y.L., Ginsberg H.N., Williams K.J., Fisher E.A. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J. Clin. Invest. 2004;113:1277–1287. doi: 10.1172/JCI19197.
    1. Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.C., Torbenson M.S., Unalp-Arida A., Yeh M., McCullough A.J., Sanyal A.J. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701.
    1. Ouwerkerk R., Pettigrew R.I., Gharib A.M. Liver metabolite concentrations measured with 1H MR spectroscopy. Radiology. 2012;265:565–575. doi: 10.1148/radiol.12112344.
    1. Hudgins L.C., Hellerstein M., Seidman C., Neese R., Diakun J., Hirsch J. Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Invest. 1996;97:2081–2091. doi: 10.1172/JCI118645.
    1. Chong M.F.-F., Hodson L., Bickerton A.S., Roberts R., Neville M., Karpe F., Frayn K.N., Fielding B.A. Parallel activation of de novo lipogenesis and stearoyl-CoA desaturase activity after 3 d of high-carbohydrate feeding. Am. J. Clin. Nutr. 2008;87:817–823. doi: 10.1093/ajcn/87.4.817.
    1. Lee J.J., Lambert J.E., Hovhannisyan Y., Ramos-Roman M.A., Trombold J.R., Wagner D.A., Parks E.J. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015;101:34–43. doi: 10.3945/ajcn.114.092262.
    1. Peter A., Cegan A., Wagner S., Lehmann R., Stefan N., Königsrainer A., Königsrainer I., Häring H.U., Schleicher E. Hepatic lipid composition and stearoyl-coenzyme A desaturase 1 mRNA expression can be estimated from plasma VLDL fatty acid ratios. Clin. Chem. 2009;55:2113–2120. doi: 10.1373/clinchem.2009.127274.
    1. Peter A., Cegan A., Wagner S., Elcnerova M., Konigsrainer A., Konigsrainer I., Haring H.-U., Schleicher E.D., Stefan N. Relationships between hepatic stearoyl-CoA desaturase-1 activity and mRNA expression with liver fat content in humans. AJP Endocrinol. Metab. 2011;300:E321–E326. doi: 10.1152/ajpendo.00306.2010.
    1. Klawitter J., Bek S., Zakaria M., Zeng C., Hornberger A., Gilbert R., Shokati T., Klawitter J., Christians U., Boernsen K.O. Fatty acid desaturation index in human plasma: comparison of different analytical methodologies for the evaluation of diet effects. Anal. Bioanal. Chem. 2014;406:6399–6408. doi: 10.1007/s00216-014-8020-4.
    1. Sanyal A.J., Chalasani N., Kowdley K.V., McCullough A., Diehl A.M., Bass N.M., Neuschwander-Tetri B.A., Lavine J.E., Tonascia J., Unalp A., Van Natta M., Clark J., Brunt E.M., Kleiner D.E., Hoofnagle J.H., Robuck P.R. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010;362:1675–1685. doi: 10.1056/NEJMoa0907929.
    1. Elliott J., Johnston J.A. SOCS: role in inflammation, allergy and homeostasis. Trends Immunol. 2004;25:434–440. doi: 10.1016/J.IT.2004.05.012.
    1. Li J., Ghazwani M., Zhang Y., Lu J., Li J., Fan J., Gandhi C.R., Li S. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression. J. Hepatol. 2013;58:522–528. doi: 10.1016/j.jhep.2012.11.011.
    1. Wang H., Zhao M., Sud N., Christian P., Shen J., Song Y., Pashaj A., Zhang K., Carr T., Su Q. Glucagon regulates hepatic lipid metabolism via cAMP and Insig-2 signaling: implication for the pathogenesis of hypertriglyceridemia and hepatic steatosis. Sci. Rep. 2016;6:1–11. doi: 10.1038/srep32246.
    1. Kim J.Y., Garcia-Carbonell R., Yamachika S., Zhao P., Dhar D., Loomba R., Kaufman R.J., Saltiel A.R., Karin M. ER stress drives lipogenesis and steatohepatitis via caspase-2 activation of S1P. Cell. 2018;175:133–145. doi: 10.1016/j.cell.2018.08.020. e15.
    1. Cort W.M., Scott J.W., Araujo M., Mergens W.J., Cannalonga M.A., Osadca M., Harley H., Parrish D.R., Pool W.R. Antioxidant activity and stability of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid. J. Am. Oil Chem. Soc. 1975;52:174–178. doi: 10.1007/BF02672164.
    1. Kamal-Eldin A., Appelqvist L. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids. 1996;31:671–701.
    1. Rotman Y., Sanyal A.J. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut. 2016:312431. doi: 10.1136/gutjnl-2016-312431. gutjnl-2016
    1. Feldstein A.E., Lopez R., Tamimi T.A.-R., Yerian L., Chung Y.-M., Berk M., Zhang R., McIntyre T.M., Hazen S.L. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Lipid Res. 2010;51:3046–3054. doi: 10.1194/jlr.M007096.
    1. Lee J., Homma T., Kurahashi T., Kang E.S., Fujii J. Oxidative stress triggers lipid droplet accumulation in primary cultured hepatocytes by activating fatty acid synthesis. Biochem. Biophys. Res. Commun. 2015;464:229–235. doi: 10.1016/j.bbrc.2015.06.121.
    1. Sekiya M., Hiraishi A., Touyama M., Sakamoto K. Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem. Biophys. Res. Commun. 2008;375:602–607. doi: 10.1016/j.bbrc.2008.08.068.
    1. Yang J., Goldstein J.L., Hammer R.E., Moon Y.-A., Brown M.S., Horton J.D. Decreased lipid synthesis in livers of mice with disrupted Site-1 protease gene. Proc. Natl. Acad. Sci. Unit. States Am. 2002;98:13607–13612. doi: 10.1073/pnas.201524598.
    1. Passeri M.J., Cinaroglu A., Gao C., Sadler K.C. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology. 2009;49:443–452. doi: 10.1002/hep.22667.
    1. Hawkins J.L., Robbins M.D., Warren L.C., Xia D., Petras S.F., Valentine J.J., Varghese A.H., Wang I.-K., Subashi T.A., Shelly L.D., Hay B.A., Landschulz K.T., Geoghegan K.F., Harwood H.J. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Therapeut. 2008;326:801–808. doi: 10.1124/jpet.108.139626.
    1. Horton J.D., Bashmakov Y., Shimomura I., Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl. Acad. Sci. Unit. States Am. 1998;95:5987–5992. doi: 10.1073/pnas.95.11.5987.
    1. Han M.A.T., Altayar O., Hamdeh S., Takyar V., Rotman Y., Etzion O., Lefebvre E., Safadi R., Ratziu V., Prokop L.J., Murad M.H., Noureddin M. Rates of and factors associated with placebo response in trials of pharmacotherapies for nonalcoholic steatohepatitis: systematic Review and meta-analysis. Clin. Gastroenterol. Hepatol. 2019;17:616–629. doi: 10.1016/j.cgh.2018.06.011. e26.
    1. Vilar-Gomez E., Martinez-Perez Y., Calzadilla-Bertot L., Torres-Gonzalez A., Gra-Oramas B., Gonzalez-Fabian L., Friedman S.L., Diago M., Romero-Gomez M. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–378. doi: 10.1053/j.gastro.2015.04.005. e5.
    1. Phung N., Pera N., Farrell G., Leclercq I., Hou J.Y., George J. Pro-oxidant-mediated hepatic fibrosis and effects of antioxidant intervention in murine dietary steatohepatitis. Int. J. Mol. Med. 2009;24:171–180. doi: 10.3892/ijmm.
    1. Podszun M.C., Grebenstein N., Spruss A., Schlueter T., Kremoser C., Bergheim I., Frank J. Dietary α-tocopherol and atorvastatin reduce high-fat-induced lipid accumulation and down-regulate CD36 protein in the liver of Guinea pigs. J. Nutr. Biochem. 2014;25:573–579. doi: 10.1016/j.jnutbio.2014.01.008.
    1. Nan Y.M., Wu W.J., Fu N., Liang B.L., Wang R.Q., Li L.X., Zhao S.X., Zhao J.M., Yu J. Antioxidants vitamin e and 1-aminobenzotriazole prevent experimental non-alcoholic steatohepatitis in mice. Scand. J. Gastroenterol. 2009;44:1121–1131. doi: 10.1080/00365520903114912.
    1. Chung M.Y., Yeung S.F., Park H.J., Volek J.S., Bruno R.S. Dietary α- and γ-tocopherol supplementation attenuates lipopolysaccharide-induced oxidative stress and inflammatory-related responses in an obese mouse model of nonalcoholic steatohepatitis. J. Nutr. Biochem. 2010;21:1200–1206. doi: 10.1016/j.jnutbio.2009.10.006.
    1. Presa N., Clugston R.D., Lingrell S., Kelly S.E., Merrill A.H., Jana S., Kassiri Z., Gómez-Muñoz A., Vance D.E., Jacobs R.L., van der Veen J.N. Vitamin E alleviates non-alcoholic fatty liver disease in phosphatidylethanolamine N-methyltransferase deficient mice. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 2019;1865:14–25. doi: 10.1016/j.bbadis.2018.10.010.
    1. Ma Y., Brown P.M., Lin D.D., Ma J., Feng D., Belyaeva O.V., Podszun M.C., Roszik J., Allen J., Umarova R., Kleiner D.E., Kedishvili N.Y., Gavrilova O., Gao B., Rotman Y. Hsd17b13 deficiency does not protect mice from obesogenic diet injury. Hepatology. 2020 doi: 10.1002/hep.31517. hep.31517.
    1. Violet P., Ebenuwa I.C., Wang Y., Niyyati M., Padayatty S.J., Head B., Wilkins K., Chung S., Thakur V., Ulatowski L., Atkinson J., Ghelfi M., Smith S., Tu H., Bobe G., Liu C., Herion D.W., Shamburek R.D., Manor D., Traber M.G., Levine M. Vitamin E sequestration by liver fat in humans. JCI Insight. 2020;5:17. doi: 10.1172/jci.insight.133309. 0.
    1. Nagita A., Ando M. Assessment of hepatic vitamin E status in adult patients with liver disease. Hepatology. 1997;26:392–397. doi: 10.1002/hep.510260220.
    1. Bartolini D., Torquato P., Barola C., Russo A., Rychlicki C., Giusepponi D., Bellezza G., Sidoni A., Galarini R., Svegliati-Baroni G., Galli F. Nonalcoholic fatty liver disease impairs the cytochrome P-450-dependent metabolism of α-tocopherol (vitamin E) J. Nutr. Biochem. 2017;47:120–131. doi: 10.1016/j.jnutbio.2017.06.003.

Source: PubMed

3
Tilaa