Iron Fortification of Foods for Infants and Children in Low-Income Countries: Effects on the Gut Microbiome, Gut Inflammation, and Diarrhea

Daniela Paganini, Mary A Uyoga, Michael B Zimmermann, Daniela Paganini, Mary A Uyoga, Michael B Zimmermann

Abstract

Iron deficiency anemia (IDA) is common among infants and children in Sub-Saharan Africa and is a leading contributor to the global burden of disease, as well as a hindrance to national development. In-home iron fortification of complementary foods using micronutrient powders (MNPs) effectively reduces the risk for IDA by ensuring that the iron needs of infants and young children are met without changing their traditional diet. However, the iron dose delivered by MNPs is high, and comparable on a mg iron per kg body weight to the supplemental doses (2 mg/kg) typically given to older children, which increases diarrhea risk. In controlled studies, iron-containing MNPs modestly increase risk for diarrhea in infants; in some cases, the diarrhea is severe and may require hospitalization. Recent in vitro and in vivo studies provide insights into the mechanism of this effect. Provision of iron fortificants to school-age children and iron-containing MNPs to weaning infants decreases the number of beneficial 'barrier' commensal gut bacteria (e.g., bifidobacteria), increases the enterobacteria to bifidobacteria ratio and abundances of opportunistic pathogens (e.g., pathogenic Escherichia coli), and induces gut inflammation. Thus, although iron-containing MNPs are highly effective in reducing IDA, they may increase gastrointestinal morbidity in infants, and safer formulations are needed.

Keywords: Kenya; calprotectin; diarrhea; enterobacteria; gut inflammation; gut microbiome; infancy; iron fortification; micronutrient powders.

References

    1. World Health Organization (WHO) The Global Prevalence of Anaemia in 2011. World Health Organization; Geneva, Switzerland: 2015.
    1. Kassebaum N.J., Jasrasaria R., Naghavi M., Wulf S.K., Johns N., Lozano R., Regan M., Weatherall D., Chou D.P., Eisele T.P., et al. A systematic analysis of global anemia burden from 1990 to 2010. Blood. 2014;123:615–624. doi: 10.1182/blood-2013-06-508325.
    1. Zimmermann M.B., Hurrell R.F. Nutritional iron deficiency. Lancet (Lond., Engl.) 2007;370:511–520. doi: 10.1016/S0140-6736(07)61235-5.
    1. Barth-Jaeggi T., Moretti D., Kvalsvig J., Holding P.A., Njenga J., Mwangi A., Chhagan M.K., Lacroix C., Zimmermann M.B. In-home fortification with 2.5 mg iron as NaFeEDTA does not reduce anaemia but increases weight gain: A randomised controlled trial in kenyan infants. Matern. Child Nutr. 2015;11:151–162. doi: 10.1111/mcn.12163.
    1. World Health Organization (WHO) The World Health Report 2002. World Health Organization; Geneva, Switzerland: 2002.
    1. Lozoff B. Iron deficiency and child development. Food Nutr. Bull. 2007;28:S560–S571. doi: 10.1177/15648265070284S409.
    1. Lozoff B., de Andraca I., Castillo M., Smith J.B., Walter T., Pino P. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics. 2003;112:846–854.
    1. Grantham-McGregor S., Ani C. A review of studies on the effect of iron deficiency on cognitive development in children. J. Nutr. 2001;131:649S–666S.
    1. Horton S., Ross J. The economics of iron deficiency. Food Policy. 2003;28:51–75. doi: 10.1016/S0306-9192(02)00070-2.
    1. Baltussen R., Knai C., Sharan M. Iron fortification and iron supplementation are cost-effective interventions to reduce iron deficiency in four subregions of the world. J. Nutr. 2004;134:2678–2684.
    1. Dorea J.G. Iron and copper in human milk. Nutrition (Burbank, Los Angeles County, Calif.) 2000;16:209–220. doi: 10.1016/S0899-9007(99)00287-7.
    1. Zlotkin S., Arthur P., Antwi K.Y., Yeung G. Treatment of anemia with microencapsulated ferrous fumarate plus ascorbic acid supplied as sprinkles to complementary (weaning) foods. Am. J. Clin. Nutr. 2001;74:791–795.
    1. Troesch B., van Stuijvenberg M.E., Smuts C.M., Kruger H.S., Biebinger R., Hurrell R.F., Baumgartner J., Zimmermann M.B. A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age z-scores in south african children. J. Nutr. 2011;141:237–242. doi: 10.3945/jn.110.129247.
    1. Macharia-Mutie C.W., Moretti D., van den Briel N., Omusundi A.M., Mwangi A.M., Kok F.J., Zimmermann M.B., Brouwer I.D. Maize porridge enriched with a micronutrient powder containing low-dose iron as nafeedta but not amaranth grain flour reduces anemia and iron deficiency in Kenyan preschool children. J. Nutr. 2012;142:1756–1763. doi: 10.3945/jn.112.157578.
    1. World Health Organization (WHO) Guideline: Use of Multiple Micronutirent Powders for Home Fortification of Foods Consumed by Infants and Children 6–23 Months of Age. World Health Organization; Geneva, Switzerland: 2011.
    1. De-Regil L.M., Suchdev P.S., Vist G.E., Walleser S., Pena-Rosas J.P. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Evid.-Based Child Health. 2013;8:112–201. doi: 10.1002/ebch.1895.
    1. De-Regil L.M., Suchdev P.S., Vist G.E., Walleser S., Pena-Rosas J.P. Home fortification of foods with multiple micronutrient powders for health and nutrition in children under two years of age. Chochrane Database Syst. Rev. 2011 doi: 10.1002/14651858.CD008959.pub2.
    1. Jefferds M.E., Irizarry L., Timmer A., Tripp K. Unicef-CDC global assessment of home fortification interventions 2011: Current status, new directions, and implications for policy and programmatic guidance. Food Nutr. Bull. 2013;34:434–443. doi: 10.1177/156482651303400409.
    1. Sazawal S., Black R.E., Ramsan M., Chwaya H.M., Stoltzfus R.J., Dutta A., Dhingra U., Kabole I., Deb S., Othman M.K., et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: Community-based, randomised, placebo-controlled trial. Lancet (Lond., Engl.) 2006;367:133–143. doi: 10.1016/S0140-6736(06)67962-2.
    1. World Health Organization (WHO) Conclusions and recommendations of the who consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr. Bull. 2007;28:S621–S627.
    1. Troesch B., Egli I., Zeder C., Hurrell R.F., de Pee S., Zimmermann M.B. Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am. J. Clin. Nutr. 2009;89:539–544. doi: 10.3945/ajcn.2008.27026.
    1. World Healh Organization (WHO) Food and Agriculture Organization (FAO) United Nations Children’s Emergency Fund (UNICEF) GAIN. MI. FFI . Recommendations on Wheat and Maize Flour Fortification. World Health Organization; Geneva, Switzerland: 2009. Meeting Report: Interim Consensus Statement.
    1. Food and Agriculture Organization (FAO) World Healh Organization (WHO) JECFA . Safety Evaluation of Certain Food Additives. World Healh Organization; Geneva, Switzerland: 2012.
    1. Troesch B., Egli I., Zeder C., Hurrell R.F., Zimmermann M.B. Fortification iron as ferrous sulfate plus ascorbic acid is more rapidly absorbed than as sodium iron edta but neither increases serum nontransferrin-bound iron in women. J. Nutr. 2011;141:822–827. doi: 10.3945/jn.110.136127.
    1. Power H.M., Heese H.D., Beatty D.W., Hughes J., Dempster W.S. Iron fortification of infant milk formula: The effect on iron status and immune function. Ann. Trop. Paediatr. 1991;11:57–66. doi: 10.1080/02724936.1991.11747479.
    1. Gera T., Sachdev H.P. Effect of iron supplementation on incidence of infectious illness in children: Systematic review. BMJ. 2002;325:1142. doi: 10.1136/bmj.325.7373.1142.
    1. Brunser O., Espinoza J., Araya M., Pacheco I., Cruchet S. Chronic iron intake and diarrhoeal disease in infants. A field study in a less-developed country. Eur. J. Clin. Nutr. 1993;47:317–326.
    1. Singhal A., Morley R., Abbott R., Fairweather-Tait S., Stephenson T., Lucas A. Clinical safety of iron-fortified formulas. Pediatrics. 2000;105:e38. doi: 10.1542/peds.105.3.e38.
    1. Javaid N., Haschke F., Pietschnig B., Schuster E., Huemer C., Shebaz A., Ganesh P., Steffan I., Hurrel R., Secretin M.C. Interactions between infections, malnutrition and iron nutritional status in Pakistani infants. A longitudinal study. Acta Paediatr. Scand. Suppl. 1991;374:141–150. doi: 10.1111/j.1651-2227.1991.tb12017.x.
    1. Dewey K.G., Domellof M., Cohen R.J., Landa Rivera L., Hernell O., Lonnerdal B. Iron supplementation affects growth and morbidity of breast-fed infants: Results of a randomized trial in Sweden and Honduras. J. Nutr. 2002;132:3249–3255.
    1. Richard S.A., Zavaleta N., Caulfield L.E., Black R.E., Witzig R.S., Shankar A.H. Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2006;75:126–132.
    1. Chang S., El Arifeen S., Bari S., Wahed M.A., Rahman K.M., Rahman M.T., Mahmud A.B., Begum N., Zaman K., Baqui A.H., et al. Supplementing iron and zinc: Double blind, randomized evaluation of separate or combined delivery. Eur. J. Clin. Nutr. 2010;64:153–160. doi: 10.1038/ejcn.2009.127.
    1. Tielsch J.M., Khatry S.K., Stoltzfus R.J., Katz J., LeClerq S.C., Adhikari R., Mullany L.C., Shresta S., Black R.E. Effect of routine prophylactic supplementation with iron and folic acid on preschool child mortality in southern Nepal: Community-based, cluster-randomised, placebo-controlled trial. Lancet (Lond., Engl.) 2006;367:144–152. doi: 10.1016/S0140-6736(06)67963-4.
    1. Pasricha S.R., Hayes E., Kalumba K., Biggs B.A. Effect of daily iron supplementation on health in children aged 4–23 months: A systematic review and meta-analysis of randomised controlled trials. Lancet Glob. Health. 2013;1:e77–e86. doi: 10.1016/S2214-109X(13)70046-9.
    1. Veenemans J., Schouten L.R., Ottenhof M.J., Mank T.G., Uges D.R., Mbugi E.V., Demir A.Y., Kraaijenhagen R.J., Savelkoul H.F., Verhoef H. Effect of preventive supplementation with zinc and other micronutrients on non-malarial morbidity in Tanzanian pre-school children: A randomized trial. PLoS ONE. 2012;7:494. doi: 10.1371/journal.pone.0041630.
    1. Zlotkin S., Newton S., Aimone A.M., Azindow I., Amenga-Etego S., Tchum K., Mahama E., Thorpe K.E., Owusu-Agyei S. Effect of iron fortification on malaria incidence in infants and young children in ghana: A randomized trial. JAMA. 2013;310:938–947. doi: 10.1001/jama.2013.277129.
    1. Soofi S., Cousens S., Iqbal S.P., Akhund T., Khan J., Ahmed I., Zaidi A.K., Bhutta Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet (Lond., Engl.) 2013;382:29–40. doi: 10.1016/S0140-6736(13)60437-7.
    1. Salam R.A., MacPhail C., Das J.K., Bhutta Z.A. Effectiveness of micronutrient powders (MNP) in women and children. BMC Public Health. 2013;13(Suppl. 3):S22.
    1. World Heath Organization (WHO) World Health Statisitcs 2013. World Heath Organization; Geneva, Switzerland: 2013.
    1. Tondeur M.C., Schauer C.S., Christofides A.L., Asante K.P., Newton S., Serfass R.E., Zlotkin S.H. Determination of iron absorption from intrinsically labeled microencapsulated ferrous fumarate (sprinkles) in infants with different iron and hematologic status by using a dual-stable-isotope method. Am. J. Clin. Nutr. 2004;80:1436–1444.
    1. Nemeth E., Tuttle M.S., Powelson J., Vaughn M.B., Donovan A., Ward D.M., Ganz T., Kaplan J. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, NY) 2004;306:2090–2093. doi: 10.1126/science.1104742.
    1. Andrews S.C., Robinson A.K., Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003;27:215–237. doi: 10.1016/S0168-6445(03)00055-X.
    1. Naikare H., Palyada K., Panciera R., Marlow D., Stintzi A. Major role for feob in Campylobacter jejuni ferrous iron acquisition, gut colonization, and intracellular survival. Infect. Immun. 2006;74:5433–5444. doi: 10.1128/IAI.00052-06.
    1. Bullen J., Griffiths E., Rogers H., Ward G. Sepsis: The critical role of iron. Microbes Infect./Inst. Pasteur. 2000;2:409–415. doi: 10.1016/S1286-4579(00)00326-9.
    1. Anderson R.C., Cookson A.L., McNabb W.C., Kelly W.J., Roy N.C. Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol. Lett. 2010;309:184–192. doi: 10.1111/j.1574-6968.2010.02038.x.
    1. Weinberg E.D. The lactobacillus anomaly: Total iron abstinence. Perspect. Biol. Med. 1997;40:578–583. doi: 10.1353/pbm.1997.0072.
    1. Pandey A., Bringel F., Meyer J. Iron requirement and search for siderophores in lactic acid bacteria. Appl. Microbiol. Biotechnol. 1994;40:735–739. doi: 10.1007/BF00173337.
    1. Bezkorovainy A., Solberg L. Ferrous iron uptake by Bifidobacterium breve. Biol. Trace Elem. Res. 1989;20:251–267. doi: 10.1007/BF02917440.
    1. Tompkins G.R., O’Dell N.L., Bryson I.T., Pennington C.B. The effects of dietary ferric iron and iron deprivation on the bacterial composition of the mouse intestine. Curr. Microbiol. 2001;43:38–42. doi: 10.1007/s002840010257.
    1. Werner T., Wagner S.J., Martinez I., Walter J., Chang J.S., Clavel T., Kisling S., Schuemann K., Haller D. Depletion of luminal iron alters the gut microbiota and prevents crohn’s disease-like ileitis. Gut. 2011;60:325–333. doi: 10.1136/gut.2010.216929.
    1. Dostal A., Chassard C., Hilty F.M., Zimmermann M.B., Jaeggi T., Rossi S., Lacroix C. Iron depletion and repletion with ferrous sulfate or electrolytic iron modifies the composition and metabolic activity of the gut microbiota in rats. J. Nutr. 2012;142:271–277. doi: 10.3945/jn.111.148643.
    1. Payne A.N., Zihler A., Chassard C., Lacroix C. Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol. 2012;30:17–25. doi: 10.1016/j.tibtech.2011.06.011.
    1. Le Blay G., Chassard C., Baltzer S., Lacroix C. Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br. J. Nutr. 2010;103:403–411. doi: 10.1017/S0007114509991796.
    1. Payne A.N., Chassard C., Banz Y., Lacroix C. The composition and metabolic activity of child gut microbiota demonstrate differential adaptation to varied nutrient loads in an in vitro model of colonic fermentation. FEMS Microbiol. Ecol. 2012;80:608–623. doi: 10.1111/j.1574-6941.2012.01330.x.
    1. Cinquin C., le Blay G., Fliss I., Lacroix C. Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb. Ecol. 2004;48:128–138. doi: 10.1007/s00248-003-2022-7.
    1. Cinquin C., le Blay G., Fliss I., Lacroix C. New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol. Ecol. 2006;57:324–336. doi: 10.1111/j.1574-6941.2006.00117.x.
    1. Zihler A., Gagnon M., Chassard C., Hegland A., Stevens M.J., Braegger C.P., Lacroix C. Unexpected consequences of administering bacteriocinogenic probiotic strains for salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology (Read., Engl.) 2010;156:3342–3353. doi: 10.1099/mic.0.042036-0.
    1. Dostal A., Fehlbaum S., Chassard C., Zimmermann M.B., Lacroix C. Low iron availability in continuous in vitro colonic fermentations induces strong dysbiosis of the child gut microbial consortium and a decrease in main metabolites. FEMS Microbiol. Ecol. 2013;83:161–175. doi: 10.1111/j.1574-6941.2012.01461.x.
    1. Zimmermann M.B., Chassard C., Rohner F., N’Goran E K., Nindjin C., Dostal A., Utzinger J., Ghattas H., Lacroix C., Hurrell R.F. The effects of iron fortification on the gut microbiota in african children: A randomized controlled trial in cote d’ivoire. Am. J. Clin. Nutr. 2010;92:1406–1415. doi: 10.3945/ajcn.110.004564.
    1. Konikoff M.R., Denson L.A. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm. Bowel Dis. 2006;12:524–534. doi: 10.1097/00054725-200606000-00013.
    1. Dostal A., Baumgartner J., Riesen N., Chassard C., Smuts C.M., Zimmermann M.B., Lacroix C. Effects of iron supplementation on dominant bacterial groups in the gut, faecal scfa and gut inflammation: A randomised, placebo-controlled intervention trial in south african children. Br. J. Nutr. 2014;112:547–556. doi: 10.1017/S0007114514001160.
    1. Penders J., Thijs C., Vink C., Stelma F.F., Snijders B., Kummeling I., van den Brandt P.A., Stobberingh E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–521. doi: 10.1542/peds.2005-2824.
    1. Vael C., Desager K. The importance of the development of the intestinal microbiota in infancy. Curr. Opin. Pediatr. 2009;21:794–800. doi: 10.1097/MOP.0b013e328332351b.
    1. Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., Magris M., Hidalgo G., Baldassano R.N., Anokhin A.P., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–227. doi: 10.1038/nature11053.
    1. Jaeggi T., Kortman G.A., Moretti D., Chassard C., Holding P., Dostal A., Boekhorst J., Timmerman H.M., Swinkels D.W., Tjalsma H., et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2015;64:731–742. doi: 10.1136/gutjnl-2014-307720.
    1. De Filippo C., Cavalieri D., Di Paola M., Ramazzotti M., Poullet J.B., Massart S., Collini S., Pieraccini G., Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from europe and rural africa. Proc. Natl. Acad. Sci. USA. 2010;107:14691–14696. doi: 10.1073/pnas.1005963107.
    1. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science (New York, NY) 2005;307:1915–1920. doi: 10.1126/science.1104816.
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821.
    1. Fallani M., Amarri S., Uusijarvi A., Adam R., Khanna S., Aguilera M., Gil A., Vieites J.M., Norin E., Young D., et al. Determinants of the human infant intestinal microbiota after the introduction of first complementary foods in infant samples from five european centres. Microbiology (Read., Engl.) 2011;157:1385–1392. doi: 10.1099/mic.0.042143-0.
    1. Stecher B., Chaffron S., Kappeli R., Hapfelmeier S., Freedrich S., Weber T.C., Kirundi J., Suar M., McCoy K.D., von Mering C., et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:494. doi: 10.1371/journal.ppat.1000711.
    1. Kortman G.A., Raffatellu M., Swinkels D.W., Tjalsma H. Nutritional iron turned inside out: Intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 2014;38:1202–1234. doi: 10.1111/1574-6976.12086.
    1. Ferruzza S., Scarino M.L., Gambling L., Natella F., Sambuy Y. Biphasic effect of iron on human intestinal Caco-2 cells: Early effect on tight junction permeability with delayed onset of oxidative cytotoxic damage. Cell. Mol. Biol. (Noisy-le-Grand, Fr.) 2003;49:89–99.
    1. Nchito M., Friis H., Michaelsen K.F., Mubila L., Olsen A. Iron supplementation increases small intestine permeability in primary schoolchildren in Lusaka, Zambia. Trans. R. Soc. Trop. Med. Hyg. 2006;100:791–794. doi: 10.1016/j.trstmh.2005.10.016.
    1. Li Y., Hansen S.L., Borst L.B., Spears J.W., Moeser A.J. Dietary iron deficiency and oversupplementation increase intestinal permeability, ion transport, and inflammation in pigs. J. Nutr. 2016 doi: 10.3945/jn.116.231621.
    1. Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005;12:1161–1208. doi: 10.2174/0929867053764635.
    1. Foster S.L., Richardson S.H., Failla M.L. Elevated iron status increases bacterial invasion and survival and alters cytokine/chemokine mrna expression in Caco-2 human intestinal cells. J. Nutr. 2001;131:1452–1458.
    1. Chang S., Huang Z., Ma Y., Piao J., Yang X., Zeder C., Hurrell R.F., Egli I. Mixture of ferric sodium ethylenediaminetetraacetate (NaFeEDTA) and ferrous sulfate: An effective iron fortificant for complementary foods for young Chinese children. Food Nutr. Bull. 2012;33:111–116. doi: 10.1177/156482651203300204.
    1. Fanaro S., Boehm G., Garssen J., Knol J., Mosca F., Stahl B., Vigi V. Galacto-oligosaccharides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: A review. Acta Paediatr. Suppl. 2005;94:22–26. doi: 10.1080/08035320510043538.
    1. Biesiekierski J.R., Rosella O., Rose R., Liels K., Barrett J.S., Shepherd S.J., Gibson P.R., Muir J.G. Quantification of fructans, galacto-oligosacharides and other short-chain carbohydrates in processed grains and cereals. J. Hum. Nutr. Diet. 2011;24:154–176. doi: 10.1111/j.1365-277X.2010.01139.x.
    1. Le Huerou-Luron I., Blat S., Boudry G. Breast-v. formula-feeding: Impacts on the digestive tract and immediate and long-term health effects. Nutr. Res. Rev. 2010;23:23–36. doi: 10.1017/S0954422410000065.
    1. Watson D., O’Connell Motherway M., Schoterman M.H., van Neerven R.J., Nauta A., van Sinderen D. Selective carbohydrate utilization by lactobacilli and bifidobacteria. J. Appl. Microbiol. 2013;114:1132–1146. doi: 10.1111/jam.12105.
    1. Moro G., Minoli I., Mosca M., Fanaro S., Jelinek J., Stahl B., Boehm G. Dosage-related bifidogenic effects of galacto- and fructooligosaccharides in formula-fed term infants. J. Pediatr. Gastroenterol. Nutr. 2002;34:291–295. doi: 10.1097/00005176-200203000-00014.
    1. Petry N., Egli I., Chassard C., Lacroix C., Hurrell R. Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. Am. J. Clin. Nutr. 2012;96:325–331. doi: 10.3945/ajcn.112.035717.

Source: PubMed

3
Tilaa