In Alzheimer's Disease, 6-Month Treatment with GLP-1 Analog Prevents Decline of Brain Glucose Metabolism: Randomized, Placebo-Controlled, Double-Blind Clinical Trial

Michael Gejl, Albert Gjedde, Lærke Egefjord, Arne Møller, Søren B Hansen, Kim Vang, Anders Rodell, Hans Brændgaard, Hanne Gottrup, Anna Schacht, Niels Møller, Birgitte Brock, Jørgen Rungby, Michael Gejl, Albert Gjedde, Lærke Egefjord, Arne Møller, Søren B Hansen, Kim Vang, Anders Rodell, Hans Brændgaard, Hanne Gottrup, Anna Schacht, Niels Møller, Birgitte Brock, Jørgen Rungby

Abstract

In animal models, the incretin hormone GLP-1 affects Alzheimer's disease (AD). We hypothesized that treatment with GLP-1 or an analog of GLP-1 would prevent accumulation of Aβ and raise, or prevent decline of, glucose metabolism (CMRglc) in AD. In this 26-week trial, we randomized 38 patients with AD to treatment with the GLP-1 analog liraglutide (n = 18), or placebo (n = 20). We measured Aβ load in brain with tracer [(11)C]PIB (PIB), CMRglc with [(18)F]FDG (FDG), and cognition with the WMS-IV scale (ClinicalTrials.gov NCT01469351). The PIB binding increased significantly in temporal lobe in placebo and treatment patients (both P = 0.04), and in occipital lobe in treatment patients (P = 0.04). Regional and global increases of PIB retention did not differ between the groups (P ≥ 0.38). In placebo treated patients CMRglc declined in all regions, significantly so by the following means in precuneus (P = 0.009, 3.2 μmol/hg/min, 95% CI: 5.45; 0.92), and in parietal (P = 0.04, 2.1 μmol/hg/min, 95% CI: 4.21; 0.081), temporal (P = 0.046, 1.54 μmol/hg/min, 95% CI: 3.05; 0.030), and occipital (P = 0.009, 2.10 μmol/hg/min, 95% CI: 3.61; 0.59) lobes, and in cerebellum (P = 0.04, 1.54 μmol/hg/min, 95% CI: 3.01; 0.064). In contrast, the GLP-1 analog treatment caused a numerical but insignificant increase of CMRglc after 6 months. Cognitive scores did not change. We conclude that the GLP-1 analog treatment prevented the decline of CMRglc that signifies cognitive impairment, synaptic dysfunction, and disease evolution. We draw no firm conclusions from the Aβ load or cognition measures, for which the study was underpowered.

Keywords: Alzheimer’s disease; amyloid; cerebral glucose metabolism; glucagon-like peptide-1; liraglutide.

Figures

FIGURE 1
FIGURE 1
(A) Percentage change in Binding Potential in the brain (BPND) between baseline scan and 6-month follow-up. (B) Binding Potential in the brain (BPND) in the cingulate cortex, precuneus, frontal, parietal, temporal, and occipital lobes, cerebellum and cerebral cortex at baseline and the Ratio Session 2/1 in the placebo group and the liraglutide group.∗P < 0.05.
FIGURE 2
FIGURE 2
(A) Percentage change in cerebral metabolic rate for glucose (CMRglc) between baseline scan and 6-month follow-up. (B) Cerebral metabolic rate for glucose uptake (CMRglc) in the cingulate cortex, precuneus, frontal, parietal, temporal, and occipital lobes, cerebellum, and cerebral cortex at baseline and the Ratio Session 2/1 in the placebo group and the liraglutide group. ∗P < 0.05.

References

    1. Ahren B., Winzell M. S., Wierup N., Sundler F., Burkey B., Hughes T. E. (2007). DPP-4 inhibition improves glucose tolerance and increases insulin and GLP-1 responses to gastric glucose in association with normalized islet topography in mice with beta-cell-specific overexpression of human islet amyloid polypeptide. Regul. Pept. 143 97–103. 10.1016/j.regpep.2007.03.008
    1. Alexander G. E., Chen K., Pietrini P., Rapoport S. I., Reiman E. M. (2002). Longitudinal PET evaluation of cerebral metabolic decline in dementia: a potential outcome measure in alzheimer’s disease treatment studies. Am. J. Psychiatry 159 738–745. 10.1176/appi.ajp.159.5.738
    1. Bomfim T. R., Forny-Germano L., Sathler L. B., Brito-Moreira J., Houzel J. C., Decker H., et al. (2012). An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J. Clin. Invest. 122 1339–1353. 10.1172/JCI57256
    1. Craft S., Baker L. D., Montine T. J., Minoshima S., Watson G. S., Claxton A., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69 29–38. 10.1001/archneurol.2011.233
    1. Dubois B., Feldman H. H., Jacova C., Hampel H., Molinuevo J. L., Blennow K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 13 614–629. 10.1016/S1474-4422(14)70090-0
    1. During M. J., Cao L., Zuzga D. S., Francis J. S., Fitzsimons H. L., Jiao X., et al. (2003). Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9 1173–1179. 10.1038/nm919
    1. Egefjord L., Gejl M., Moller A., Braendgaard H., Gottrup H., Antropova O., et al. (2012). Effects of liraglutide on neurodegeneration, blood flow and cognition in Alzheimer s disease - protocol for a controlled, randomized double-blinded trial. Dan. Med. J. 59:A4519.
    1. Engler H., Forsberg A., Almkvist O., Blomquist G., Larsson E., Savitcheva I., et al. (2006). Two-year follow-up of amyloid deposition in patients with Alzheimer’s disease. Brain 129 2856–2866. 10.1093/brain/awl178
    1. Femminella G. D., Edison P. (2014). Evaluation of neuroprotective effect of glucagon-like peptide 1 analogs using neuroimaging. Alzheimers Dement 10 S55–S61. 10.1016/j.jalz.2013.12.012
    1. Freiherr J., Hallschmid M., Frey W. H., Brunner Y. F., Chapman C. D., Holscher C., et al. (2013). Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27 505–514. 10.1007/s40263-013-0076-8
    1. Gejl M., Egefjord L., Lerche S., Vang K., Bibby B. M., Holst J. J., et al. (2012). Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia. J. Cereb. Blood Flow Metab. 32 2146–2152. 10.1038/jcbfm.2012.118
    1. Gejl M., Lerche S., Egefjord L., Brock B., Moller N., Vang K., et al. (2013). Glucagon-like peptide-1 (GLP-1) raises blood-brain glucose transfer capacity and hexokinase activity in human brain. Front. Neuroenerget. 5:2 10.3389/fnene.2013.00002
    1. Gejl M., Rungby J., Brock B., Gjedde A. (2014). At the centennial of Michaelis and Menten, competing Michaelis-Menten steps explain effect of GLP-1 on blood-brain transfer and metabolism of glucose. Basic Clin. Pharmacol. Toxicol. 115 162–171. 10.1111/bcpt.12240
    1. Gjedde A. (1982). Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res. 257 237–274. 10.1016/0165-0173(82)90018-2
    1. Gjedde A. (1983). Modulation of substrate transport to the brain. Acta Neurol. Scand. 67 3–25. 10.1111/j.1600-0404.1983.tb04541.x
    1. Hansen H. H., Fabricius K., Barkholt P., Niehoff M. L., Morley J. E., Jelsing J., et al. (2015). The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal ca1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer’s Disease. J. Alzheimers Dis. 46 877–888. 10.3233/JAD-143090
    1. Hardy J. A., Higgins G. A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science 256 184–185. 10.1126/science.1566067
    1. Holscher C. (2014). New drug treatments show neuroprotective effects in Alzheimer’s and Parkinson’s diseases. Neural Regen. Res. 9 1870–1873. 10.4103/1673-5374.145342
    1. Hunt A., Schonknecht P., Henze M., Seidl U., Haberkorn U., Schroder J. (2007). Reduced cerebral glucose metabolism in patients at risk for Alzheimer’s disease. Psychiatry Res. 155 147–154. 10.1016/j.pscychresns.2006.12.003
    1. Hunter K., Holscher C. (2012). Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 13:33 10.1186/1471-2202-13-33
    1. Jendle J., Nauck M. A., Matthews D. R., Frid A., Hermansen K., During M., et al. (2009). Weight loss with liraglutide, a once-daily human glucagon-like peptide-1 analogue for type 2 diabetes treatment as monotherapy or added to metformin, is primarily as a result of a reduction in fat tissue. Diabetes Obes Metab. 11 1163–1172. 10.1111/j.1463-1326.2009.01158.x
    1. Kadir A., Almkvist O., Forsberg A., Wall A., Engler H., Langstrom B., et al. (2012). Dynamic changes in PET amyloid and FDG imaging at different stages of Alzheimer’s disease. Neurobiol. Aging 33 198–214. 10.1016/j.neurobiolaging.2010.06.015
    1. Kelly P., McClean P. L., Ackermann M., Konerding M. A., Holscher C., Mitchell C. A. (2015). Restoration of cerebral and systemic microvascular architecture in APP/PS1 transgenic mice following treatment with Liraglutide. Microcirculation 22 133–145. 10.1111/micc.12186
    1. Kuwabara H., Evans A. C., Gjedde A. (1990). Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F] fluorodeoxyglucose. J. Cereb Blood Flow Metab. 10 180–189. 10.1038/jcbfm.1990.33
    1. Lacalle-Aurioles M., Mateos-Perez J. M., Guzman-De-Villoria J. A., Olazaran J., Cruz-Orduna I., Aleman-Gomez Y., et al. (2014). Cerebral blood flow is an earlier indicator of perfusion abnormalities than cerebral blood volume in Alzheimer’s disease. J. Cereb. Blood Flow Metab. 34 654–659. 10.1038/jcbfm.2013.241
    1. Leinonen V., Alafuzoff I., Aalto S., Suotunen T., Savolainen S., Nagren K., et al. (2008). Assessment of beta-amyloid in a frontal cortical brain biopsy specimen and by positron emission tomography with carbon 11-labeled Pittsburgh Compound B. Arch. Neurol. 65 1304–1309. 10.1001/archneur.65.10.noc80013
    1. Lerche S., Brock B., Rungby J., Botker H. E., Moller N., Rodell A., et al. (2008). Glucagon-like peptide-1 inhibits blood-brain glucose transfer in humans. Diabetes 57 325–331. 10.2337/db07-1162
    1. McClean P. L., Gault V. A., Harriott P., Holscher C. (2010). Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s disease. Eur. J. Pharmacol. 630 158–162. 10.1016/j.ejphar.2009.12.023
    1. McClean P. L., Holscher C. (2014). Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology 76(Pt A), 57–67. 10.1016/j.neuropharm.2013.08.005
    1. McClean P. L., Jalewa J., Holscher C. (2015). Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav. Brain Res. 293 96–106. 10.1016/j.bbr.2015.07.024
    1. McClean P. L., Parthsarathy V., Faivre E., Holscher C. (2011). The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. 31 6587–6594. 10.1523/JNEUROSCI.0529-11.2011
    1. Mooradian A. D., Chung H. C., Shah G. N. (1997). GLUT-1 expression in the cerebra of patients with Alzheimer’s disease. Neurobiol. Aging 18 469–474. 10.1016/S0197-4580(97)00111-5
    1. Mosconi L. (2005). Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur. J. Nucl. Med. Mol. Imaging 32 486–510. 10.1007/s00259-005-1762-7
    1. Nauck M. A. (2004). Glucagon-like peptide 1 (GLP-1) in the treatment of diabetes. Horm. Metab. Res. 36 852–858. 10.1055/s-2004-826175
    1. Nordberg A., Rinne J. O., Kadir A., Langstrom B. (2010). The use of PET in Alzheimer disease. Nat. Rev. Neurol. 6 78–87. 10.1038/nrneurol.2009.217
    1. Patlak C. S., Blasberg R. G., Fenstermacher J. D. (1983). Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J. Cereb. Blood Flow Metab. 3 1–7. 10.1038/jcbfm.1983.1
    1. Perry T., Greig N. H. (2005). Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr. Alzheimer Res. 2 377–385. 10.2174/1567205054367892
    1. Rodell A., Aanerud J., Braendgaard H., Gjedde A. (2013). Washout allometric reference method (WARM) for parametric analysis of [(11)C]PIB in human brains. Front. Aging Neurosci. 5:45 10.3389/fnagi.2013.00045
    1. Rodell A. B., Aanerud J., Braendgaard H., Gjedde A. (2012). Low residual CBF variability in Alzheimer’s Disease after correction for CO2 effect. Front. Neuroenerget. 4:8 10.3389/fnene.2012.00008
    1. Scheltens P., Kamphuis P. J., Verhey F. R., Olde Rikkert M. G., Wurtman R. J., Wilkinson D., et al. (2010). Efficacy of a medical food in mild Alzheimer’s disease: a randomized, controlled trial. Alzheimers Dement 6 1–10. 10.1016/j.jalz.2009.10.003
    1. Simpson I. A., Chundu K. R., Davies-Hill T., Honer W. G., Davies P. (1994). Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer’s disease. Ann Neurol 35 546–551. 10.1002/ana.410350507
    1. Small G. W., Ercoli L. M., Silverman D. H., Huang S. C., Komo S., Bookheimer S. Y., et al. (2000). Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. U.S.A. 97 6037–6042. 10.1073/pnas.090106797
    1. Smith G. S., Laxton A. W., Tang-Wai D. F., McAndrews M. P., Diaconescu A. O., Workman C. I., et al. (2012). Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch. Neurol. 69 1141–1148. 10.1001/archneurol.2012.590
    1. Solbach C., Uebele M., Reischl G., Machulla H. J. (2005). Efficient radiosynthesis of carbon-11 labelled uncharged Thioflavin T derivatives using [11C]methyl triflate for beta-amyloid imaging in Alzheimer’s Disease with PET. Appl. Radiat. Isot. 62 591–595. 10.1016/j.apradiso.2004.09.003
    1. Talairach J., Tournoux P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain. New York, NY: Thieme Verlag.
    1. Talbot K., Wang H. Y., Bakshi K., Trojanowski J., Arnold S. (2011). The diabetes drug liraglutide ameliorates insulin resistance in the hippocampal formation of Alzheimer’s disease (AD) cases. Alzheimer’s Dementia 7:e65 10.1016/j.jalz.2011.09.137
    1. Winkler E. A., Nishida Y., Sagare A. P., Rege S. V., Bell R. D., Perlmutter D., et al. (2015). GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18 521–530. 10.1038/nn.3966
    1. Xu W. L., von Stranss E., Qiu C. X., Winblad B., Fratiglioni L. (2009). Uncontrolled diabetes increases the risk of Alzheimer’s disease: a population-based cohort study. Diabetologia 52 1031–1039. 10.1007/s00125-009-1323-x

Source: PubMed

3
Tilaa