Filariasis attenuates anemia and proinflammatory responses associated with clinical malaria: a matched prospective study in children and young adults

Housseini Dolo, Yaya I Coulibaly, Benoit Dembele, Siaka Konate, Siaka Y Coulibaly, Salif S Doumbia, Abdallah A Diallo, Lamine Soumaoro, Michel E Coulibaly, Seidina A S Diakite, Aldiouma Guindo, Michael P Fay, Simon Metenou, Thomas B Nutman, Amy D Klion, Housseini Dolo, Yaya I Coulibaly, Benoit Dembele, Siaka Konate, Siaka Y Coulibaly, Salif S Doumbia, Abdallah A Diallo, Lamine Soumaoro, Michel E Coulibaly, Seidina A S Diakite, Aldiouma Guindo, Michael P Fay, Simon Metenou, Thomas B Nutman, Amy D Klion

Abstract

Background: Wuchereria bancrofti (Wb) and Mansonella perstans (Mp) are blood-borne filarial parasites that are endemic in many countries of Africa, including Mali. The geographic distribution of Wb and Mp overlaps considerably with that of malaria, and coinfection is common. Although chronic filarial infection has been shown to alter immune responses to malaria parasites, its effect on clinical and immunologic responses in acute malaria is unknown.

Methodology/principal findings: To address this question, 31 filaria-positive (FIL+) and 31 filaria-negative (FIL-) children and young adults, matched for age, gender and hemoglobin type, were followed prospectively through a malaria transmission season. Filarial infection was defined by the presence of Wb or Mp microfilariae on calibrated thick smears performed between 10 pm and 2 am and/or by the presence of circulating filarial antigen in serum. Clinical malaria was defined as axillary temperature ≥37.5°C or another symptom or sign compatible with malaria infection plus the presence of asexual malaria parasites on a thick blood smear. Although the incidence of clinical malaria, time to first episode, clinical signs and symptoms, and malaria parasitemia were comparable between the two groups, geometric mean hemoglobin levels were significantly decreased in FIL- subjects at the height of the transmission season compared to FIL+ subjects (11.4 g/dL vs. 12.5 g/dL, p<0.01). Plasma levels of IL-1ra, IP-10 and IL-8 were significantly decreased in FIL+ subjects at the time of presentation with clinical malaria (99, 2145 and 49 pg/ml, respectively as compared to 474, 5522 and 247 pg/ml in FIL- subjects).

Conclusions/significance: These data suggest that pre-existent filarial infection attenuates immune responses associated with severe malaria and protects against anemia, but has little effect on susceptibility to or severity of acute malaria infection. The apparent protective effect of filarial infection against anemia is intriguing and warrants further study in a larger cohort.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Study flowchart.
Figure 1. Study flowchart.
Figure 2. Incidence of clinical malaria.
Figure 2. Incidence of clinical malaria.
The bars represent the number of FIL+ (black bars) and FIL− (gray bars) subjects who experienced 0, 1, 2 or 3 episodes of clinical malaria during the first transmission season.
Figure 3. Time to first episode of…
Figure 3. Time to first episode of clinical malaria.
The cumulative % of FIL+ (black line) and FIL− (gray line) subjects who had experienced at least one episode of malaria is shown for each week of the first transmission season (estimated by Kaplan-Meier method to account for subjects who withdrew from the study).
Figure 4. Parasitemia at the time of…
Figure 4. Parasitemia at the time of the first episode of clinical malaria.
The symbols represent individual values for FIL+ (black circles) and FIL− (gray circles) subjects. The horizontal lines represent the GM values for the groups.
Figure 5. Hgb levels during monthly asymptomatic…
Figure 5. Hgb levels during monthly asymptomatic visits.
GM Hgb with 95% confidence intervals are show for FIL+ (black) and FIL− (gray) subjects over time. *p

Figure 6. Plasma cytokine and chemokine levels…

Figure 6. Plasma cytokine and chemokine levels at the time of acute malaria.

The symbols…

Figure 6. Plasma cytokine and chemokine levels at the time of acute malaria.
The symbols represent individual values for FIL+ (black circles) and FIL− (gray circles) subjects. The horizontal lines represent the GM values for the groups.

Figure 7. Negative correlation between serum levels…

Figure 7. Negative correlation between serum levels of IP-10 during acute malaria and Hgb levels…

Figure 7. Negative correlation between serum levels of IP-10 during acute malaria and Hgb levels at the peak of malaria transmission.
The symbols represent the values for individual study subjects.
All figures (7)
Figure 6. Plasma cytokine and chemokine levels…
Figure 6. Plasma cytokine and chemokine levels at the time of acute malaria.
The symbols represent individual values for FIL+ (black circles) and FIL− (gray circles) subjects. The horizontal lines represent the GM values for the groups.
Figure 7. Negative correlation between serum levels…
Figure 7. Negative correlation between serum levels of IP-10 during acute malaria and Hgb levels at the peak of malaria transmission.
The symbols represent the values for individual study subjects.

References

    1. Stensgaard AS, Vounatsou P, Onapa AW, Simonsen PE, Pederson EM, et al. (2011) Bayesian geostatistical modeling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity. Malar J 10: 298.
    1. Brooker S, Akhwale W, Pullan R, Estambale B, Clarke SE, et al. (2007) Epidemiology of plasmodium-helminth co-infection in Africa: population at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg 77: 88–98.
    1. Hiller SD, Booth M, Muhangi L, Nkurunziza P, Khihembo M, et al. (2008) Plasmodium falciparum and helminth coinfection in a semi urban population of pregnant women in Uganda. J Infect Dis 198: 920–927.
    1. Metenou S, Dembele B, Konate S, Dolo H, Coulibaly SY, et al. (2009) Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. J Immunol 183: 916–924.
    1. Cooper PJ, Espinel I, Paredes W, Gederian RH, Nutman TB (1998) Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: a possible role for interleukin-10. J Infect Dis 178: 1133–1138.
    1. Nookala S, Srinivasan S, Kaliraj P, Naranayan RB, Nutman TB (2004) Impairment of tetanus-specific cellular and humoral immune responses following tetanus vaccination in human lymphatic filariasis. Infect Immun 72: 2598–2604.
    1. Cooper PJ, Chico M, Sandoval C, Espinel I, Guevara A, et al. (2001) Human infection with Ascaris lumbricoides is associated with suppression of the interleukin-2 response to recombinant cholera toxin B subunit following vaccination with the live oral cholera vaccine CVD 103-HgR. Infect Immun 69: 1574–1580.
    1. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, et al. (2004) Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 72: 5630–5637.
    1. Harpaz R, Edelman R, Wasserman SS, Levine MM, Davis JR, et al. (1992) Serum cytokine profiles in experimental human malaria. Relationship to protection and disease course after challenge. J Clin Invest 90: 515–523.
    1. D'Ombrain MC, Robinson LJ, Stanisic DI, Taraika J, Bernard N, et al. (2008) Association of early interferon-gamma production with immunity to clinical malaria: a longitudinal study among Papua New Guinean children. Clin Infect Dis 47: 1380–1387.
    1. Day NP, Hien TT, Schollaardt T, Loc PP, Chuong LV, et al. (1999) The prognostic and pathophysiologic role of pro- and antiinflammatory cytokines in severe malaria. J Infect Dis 180: 1288–1297.
    1. Grau GE, Taylor TE, Molyneux ME, Wirima JJ, Vassalli P, et al. (1989) Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med 320: 1586–1591.
    1. Erdman LK, Dhabani A, Musoke C, Conroy AL, Hawkes M, et al. (2011) Combinations of host biomarkers predict mortality among Ugandan children with severe malaria: a retrospective case-control study. PLoS One 6: e17440.
    1. John CC, Park GS, Sam-Agudu N, Opoka RO, Bolvin MJ (2008) Elevated serum levels of IL-1ra in children with Plasmodium falciparum malaria are associated with increased severity of disease. Cytokine 41: 204–208.
    1. Muturi EJ, Jacob BG, Kim CH, Mbogo CM, Novak RJ (2008) Are coinfections of malaria and filariasis of any epidemiological significance? Parasitol Res 102: 175–181.
    1. Metenou S, Dembele B, Konate S, Dolo H, Coulibaly YI, et al. (2011) Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. J Immunol 186: 4725–4733.
    1. Dicko A, Sagara I, Diemert D, Sogoba M, Niambele MB, et al. (2007) Year-to-year variation in the age-specific incidence of clinical malaria in two potential vaccine testing sites in Mali with different levels of malaria transmission intensity. Am J Trop Med Hyg 77: 1028–1033.
    1. Guindo A, Fairhurst RM, Doumbo OK, Wellems TE, Diallo DA (2007) X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Medicine 4: e66.
    1. McCullagh P, Nelder JA (1989) Generalized linear models. London: Chapman and Hall.
    1. Therneau T, Lumley T (2011) Survival R package 2.36-10 ed.
    1. Lyke KE, Dicko A, Dabo A, Sangare L, Kone A, et al. (2005) Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am J Trop Med Hyg 73: 1124–30.
    1. Pullan RL, Kabatereine NB, Bukirwa H, Staedke SG, Brooker S (2010) Heterogeneities and consequences of Plasmodium species and hookworm coinfection: a population based study in Uganda. J Infect Dis 203: 406–417.
    1. Nausch N, Midzi N, Mduluza T, Maizels RM, Mutapi F (2011) Regulatory and activated T cells in human Schistosoma haematobium infections. PLoS One 6: e16860.
    1. Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, et al. (2011) Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 7: 1427–42.
    1. Lyke KE, Dabo A, Sangare L, Arama C, Daou M, et al. (2006) Effects of concomitant Schistosoma haematobium infection on the serum cytokine levels elicited by acute Plasmodium falciparum malaria infection in Malian children. Infect Immun 74: 5718–5724.
    1. Hartgers FC, Obeng BB, Kruize YCM, Dijkhuis A, McCall M, et al. (2009) Responses to malarial antigens are altered in helminth-infected children. J Infect Dis 199: 1528–1535.
    1. Diallo TO, Remoue F, Schacht AM, Charrier N, Dompnier J-P, et al. (2004) Schistosomiasis co-infection in humans influences inflammatory markers in uncomplicated Plasmodium falciparum malaria. Parasite Immunol 26: 365–9.
    1. Ong'echa JM, Davenport GC, Vulule JM, Hittner JB, Perkins DJ (2011) Identification of inflammatory biomarkers for pediatric malarial anemia severity using novel statistical methods. Infect Immun 79: 4674–80.
    1. Böstrom S, Giusti P, Arama C, Persson JO, Dara V, et al. (2012) Changes in the levels of cytokines, chemokines, and malaria-specific antibodies in Plasmodium falciparum infection in children living in sympatry in Mali. Malar J 11: 109.

Source: PubMed

3
Tilaa