Advanced Meditation Alters Resting-State Brain Network Connectivity Correlating With Improved Mindfulness

Ramana V Vishnubhotla, Rupa Radhakrishnan, Kestas Kveraga, Rachael Deardorff, Chithra Ram, Dhanashri Pawale, Yu-Chien Wu, Janelle Renschler, Balachundhar Subramaniam, Senthilkumar Sadhasivam, Ramana V Vishnubhotla, Rupa Radhakrishnan, Kestas Kveraga, Rachael Deardorff, Chithra Ram, Dhanashri Pawale, Yu-Chien Wu, Janelle Renschler, Balachundhar Subramaniam, Senthilkumar Sadhasivam

Abstract

Purpose: The purpose of this study was to investigate the effect of an intensive 8-day Samyama meditation program on the brain functional connectivity using resting-state functional MRI (rs-fMRI). Methods: Thirteen Samyama program participants (meditators) and 4 controls underwent fMRI brain scans before and after the 8-day residential meditation program. Subjects underwent fMRI with a blood oxygen level dependent (BOLD) contrast at rest and during focused breathing. Changes in network connectivity before and after Samyama program were evaluated. In addition, validated psychological metrics were correlated with changes in functional connectivity. Results: Meditators showed significantly increased network connectivity between the salience network (SN) and default mode network (DMN) after the Samyama program (p < 0.01). Increased connectivity within the SN correlated with an improvement in self-reported mindfulness scores (p < 0.01). Conclusion: Samyama, an intensive silent meditation program, favorably increased the resting-state functional connectivity between the salience and default mode networks. During focused breath watching, meditators had lower intra-network connectivity in specific networks. Furthermore, increased intra-network connectivity correlated with improved self-reported mindfulness after Samyama. Clinical Trials Registration: [https://ichgcp.net/clinical-trials-registry/NCT04366544" title="See in ClinicalTrials.gov">NCT04366544]. Registered on 4/17/2020.

Keywords: Isha yoga; Samyama; brain networks; default mode network; fMRI; meditation; mindfulness; salience network.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Vishnubhotla, Radhakrishnan, Kveraga, Deardorff, Ram, Pawale, Wu, Renschler, Subramaniam and Sadhasivam.

Figures

FIGURE 1
FIGURE 1
24 participants initially enrolled with 13 meditators and 4 controls included in the final analysis.
FIGURE 2
FIGURE 2
Changes in functional connectivity was observed in meditators and comparisons were made before and after the Samyama program. (A) Functional connectivity was increased between the anterior cingulate cortex (ACC) of the salience network and posterior cingulate cortex (PCC) and precuneus of the default mode network (DMN) in the resting state condition. The PCC also had increased connectivity to the rostral prefrontal cortex (rPFC). (B) Functional connectivity was decreased within the salience network between the supramarginal gyrus (SMG) and ACC and rPFC in the focused breathing condition. Red indicates increased connectivity and blue indicates decreased connectivity.
FIGURE 3
FIGURE 3
Functional connectivities were compared between meditators and controls for each condition. (A) Resting-state pre-program – meditators had decreased connectivity between the front eye fields (FEF) and lateral parietal (LP) lobe and between the left and right intraparietal sulci (IPS). (B) Focused breathing pre-program – no significant difference between the groups. (C) Resting-state post program – meditators had significantly reduced connectivity between the FEF and dorsolateral prefrontal cortex (dl-PFC) and posterior parietal cortex (PPC). (D) Focused breathing post program – meditators had significantly reduced connectivity between the dl-PFC and LP and the IPS and posterior cingulate cortex (PCC). Red indicates increased connectivity and blue indicates decreased connectivity.
FIGURE 4
FIGURE 4
In meditators completing surveys, changes in mindfulness scores were correlated with changes in functional connectivity. There was increased functional connectivity between the anterior cingulate cortex (ACC) and supramarginal gyrus (SMG). Red indicates increased connectivity and blue indicates decreased connectivity.

References

    1. Agcaoglu O., Wilson T. W., Wang Y. P., Stephen J. M., Calhoun V. D. (2020). Dynamic resting-state connectivity differences in eyes open versus eyes closed conditions. Brain Connect. 10 504–519. 10.1089/brain.2020.0768
    1. Allman J. M., McLaughlin T., Hakeem A. (1993). Brain structures and life-span in primate species. Proc. Natl. Acad. Sci. U.S.A. 90 3559–3563. 10.1073/pnas.90.8.3559
    1. Andersson J. L., Hutton C., Ashburner J., Turner R., Friston K. (2001). Modeling geometric deformations in EPI time series. Neuroimage 13 903–919. 10.1006/nimg.2001.0746
    1. Andersson J. L., Skare S., Ashburner J. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20 870–888. 10.1016/S1053-8119(03)00336-7
    1. Andresen E. M., Malmgren J. A., Carter W. B., Patrick D. L. (1994). Screening for depression in well older adults: evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 10 77–84.
    1. Andrews-Hanna J. R. (2012). The brain’s default network and its adaptive role in internal mentation. Neuroscientist 18 251–270. 10.1177/1073858411403316
    1. Ashburner J., Friston K. (1997). Multimodal image coregistration and partitioning–a unified framework. Neuroimage 6 209–217. 10.1006/nimg.1997.0290
    1. Ashburner J., Friston K. J. (2005). Unified segmentation. Neuroimage 26 839–851. 10.1016/j.neuroimage.2005.02.018
    1. Baerentsen K. B., Stødkilde-Jørgensen H., Sommerlund B., Hartmann T., Damsgaard-Madsen J., Fosnaes M., et al. (2010). An investigation of brain processes supporting meditation. Cogn. Process. 11 57–84. 10.1007/s10339-009-0342-3
    1. Bandettini P. A., Wong E. C., Hinks R. S., Tikofsky R. S., Hyde J. S. (1992). Time course EPI of human brain function during task activation. Magn. Reson. Med. 25 390–397. 10.1002/mrm.1910250220
    1. Baron Short E., Kose S., Mu Q., Borckardt J., Newberg A., George M. S., et al. (2010). Regional brain activation during meditation shows time and practice effects: an exploratory FMRI study. Evid. Based Complement Alternat. Med. 7 121–127. 10.1093/ecam/nem163
    1. Bauer C. C. C., Whitfield-Gabrieli S., Díaz J. L., Pasaye E. H., Barrios F. A. (2019). From state-to-trait meditation: reconfiguration of central executive and default mode networks. eNeuro 6 ENEURO.0335–18. 10.1523/eneuro.0335-18.2019
    1. Behzadi Y., Restom K., Liau J., Liu T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37 90–101. 10.1016/j.neuroimage.2007.04.042
    1. Betzel R. F., Byrge L., He Y., Goni J., Zuo X. N., Sporns O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. Neuroimage 102(Pt 2) 345–357. 10.1016/j.neuroimage.2014.07.067
    1. Bishop S. J. (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci. 11 307–316. 10.1016/j.tics.2007.05.008
    1. Bishop S. J. (2009). Trait anxiety and impoverished prefrontal control of attention. Nat. Neurosci. 12 92–98. 10.1038/nn.2242
    1. Biswal B. B., Van Kylen J., Hyde J. S. (1997). Simultaneous assessment of flow and BOLD signals in resting-state functional connectivity maps. NMR Biomed. 10 165–170.
    1. Bostic T. J., McGartland Rubio D., Hood M. (2000). A validation of the subjective vitality scale using structural equation modeling. Soc. Indic. Res. 52 313–324. 10.1023/A:1007136110218
    1. Braboszcz C., Cahn B. R., Balakrishnan B., Maturi R. K., Grandchamp R., Delorme A. (2013). Plasticity of visual attention in Isha yoga meditation practitioners before and after a 3-month retreat. Front. Psychol. 4:914. 10.3389/fpsyg.2013.00914
    1. Braboszcz C., Cahn B. R., Levy J., Fernandez M., Delorme A. (2017). Increased gamma brainwave amplitude compared to control in three different meditation traditions. PLoS One 12:e0170647. 10.1371/journal.pone.0170647
    1. Brewer J. A., Worhunsky P. D., Gray J. R., Tang Y. Y., Weber J., Kober H. (2011). Meditation experience is associated with differences in default mode network activity and connectivity. Proc. Natl. Acad. Sci. U.S.A. 108 20254–20259. 10.1073/pnas.1112029108
    1. Brown K. W., Ryan R. M. (2003). The benefits of being present: mindfulness and its role in psychological well-being. J. Pers. Soc. Psychol. 84 822–848. 10.1037/0022-3514.84.4.822
    1. Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124 1–38. 10.1196/annals.1440.011
    1. Carter C. S., Botvinick M. M., Cohen J. D. (1999). The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10 49–57. 10.1515/revneuro.1999.10.1.49
    1. Chai X. J., Castanon A. N., Ongur D., Whitfield-Gabrieli S. (2012). Anticorrelations in resting state networks without global signal regression. Neuroimage 59 1420–1428. 10.1016/j.neuroimage.2011.08.048
    1. Christoff K., Gordon A. M., Smallwood J., Smith R., Schooler J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl. Acad. Sci. U.S.A. 106 8719–8724. 10.1073/pnas.0900234106
    1. Costumero V., Bueicheku E., Adrian-Ventura J., Avila C. (2020). Opening or closing eyes at rest modulates the functional connectivity of V1 with default and salience networks. Sci. Rep. 10:9137. 10.1038/s41598-020-66100-y
    1. Davis G. W. (2013). Homeostatic signaling and the stabilization of neural function. Neuron 80 718–728. 10.1016/j.neuron.2013.09.044
    1. Dodich A., Zollo M., Crespi C., Cappa S. F., Laureiro Martinez D., Falini A., et al. (2019). Short-term Sahaja Yoga meditation training modulates brain structure and spontaneous activity in the executive control network. Brain Behav. 9:e01159. 10.1002/brb3.1159
    1. Doll A., Holzel B. K., Boucard C. C., Wohlschlager A. M., Sorg C. (2015). Mindfulness is associated with intrinsic functional connectivity between default mode and salience networks. Front. Hum. Neurosci. 9:461. 10.3389/fnhum.2015.00461
    1. Eippert F., Bingel U., Schoell E. D., Yacubian J., Klinger R., Lorenz J., et al. (2009). Activation of the opioidergic descending pain control system underlies placebo analgesia. Neuron 63 533–543. 10.1016/j.neuron.2009.07.014
    1. Engen H. G., Bernhardt B. C., Skottnik L., Ricard M., Singer T. (2018). Structural changes in socio-affective networks: multi-modal MRI findings in long-term meditation practitioners. Neuropsychologia 116(Pt A) 26–33. 10.1016/j.neuropsychologia.2017.08.024
    1. Etkin A., Egner T., Kalisch R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15 85–93. 10.1016/j.tics.2010.11.004
    1. Faro S. H., Mohamed F. B., Law M. (2017). Functional Neuroradiology: Principles and Clinical Applications. New York, NY: Springer.
    1. Fayed N., Lopez Del Hoyo Y., Andres E., Serrano-Blanco A., Bellon J., Aguilar K., et al. (2013). Brain changes in long-term zen meditators using proton magnetic resonance spectroscopy and diffusion tensor imaging: a controlled study. PLoS One 8:e58476. 10.1371/journal.pone.0058476
    1. Friston K. J., Williams S., Howard R., Frackowiak R. S., Turner R. (1996). Movement-related effects in fMRI time-series. Magn. Reson. Med. 35 346–355. 10.1002/mrm.1910350312
    1. Geerligs L., Renken R. J., Saliasi E., Maurits N. M., Lorist M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cereb. Cortex 25 1987–1999. 10.1093/cercor/bhu012
    1. Gentili C., Ricciardi E., Gobbini M. I., Santarelli M. F., Haxby J. V., Pietrini P., et al. (2009). Beyond amygdala: default mode network activity differs between patients with social phobia and healthy controls. Brain Res. Bull. 79 409–413. 10.1016/j.brainresbull.2009.02.002
    1. Goyal M., Singh S., Sibinga E. M., Gould N. F., Rowland-Seymour A., Sharma R., et al. (2014). Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med 174 357–368. 10.1001/jamainternmed.2013.13018
    1. Guleria A., Kumar U., Kishan S. S., Khetrapal C. L. (2013). Effect of “SOHAM” meditation on the human brain: an fMRI study. Psychiatry Res. 214 462–465. 10.1016/j.pscychresns.2013.06.012
    1. Hallquist M. N., Hwang K., Luna B. (2013). The nuisance of nuisance regression: spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82 208–225. 10.1016/j.neuroimage.2013.05.116
    1. Hasenkamp W., Barsalou L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Front. Hum. Neurosci. 6:38. 10.3389/fnhum.2012.00038
    1. Hellyer P. J., Clopath C., Kehagia A. A., Turkheimer F. E., Leech R. (2017). From homeostasis to behavior: balanced activity in an exploration of embodied dynamic environmental-neural interaction. PLoS Comput. Biol. 13:e1005721. 10.1371/journal.pcbi.1005721
    1. Hölzel B. K., Carmody J., Vangel M., Congleton C., Yerramsetti S. M., Gard T., et al. (2011). Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 191 36–43. 10.1016/j.pscychresns.2010.08.006
    1. Holzel B. K., Ott U., Hempel H., Hackl A., Wolf K., Stark R., et al. (2007). Differential engagement of anterior cingulate and adjacent medial frontal cortex in adept meditators and non-meditators. Neurosci. Lett. 421 16–21. 10.1016/j.neulet.2007.04.074
    1. Jenkinson M., Beckmann C. F., Behrens T. E., Woolrich M. W., Smith S. M. (2012). FSL. Neuroimage 62 782–790. 10.1016/j.neuroimage.2011.09.015
    1. Kim J., Wasserman E. A., Castro L., Freeman J. H. (2016). Anterior cingulate cortex inactivation impairs rodent visual selective attention and prospective memory. Behav. Neurosci. 130 75–90. 10.1037/bne0000117
    1. Kincade J. M., Abrams R. A., Astafiev S. V., Shulman G. L., Corbetta M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 25 4593–4604. 10.1523/JNEUROSCI.0236-05.2005
    1. Lamm C., Decety J., Singer T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. Neuroimage 54 2492–2502. 10.1016/j.neuroimage.2010.10.014
    1. Lazar S. W., Kerr C. E., Wasserman R. H., Gray J. R., Greve D. N., Treadway M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport 16 1893–1897. 10.1097/01.wnr.0000186598.66243.19
    1. Lockwood P. L., Apps M. A., Roiser J. P., Viding E. (2015). Encoding of vicarious reward prediction in anterior cingulate cortex and relationship with trait empathy. J Neurosci 35 13720–13727. 10.1523/JNEUROSCI.1703-15.2015
    1. Luders E., Clark K., Narr K. L., Toga A. W. (2011). Enhanced brain connectivity in long-term meditation practitioners. Neuroimage 57 1308–1316. 10.1016/j.neuroimage.2011.05.075
    1. Mahone M. C., Travis F., Gevirtz R., Hubbard D. (2018). fMRI during transcendental meditation practice. Brain Cogn. 123 30–33. 10.1016/j.bandc.2018.02.011
    1. Marek S., Dosenbach N. U. F. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. 20 133–140.
    1. Marusak H. A., Elrahal F., Peters C. A., Kundu P., Lombardo M. V., Calhoun V. D., et al. (2018). Mindfulness and dynamic functional neural connectivity in children and adolescents. Behav. Brain Res. 336 211–218. 10.1016/j.bbr.2017.09.010
    1. Mason M. F., Norton M. I., Van Horn J. D., Wegner D. M., Grafton S. T., Macrae C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315 393–395. 10.1126/science.1131295
    1. Matsunaga M., Kawamichi H., Koike T., Yoshihara K., Yoshida Y., Takahashi H. K., et al. (2016). Structural and functional associations of the rostral anterior cingulate cortex with subjective happiness. Neuroimage 134 132–141. 10.1016/j.neuroimage.2016.04.020
    1. Menon V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15 483–506. 10.1016/j.tics.2011.08.003
    1. Menon V., Uddin L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Struct. Funct. 214 655–667. 10.1007/s00429-010-0262-0
    1. Mishra S. K., Khosa S., Singh S., Moheb N., Trikamji B. (2017). Changes in functional magnetic resonance imaging with Yogic meditation: a pilot study. Ayu 38 108–112. 10.4103/ayu.AYU_34_17
    1. Mooneyham B. W., Mrazek M. D., Mrazek A. J., Mrazek K. L., Phillips D. T., Schooler J. W. (2017). States of mind: characterizing the neural bases of focus and mind-wandering through dynamic functional connectivity. J. Cogn. Neurosci. 29 495–506. 10.1162/jocn_a_01066
    1. Muralikrishnan K., Balakrishnan B., Balasubramanian K., Visnegarawla F. (2012). Measurement of the effect of Isha yoga on cardiac autonomic nervous system using short-term heart rate variability. J. Ayurveda Integr. Med. 3 91–96. 10.4103/0975-9476.96528
    1. Nieto-Castanon A. (2020). Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN. Boston, MA: Hilbert-Press.
    1. Ogawa S., Tank D. W., Menon R., Ellermann J. M., Kim S. G., Merkle H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. U.S.A. 89 5951–5955. 10.1073/pnas.89.13.5951
    1. Osman A., Lamis D. A., Bagge C. L., Freedenthal S., Barnes S. M. (2016). The mindful attention awareness scale: further examination of dimensionality, reliability, and concurrent validity estimates. J. Pers. Assess. 98 189–199. 10.1080/00223891.2015.1095761
    1. Peterson C. T., Bauer S. M., Chopra D., Mills P. J., Maturi R. K. (2017). Effects of shambhavi mahamudra kriya, a multicomponent breath-based yogic practice (Pranayama), on perceived stress and general well-being. J. Evid. Based Complementary Altern. Med. 22 788–797. 10.1177/2156587217730934
    1. Petrovic P., Kalso E., Petersson K. M., Ingvar M. (2002). Placebo and opioid analgesia– imaging a shared neuronal network. Science 295 1737–1740. 10.1126/science.1067176
    1. Pilkonis P. A., Choi S. W., Reise S. P., Stover A. M., Riley W. T., Cella D., et al. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS(R)): depression, anxiety, and anger. Assessment 18 263–283. 10.1177/1073191111411667
    1. Poerio G. L., Sormaz M., Wang H. T., Margulies D., Jefferies E., Smallwood J. (2017). The role of the default mode network in component processes underlying the wandering mind. Soc. Cogn. Affect. Neurosci. 12 1047–1062. 10.1093/scan/nsx041
    1. Power J. D., Mitra A., Laumann T. O., Snyder A. Z., Schlaggar B. L., Petersen S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84 320–341. 10.1016/j.neuroimage.2013.08.048
    1. Raffone A., Marzetti L., Del Gratta C., Perrucci M. G., Romani G. L., Pizzella V. (2019). Toward a brain theory of meditation. Prog. Brain Res. 244 207–232. 10.1016/bs.pbr.2018.10.028
    1. Ridderinkhof K. R., van den Wildenberg W. P., Segalowitz S. J., Carter C. S. (2004). Neurocognitive mechanisms of cognitive control: the role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain Cogn. 56 129–140. 10.1016/j.bandc.2004.09.016
    1. Ritskes R., Ritskes-Hoitinga M., Stødkilde-Jørgensen H., BÊrentsen K., Hartman T. (2003). MRI scanning during zen meditation: the picture of enlightenment? Constructivism Hum. Sci. 8 85–90.
    1. Sadhasivam S., Alankar S., Maturi R., Vishnubhotla R. V., Mudigonda M., Pawale D., et al. (2020). Inner engineering practices and advanced 4-day isha yoga retreat are associated with cannabimimetic effects with increased endocannabinoids and short-term and sustained improvement in mental health: a prospective observational study of meditators. Evid. Based Complement Alternat. Med. 2020:8438272. 10.1155/2020/8438272
    1. Sadhasivam S., Alankar S., Maturi R., Williams A., Vishnubhotla R. V., Hariri S., et al. (2021). Isha yoga practices and participation in samyama program are associated with reduced HbA1C and systemic inflammation, improved lipid profile, and short-term and sustained improvement in mental health: a prospective observational study of meditators. Front. Psychol. 12:659667. 10.3389/fpsyg.2021.659667
    1. Selvaraj N., Shivplara N. B., MBhatia M., Santhosh J., Deepak K. K., Anand S. (2008). Heart rate dynamics during shambhavi mahamudra- a practice of Isha yoga. J. Complement Integr. Med. 5:22. 10.2202/1553-3840.1137
    1. Shiota M. N., Keltner D., John O. P. (2006). Positive emotion dispositions differentially associated with big five personality and attachment style. J. Posit. Psychol. 1 61–71. 10.1080/17439760500510833
    1. Smith B. W., Dalen J., Wiggins K., Tooley E., Christopher P., Bernard J. (2008). The brief resilience scale: assessing the ability to bounce back. Int. J. Behav. Med. 15 194–200. 10.1080/10705500802222972
    1. Smith S. M., Jenkinson M., Woolrich M. W., Beckmann C. F., Behrens T. E., Johansen-Berg H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl. 1) S208–S219. 10.1016/j.neuroimage.2004.07.051
    1. Song H., Zou Z., Kou J., Liu Y., Yang L., Zilverstand A., et al. (2015). Love-related changes in the brain: a resting-state functional magnetic resonance imaging study. Front. Hum. Neurosci. 9:71. 10.3389/fnhum.2015.00071
    1. Sridharan D., Levitin D. J., Menon V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. U.S.A. 105 12569–12574. 10.1073/pnas.0800005105
    1. Suardi A., Sotgiu I., Costa T., Cauda F., Rusconi M. (2016). The neural correlates of happiness: a review of PET and fMRI studies using autobiographical recall methods. Cogn. Affect. Behav. Neurosci. 16 383–392. 10.3758/s13415-016-0414-7
    1. Tang Y. Y., Lu Q., Feng H., Tang R., Posner M. I. (2015b). Short-term meditation increases blood flow in anterior cingulate cortex and insula. Front. Psychol. 6:212. 10.3389/fpsyg.2015.00212
    1. Tang Y. Y., Holzel B. K., Posner M. I. (2015a). The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 16 213–225. 10.1038/nrn3916
    1. Taren A. A., Gianaros P. J., Greco C. M., Lindsay E. K., Fairgrieve A., Brown K. W., et al. (2017). Mindfulness meditation training and executive control network resting state functional connectivity: a randomized controlled trial. Psychosom. Med. 79 674–683. 10.1097/PSY.0000000000000466
    1. Travis F., Nash J., Parim N., Cohen B. H. (2020). Does the MRI/fMRI procedure itself confound the results of meditation research? An evaluation of subjective and neurophysiological measures of TM practitioners in a simulated MRI environment. Front. Psychol. 11:728. 10.3389/fpsyg.2020.00728
    1. Wager T. D. (2008). “The neuroimaging of emotion,” in Handbook of Emotions, 3rd Edn, eds Lewis M., Haviland-Jones J. M., Barrett L. F. (New York, NY: The Guilford Press; ).
    1. Wallace B. (2001). The buddhist tradition of samatha : methods for refining and examining consciousness. J. Conscious. Stud. 6 175–187.
    1. Weng Y., Liu X., Hu H., Huang H., Zheng S., Chen Q., et al. (2020). Open eyes and closed eyes elicit different temporal properties of brain functional networks. Neuroimage 222:117230. 10.1016/j.neuroimage.2020.117230
    1. Whitfield-Gabrieli S., Nieto-Castanon A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2 125–141. 10.1089/brain.2012.0073
    1. Wilkinson H. A., Davidson K. M., Davidson R. I. (1999). Bilateral anterior cingulotomy for chronic noncancer pain. Neurosurgery 45 1129–1134; discussion1134–1126. 10.1097/00006123-199911000-00023
    1. Wu D., Deng H., Xiao X., Zuo Y., Sun J., Wang Z. (2017). Persistent neuronal activity in anterior cingulate cortex correlates with sustained attention in rats regardless of sensory modality. Sci. Rep. 7:43101. 10.1038/srep43101
    1. Yang C. C., Barrós-Loscertales A., Li M., Pinazo D., Borchardt V., Ávila C., et al. (2019). Alterations in brain structure and amplitude of low-frequency after 8 weeks of mindfulness meditation training in meditation-naïve subjects. Sci. Rep. 9:10977. 10.1038/s41598-019-47470-4
    1. Yang H., Leaver A. M., Siddarth P., Paholpak P., Ercoli L., St Cyr N. M., et al. (2016). Neurochemical and neuroanatomical plasticity following memory training and yoga interventions in older adults with mild cognitive impairment. Front. Aging Neurosci. 8:277. 10.3389/fnagi.2016.00277
    1. Zeidan F., Martucci K. T., Kraft R. A., McHaffie J. G., Coghill R. C. (2014). Neural correlates of mindfulness meditation-related anxiety relief. Soc. Cogn. Affect. Neurosci. 9 751–759. 10.1093/scan/nst041
    1. Zhao X. H., Wang P. J., Li C. B., Hu Z. H., Xi Q., Wu W. Y., et al. (2007). Altered default mode network activity in patient with anxiety disorders: an fMRI study. Eur. J. Radiol. 63 373–378. 10.1016/j.ejrad.2007.02.006

Source: PubMed

3
Tilaa