Kinetic modelling of serum S100b after traumatic brain injury

A Ercole, E P Thelin, A Holst, B M Bellander, D W Nelson, A Ercole, E P Thelin, A Holst, B M Bellander, D W Nelson

Abstract

Background: An understanding of the kinetics of a biomarker is essential to its interpretation. Despite this, little kinetic modelling of blood biomarkers can be found in the literature. S100b is an astrocyte related marker of brain injury used primarily in traumatic brain injury (TBI). Serum levels are expected to be the net result of a multi-compartmental process. The optimal sample times for TBI prognostication, and to follow injury development, are unclear. The purpose of this study was to develop a kinetic model to characterise the temporal course of serum S100b concentration after primary traumatic brain injury.

Methods: Data of serial serum S100b samples from 154 traumatic brain injury patients in a neurointensive care unit were retrospectively analysed, including only patients without secondary peaks of this biomarker. Additionally, extra-cranial S100b can confound samples earlier than 12 h after trauma and were therefore excluded. A hierarchical, Bayesian gamma variate kinetic model was constructed and the parameters estimated by Markov chain Monte Carlo sampling.

Results: We demonstrated that S100b concentration changes dramatically over timescales that are clinically important for early prognostication with a peak at 27.2 h (95 % credible interval [25.6, 28.8]). Baseline S100b levels was found to be 0.11 μg/L (95 % credible interval [0.10, 0.12]).

Conclusions: Even small differences in injury to sample time may lead to marked changes in S100b during the first days after injury. This must be taken into account in interpretation. The model offers a way to predict the peak and trajectory of S100b from 12 h post trauma in TBI patients, and to identify deviations from this, possibly indicating a secondary event. Kinetic modelling, providing an equation for the peak and projection, may offer a way to reduce the ambiguity in interpretation of, in time, randomly sampled acute biomarkers and may be generally applicable to biomarkers with, in time, well defined hits.

Keywords: Biomarkers; Human; Kinetics; S100b protein; Traumatic brain injury.

Figures

Fig. 1
Fig. 1
Demographics. a Age (b) Glasgow Coma Scale (GCS) at admission (c) Pupil responses: Normal, One responsive, Non-responsive (d) Glasgow Outcome Scale (GOS) barplot.(GOS 1 = dead - GOS 5 = full recovery)
Fig. 2
Fig. 2
Fitted kinetic gamma variate model. Calculated mean of S100b posterior prediction distribution as a function of time from our model. The dotted lines represent 95 % prediction intervals and within our model are interpreted as the parameter uncertainties excluding the variation from individual patients
Fig. 3
Fig. 3
Plot of S100b trajectories for all patients. Re-scaled and translated to minimise mean-square deviation from the from the model curve. The model curve is overlaid

References

    1. Gustavsson A, Svensson M, Jacobi F, Allgulander C, Alonso J, Beghi E, Dodel R, Ekman M, Faravelli C, Fratiglioni L, et al. Cost of disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011;21(10):718–779. doi: 10.1016/j.euroneuro.2011.08.008.
    1. Faul M, Wald MM, Rutland-Brown W, Sullivent EE, Sattin RW. Using a cost-benefit analysis to estimate outcomes of a clinical treatment guideline: testing theBrain Trauma Foundation guidelines for the treatment of severe traumatic brain injury. J Trauma. 2007;63(6):1271–1278. doi: 10.1097/TA.0b013e3181493080.
    1. Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury--a systematic review. CNS Neurosci Ther. 2013;19(8):556–565. doi: 10.1111/cns.12127.
    1. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL. Functions of S100 proteins. Curr Mol Med. 2013;13(1):24–57. doi: 10.2174/156652413804486214.
    1. Petzold A, Keir G, Lim D, Smith M, Thompson EJ. Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Res Bull. 2003;61(3):281–285. doi: 10.1016/S0361-9230(03)00091-1.
    1. Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, Apollo D, Rasmussen P, Mayberg MR, Janigro D. Serum S-100beta as a possible marker of blood–brain barrier disruption. Brain Res. 2002;940(1–2):102–104. doi: 10.1016/S0006-8993(02)02586-6.
    1. Reiber H. Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci. 2003;21(3–4):79–96.
    1. Plog BA, Dashnaw ML, Hitomi E, Peng W, Liao Y, Lou N, Deane R, Nedergaard M. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J Neurosci. 2015;35(2):518–526. doi: 10.1523/JNEUROSCI.3742-14.2015.
    1. Herrmann M, Jost S, Kutz S, Ebert AD, Kratz T, Wunderlich MT, Synowitz H. Temporal profile of release of neurobiochemical markers of brain damage after traumatic brain injury is associated with intracranial pathology as demonstrated in cranial computerized tomography. J Neurotrauma. 2000;17(2):113–122. doi: 10.1089/neu.2000.17.113.
    1. Usui A, Kato K, Abe T, Murase M, Tanaka M, Takeuchi E. S-100ao protein in blood and urine during open-heart surgery. Clin Chem. 1989;35(9):1942–1944.
    1. Ghanem G, Loir B, Morandini R, Sales F, Lienard D, Eggermont A, Lejeune F. On the release and half-life of S100B protein in the peripheral blood of melanoma patients. Int J Cancer. 2001;94(4):586–590. doi: 10.1002/ijc.1504.
    1. Ingebrigtsen T, Romner B. Biochemical serum markers of traumatic brain injury. J Trauma. 2002;52(4):798–808. doi: 10.1097/00005373-200204000-00038.
    1. Haimoto H, Hosoda S, Kato K. Differential distribution of immunoreactive S100-alpha and S100-beta proteins in normal nonnervous human tissues. Lab Invest. 1987;57(5):489–498.
    1. Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–1258.
    1. Martenson ED, Hansson LO, Nilsson B, von Schoultz E, Mansson Brahme E, Ringborg U, Hansson J. Serum S-100b protein as a prognostic marker in malignant cutaneous melanoma. J Clin Oncol. 2001;19(3):824–831.
    1. Pelinka LE, Toegel E, Mauritz W, Redl H. Serum S 100 B: a marker of brain damage in traumatic brain injury with and without multiple trauma. Shock. 2003;19(3):195–200. doi: 10.1097/00024382-200303000-00001.
    1. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21(11):1553–1561. doi: 10.1089/neu.2004.21.1553.
    1. Savola O, Pyhtinen J, Leino TK, Siitonen S, Niemela O, Hillbom M. Effects of head and extracranial injuries on serum protein S100B levels in trauma patients. J Trauma. 2004;56(6):1229–1234. doi: 10.1097/01.TA.0000096644.08735.72.
    1. da Rocha AB, Schneider RF, de Freitas GR, Andre C, Grivicich I, Zanoni C, Fossa A, Gehrke JT, Pereira Jotz G, Kaufmann M, et al. Role of serum S100B as a predictive marker of fatal outcome following isolated severe head injury or multitrauma in males. Clin Chem Lab Med. 2006;44(10):1234–1242. doi: 10.1515/CCLM.2006.218.
    1. Thelin EP, Johannesson L, Nelson D, Bellander BM. S100B is an important outcome predictor in traumatic brain injury. J Neurotrauma. 2013;30(7):519–528. doi: 10.1089/neu.2012.2553.
    1. Mercier E, Boutin A, Lauzier F, Fergusson DA, Simard JF, Zarychanski R, Moore L, McIntyre LA, Archambault P, Lamontagne F, et al. Predictive value of S-100beta protein for prognosis in patients with moderate and severe traumatic brain injury: systematic review and meta-analysis. Bmj. 2013;346:f1757. doi: 10.1136/bmj.f1757.
    1. Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj. 2006;20(7):759–765. doi: 10.1080/02699050500488207.
    1. Olivecrona M, Rodling-Wahlstrom M, Naredi S, Koskinen LO. S-100B and neuron specific enolase are poor outcome predictors in severe traumatic brain injury treated by an intracranial pressure targeted therapy. J Neurol Neurosurg Psychiatry. 2009;80(11):1241–1247. doi: 10.1136/jnnp.2008.158196.
    1. Thelin EP, Nelson DW, Bellander BM. Secondary peaks of S100B in serum relate to subsequent radiological pathology in traumatic brain injury. Neurocrit Care. 2014;20(2):217–229. doi: 10.1007/s12028-013-9916-0.
    1. Alber B, Hein R, Garbe C, Caroli U, Luppa PB. Multicenter evaluation of the analytical and clinical performance of the Elecsys S100 immunoassay in patients with malignant melanoma. Clin Chem Lab Med. 2005;43(5):557–563. doi: 10.1515/CCLM.2005.097.
    1. Muller K, Elverland A, Romner B, Waterloo K, Langbakk B, Unden J, Ingebrigtsen T. Analysis of protein S-100B in serum: a methodological study. Clin Chem Lab Med. 2006;44(9):1111–1114. doi: 10.1515/CCLM.2006.211.
    1. Smit LH, Korse CM, Bonfrer JM. Comparison of four different assays for determination of serum S-100B. Int J Biol Markers. 2005;20(1):34–42.
    1. Mussack T, Klauss V, Ruppert V, Gippner-Steppert C, Biberthaler P, Schiemann U, Hoffmann U, Jochum M. Rapid measurement of S-100B serum protein levels by Elecsys S100 immunoassay in patients undergoing carotid artery stenting or endarterectomy. Clin Biochem. 2006;39(4):349–356. doi: 10.1016/j.clinbiochem.2005.12.007.
    1. Sheppard CW. Mathematical considerations of indicator dilution techniques. Minn Med. 1954;37(2):93–104.
    1. Davenport R. The derivation of the gamma-variate relationship for tracer dilution curves. J Nucl Med. 1983;24(10):945–948.
    1. Plummer M. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003): 2003; Vienna, Austria. 2003. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling.
    1. Development Core Team R . R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008.
    1. Carpenter KL, Czosnyka M, Jalloh I, Newcombe VF, Helmy A, Shannon RJ, Budohoski KP, Kolias AG, Kirkpatrick PJ, Carpenter TA, et al. Systemic, local, and imaging biomarkers of brain injury: more needed, and better use of those already established? Front Neurol. 2015;6:26. doi: 10.3389/fneur.2015.00026.
    1. Shannon C. Proc Institute of Radio Engineers: 1949. 1949. Communication in the Presence of Noise; pp. 10–21.
    1. Goyal A, Failla MD, Niyonkuru C, Amin K, Fabio A, Berger RP, Wagner AK. S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J Neurotrauma. 2013;30(11):946–957. doi: 10.1089/neu.2012.2579.
    1. Niyonkuru C, Wagner AK, Ozawa H, Amin K, Goyal A, Fabio A. Group-based trajectory analysis applications for prognostic biomarker model development in severe TBI: a practical example. J Neurotrauma. 2013;30(11):938–945. doi: 10.1089/neu.2012.2578.

Source: PubMed

3
Tilaa