Diagnostic and predictive value of Doppler ultrasound for evaluation of the brain circulation in preterm infants: a systematic review

Fleur A Camfferman, Robbin de Goederen, Paul Govaert, Jeroen Dudink, Frank van Bel, Adelina Pellicer, Filip Cools, eurUS.brain group, Thais Agut, Ana Alarcon, Roberta Arena, Marco Bartocci, Mayka Bravo, Fernando Cabañas, Nuria Carreras, Olivier Claris, Jeroen Dudink, Monica Fumagalli, Paul Govaert, Sandra Horsch, Alessandro Parodi, Adelina Pellicer, Luca Ramenghi, Charles C Roehr, Sylke Steggerda, Eva Valverde, Fleur A Camfferman, Robbin de Goederen, Paul Govaert, Jeroen Dudink, Frank van Bel, Adelina Pellicer, Filip Cools, eurUS.brain group, Thais Agut, Ana Alarcon, Roberta Arena, Marco Bartocci, Mayka Bravo, Fernando Cabañas, Nuria Carreras, Olivier Claris, Jeroen Dudink, Monica Fumagalli, Paul Govaert, Sandra Horsch, Alessandro Parodi, Adelina Pellicer, Luca Ramenghi, Charles C Roehr, Sylke Steggerda, Eva Valverde

Abstract

Introduction: Very and extremely preterm infants frequently have brain injury-related long-term neurodevelopmental problems. Altered perfusion, for example, seen in the context of a hemodynamically significant patent ductus arteriosus (PDA), has been linked to injury of the immature brain. However, a direct relation with outcome has not been reviewed systematically.

Methods: A systematic review was conducted to provide an overview of the value of different cerebral arterial blood flow parameters assessed by Doppler ultrasound, in relation to brain injury, to predict long-term neurodevelopmental outcome in preterm infants.

Results: In total, 23 studies were included. Because of heterogeneity of studies, a meta-analysis of results was not possible. All included studies on resistance index (RI) showed significantly higher values in subjects with a hemodynamically significant PDA. However, absolute differences in RI values were small. Studies using Doppler parameters to predict brain injury and long-term neurodevelopmental outcome were inconsistent.

Discussion: There is no clear evidence to support the routine determination of RI or other Doppler parameters in the cerebral arteries to predict brain injury and long-term neurodevelopmental outcome in the preterm infant. However, there is evidence that elevated RI can point to the presence of a hemodynamically significant PDA.

Conflict of interest statement

A.P. has received funding from Chiesi. The authors have declared no competing interests.

Figures

Fig. 1. GMH/IVH: Doppler systematic review: arterial…
Fig. 1. GMH/IVH: Doppler systematic review: arterial flow indices.
AUVC area under the velocity curve, FVI flow velocity integral, Vmn mean velocity = MV in the text.
Fig. 2
Fig. 2
GMH/IVH: Doppler systematic review.
Fig. 3
Fig. 3
GMH/IVH: Doppler systematic review: bias results.

References

    1. Back SA. Cerebral white and gray matter injury in newborns: new insights into pathophysiology and management. Clin. Perinatol. 2014;41:1–24. doi: 10.1016/j.clp.2013.11.001.
    1. Meek JH, Tyszczuk L, Elwell CE, Wyatt JS. Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage. Arch. Dis. Child. Fetal Neonatal Ed. 1999;81:F15–F18. doi: 10.1136/fn.81.1.F15.
    1. Alderliesten T, et al. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J. Pediatr. 2013;162:698–704.e692. doi: 10.1016/j.jpeds.2012.09.038.
    1. Perlman JM, McMenamin JB, Volpe JJ. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. N. Engl. J. Med. 1983;309:204–209. doi: 10.1056/NEJM198307283090402.
    1. Perlman JM, Goodman S, Kreusser KL, Volpe JJ. Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome. N. Engl. J. Med. 1985;312:1353–1357. doi: 10.1056/NEJM198505233122104.
    1. Greisen G. Autoregulation of cerebral blood flow in newborn babies. Early Hum. Dev. 2005;81:423–428. doi: 10.1016/j.earlhumdev.2005.03.005.
    1. Wong FY, et al. Impaired autoregulation in preterm infants identified by using spatially resolved spectroscopy. Pediatrics. 2008;121:e604–e611. doi: 10.1542/peds.2007-1487.
    1. Faust K, et al. Short-term outcome of very-low-birthweight infants with arterial hypotension in the first 24 h of life. Arch. Dis. Child. Fetal Neonatal Ed. 2015;100:F388–F392. doi: 10.1136/archdischild-2014-306483.
    1. da Costa CS, et al. Monitoring of cerebrovascular reactivity for determination of optimal blood pressure in preterm infants. J. Pediatr. 2015;167:86–91. doi: 10.1016/j.jpeds.2015.03.041.
    1. Waitz M, et al. Risk factors associated with intraventricular hemorrhage in preterm infants with ≤28 weeks gestational age. Klin. Padiatr. 2016;228:245–250. doi: 10.1055/s-0042-111689.
    1. Osborn, D., Paradisis, M. & Evans, N. The effect of inotropes on morbidity and mortality in preterm infants with low systemic or organ blood flow. Cochrane Database Syst. Rev. CD005090 (2010).
    1. Shibasaki J, Toyoshima K, Kishigami M. Blood pressure and aEEG in the 96h after birth and correlations with neurodevelopmental outcome in extremely preterm infants. Early Hum. Dev. 2016;101:79–84. doi: 10.1016/j.earlhumdev.2016.08.010.
    1. Osborn DA, Evans N, Kluckow M. Hemodynamic and antecedent risk factors of early and late periventricular/intraventricular hemorrhage in premature infants. Pediatrics. 2003;112:33–39. doi: 10.1542/peds.112.1.33.
    1. Riera J, et al. New time-frequency method for cerebral autoregulation in newborns: predictive capacity for clinical outcomes. J. Pediatr. 2014;165:897–902 e891. doi: 10.1016/j.jpeds.2014.06.008.
    1. Riera J, Cabanas F, Serrano JJ, Madero R, Pellicer A. New developments in cerebral blood flow autoregulation analysis in preterm infants: a mechanistic approach. Pediatr. Res. 2016;79:460–465. doi: 10.1038/pr.2015.231.
    1. Raju TNK. Cerebral Doppler studies in the fetus and newborn infant. J. Pediatr. 1991;119:165–174. doi: 10.1016/S0022-3476(05)80722-X.
    1. Bada HS, Hajjar W, Chua C, Sumnar DS. Noninvasive diagnosis of neonatal asphyxia and intraventricular hemorrhage by Doppler ultrasound. J. Pediatr. 1979;95:775–779. doi: 10.1016/S0022-3476(79)80735-0.
    1. Vutskits L. Cerebral blood flow in the neonate. Paediatr. Anaesth. 2014;24:22–29. doi: 10.1111/pan.12307.
    1. Larsen FS, Olsen KS, Hansen BA, Paulson OB, Knudsen GM. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994;25:1985–1988. doi: 10.1161/01.STR.25.10.1985.
    1. Benders MJ, Hendrikse J, de Vries L, Groenendaal F, van Bel F. Doppler-assessed cerebral blood flow velocity in the neonate as estimator of global cerebral blood volume flow measured using phase-contrast magnetic resonance angiography. Neonatology. 2013;103:21–26. doi: 10.1159/000342336.
    1. Archer LN, Levene MI, Evans DH. Cerebral artery Doppler ultrasonography for prediction of outcome after perinatal asphyxia. Lancet. 1986;2:1116–1118. doi: 10.1016/S0140-6736(86)90528-3.
    1. Hanlo PW, et al. Value of transcranial Doppler indices in predicting raised ICP in infantile hydrocephalus. A study with review of the literature. Childs Nerv. Syst. 1995;11:595–603. doi: 10.1007/BF00300999.
    1. Goh D, Minns RA. Intracranial pressure and cerebral arterial flow velocity indices in childhood hydrocephalus: current review. Childs Nerv. Syst. 1995;11:392–396. doi: 10.1007/BF00717403.
    1. Higgins, J. P. T. & Green, S. Cochrane Handbook for Systematic Reviews of Interventions (The Cochrane Collaboration, 2011).
    1. Perlman JM, Hill A, Volpe JJ. The effect of patent ductus arteriosus on flow velocity in the anterior cerebral arteries: ductal steal in the premature newborn infant. J. Pediatr. 1981;99:767–771. doi: 10.1016/S0022-3476(81)80408-8.
    1. Martin CG, Snider AR, Katz SM, Peabody JL, Brady JP. Abnormal cerebral blood flow patterns in preterm infants with a large patent ductus arteriosus. J. Pediatr. 1982;101:587–593. doi: 10.1016/S0022-3476(82)80715-4.
    1. Perlman JM, Volpe JJ. Cerebral blood flow velocity in relation to intraventricular hemorrhage in the premature newborn infant. J. Pediatr. 1982;100:956–959. doi: 10.1016/S0022-3476(82)80527-1.
    1. Ellison P, Eichorst D, Rouse M, Heimler R, Denny J. Changes in cerebral hemodynamics in preterm infants with and without patent ductus arteriosus. Acta Paediatr. Scand. Suppl. 1983;311:23–27. doi: 10.1111/j.1651-2227.1983.tb09879.x.
    1. Deeg KH, et al. [Doppler sonographic flow parameter of the anterior cerebral artery in patent ductus arteriosus of the newborn infant compared to a healthy control sample] Klin. Padiatr. 1986;198:463–470. doi: 10.1055/s-2008-1033908.
    1. Van Bel F, Van de Bor M, Stijnen T, Baan J, Ruys JH. Aetiological role of cerebral blood-flow alterations in development and extension of peri-intraventricular haemorrhage. Dev. Med. Child Neurol. 1987;29:601–614. doi: 10.1111/j.1469-8749.1987.tb08502.x.
    1. Kupferschmid C, Lang D, Pohlandt F. Sensitivity, specificity and predictive value of clinical findings, m-mode echocardiography and continuous-wave Doppler sonography in the diagnosis of symptomatic patent ductus arteriosus in preterm infants. Eur. J. Pediatr. 1988;147:279–282. doi: 10.1007/BF00442695.
    1. van Bel F, et al. Cerebral blood-flow velocity during the first week of life of preterm infants and neurodevelopment at two years. Dev. Med. Child Neurol. 1989;31:320–328. doi: 10.1111/j.1469-8749.1989.tb04001.x.
    1. Shortland DB, Levene M, Archer N, Shaw D, Evans D. Cerebral blood flow velocity recordings and the prediction of intracranial haemorrhage and ischaemia. J. Perinat. Med. 1990;18:411–417. doi: 10.1515/jpme.1990.18.6.411.
    1. Shortland DB, et al. Patent ductus arteriosus and cerebral circulation in preterm infants. Dev. Med. Child Neurol. 1990;32:386–393. doi: 10.1111/j.1469-8749.1990.tb16957.x.
    1. Mullaart RA, et al. Cerebral blood flow fluctuation in neonatal respiratory distress and periventricular haemorrhage. Early Hum. Dev. 1994;37:179–185. doi: 10.1016/0378-3782(94)90077-9.
    1. Scherjon SA, Smolders-DeHaas H, Oosting H, Kok JH, Zondervan HA. Neonatal cerebral circulation in relation to neurosonography and neurological outcome: a pulsed Doppler study. Neuropediatrics. 1994;25:208–213. doi: 10.1055/s-2008-1073023.
    1. Rennie JM, Coughtrey H, Morley R, Evans DH. Comparison of cerebral blood flow velocity estimation with cranial ultrasound imaging for early prediction of outcome in preterm infants. J. Clin. Ultrasound. 1995;23:27–31. doi: 10.1002/jcu.1870230106.
    1. Coughtrey H, Rennie JM, Evans DH. Variability in cerebral blood flow velocity: observations over one minute in preterm babies. Early Hum. Dev. 1997;47:63–70. doi: 10.1016/S0378-3782(96)01769-0.
    1. Weir FJ, Ohlsson A, Myhr TL, Fong K, Ryan ML. A patent ductus arteriosus is associated with reduced middle cerebral artery blood flow velocity. Eur. J. Pediatr. 1999;158:484–487. doi: 10.1007/s004310051125.
    1. D'Orey MC, et al. Abnormal cerebral flow patterns in preterm infants of less than 33 weeks of gestational age with a large patent ductus arteriosus. Prenat. Neonatal Med. 2000;5:102–107.
    1. Evans N, Kluckow M, Simmons M, Osborn D. Which to measure, systemic or organ blood flow? Middle cerebral artery and superior vena cava flow in very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2002;87:F181–F184. doi: 10.1136/fn.87.3.F181.
    1. Okumura A, et al. Cerebral hemodynamics during early neonatal period in preterm infants with periventricular leukomalacia. Brain Dev. 2002;24:693–697. doi: 10.1016/S0387-7604(02)00083-9.
    1. Ojala T, et al. Low cerebral blood flow resistance in nonventilated preterm infants predicts poor neurologic outcome. Pediatr. Crit. Care Med. 2004;5:264–268. doi: 10.1097/01.PCC.0000112368.32965.45.
    1. Jim WT, et al. Cerebral hemodynamic change and intraventricular hemorrhage in very low birth weight infants with patent ductus arteriosus. Ultrasound Med. Biol. 2005;31:197–202. doi: 10.1016/j.ultrasmedbio.2004.10.006.
    1. Fukuda S, et al. Hemodynamics of the cerebral arteries of infants with periventricular leukomalacia. Pediatrics. 2006;117:1–8. doi: 10.1542/peds.2004-1719.
    1. Brissaud O, et al. Cranial ultrasonography and transfontanellar Doppler in premature neonates (24–32 weeks of gestation): dynamic evolution and association with a severe adverse neurological outcome at hospital discharge in the Aquitaine cohort, 2003–2005. Eur. J. Radiol. 2012;81:2396–2402. doi: 10.1016/j.ejrad.2011.11.017.
    1. Ecury-Goossen GM, et al. Resistive indices of cerebral arteries in very preterm infants: values throughout stay in the neonatal intensive care unit and impact of patent ductus arteriosus. Pediatr. Radiol. 2016;46:1291–1300. doi: 10.1007/s00247-016-3615-x.
    1. Evans DH, Levene MI, Shortland DB, Archer LN. Resistance index, blood flow velocity, and resistance-area product in the cerebral arteries of very low birth weight infants during the first week of life. Ultrasound Med. Biol. 1988;14:103–110. doi: 10.1016/0301-5629(88)90176-7.
    1. Aaslid, R, Lundar, K. F. & Nornes, H. Estimation of cerebral perfusion pressure from arterial blood pressure and transcranial Doppler recordings. In Proc. Sixth International Symposium on Intracranial Pressure (eds Miller, J. D., Teasdale, G. M., Rowan, J. O., Galbraith, S. L. & Mendelow, A. D.) 226–229 (Springer-Verlag, Berlin, Heidelberg, 1986).
    1. Noori S, et al. Failure of ductus arteriosus closure is associated with increased mortality in preterm infants. Pediatrics. 2009;123:e138–e144. doi: 10.1542/peds.2008-2418.
    1. Heuchan AM, Clyman RI. Managing the patent ductus arteriosus: current treatment options. Arch. Dis. Child. Fetal Neonatal Ed. 2014;99:F431–F436. doi: 10.1136/archdischild-2014-306176.
    1. Chock VY, et al. Predictors of bronchopulmonary dysplasia or death in premature infants with a patent ductus arteriosus. Pediatr. Res. 2014;75:570–575. doi: 10.1038/pr.2013.253.
    1. Lemmers, P. M. et al. Patent ductus arteriosus and brain volume. Pediatrics137, e20153090 (2016).
    1. Bravo MC, et al. Randomised controlled clinical trial of standard versus echocardiographically guided ibuprofen treatment for patent ductus arteriosus in preterm infants: a pilot study. J. Matern. Fetal Neonatal Med. 2014;27:904–909. doi: 10.3109/14767058.2013.846312.
    1. Weisz DE, More K, McNamara PJ, Shah PS. PDA ligation and health outcomes: a meta-analysis. Pediatrics. 2014;133:e1024–e1046. doi: 10.1542/peds.2013-3431.
    1. Spach MS, Serwer GA, Anderson PAW, Canent RV, Levin AR. Pulsatile aortopulmonary pressure-flow dynamics of patent ductus arteriosus in patients with various hemodynamic states. Circulation. 1980;61:110–122. doi: 10.1161/01.CIR.61.1.110.
    1. Saliba EM, et al. Intraoperative measurements of cerebral haemodynamics during ductus arteriosus ligation in preterm infants. Eur. J. Pediatr. 1991;150:362–365. doi: 10.1007/BF01955941.
    1. Couture, A. & Veyrac, C. Transfontaneller Doppler Imaging in Neonates (Springer, Berlin, 2001).
    1. Chock VY, Ramamoorthy C, Van Meurs KP. Cerebral autoregulation in neonates with a hemodynamically significant patent ductus arteriosus. J. Pediatr. 2012;160:936–942. doi: 10.1016/j.jpeds.2011.11.054.
    1. Hendricks SK, et al. Doppler umbilical artery waveform indices-Normal values from fourteen to forty-two weeks. Am. J. Obstet. Gynecol. 1989;161:761–765. doi: 10.1016/0002-9378(89)90397-9.
    1. Altman DI, Perlman JM, Volpe JJ, Powers WJ. Cerebral oxygen metabolism in newborns. Pediatrics. 1993;92:99–104.
    1. Keunen K, et al. Brain volumes at term-equivalent age in preterm infants: imaging biomarkers for neurodevelopmental outcome through early school age. J. Pediatr. 2016;172:88–95. doi: 10.1016/j.jpeds.2015.12.023.
    1. Abdul-Khaliq H, Segerer H, Luck W, Obladen M. Increased cerebral blood flow velocities in newborn infants of smoking mothers. Eur. J. Pediatr. 1993;152:232–235. doi: 10.1007/BF01956151.
    1. Milona E, et al. Evaluation of cerebral perfusion in small for gestational age neonates in the first postnatal week using colour doppler sonography. Arch. Dis. Child. 2014;99:A383–A384. doi: 10.1136/archdischild-2014-306576.111.
    1. Fukuda S, et al. Influence of premature rupture of membrane on the cerebral blood flow in low-birth-weight infant after the delivery. Brain Dev. 2010;32:631–635. doi: 10.1016/j.braindev.2009.09.023.
    1. Fenton AC, Woods KL, Evans DH, Levene MI. Cerebrovascular carbon dioxide reactivity and failure of autoregulation in preterm infants. Arch. Dis. Child. 1992;67:835–839. doi: 10.1136/adc.67.7_Spec_No.835.
    1. van Bel F, van de Bor M, Baan J, Ruys JH. The influence of abnormal blood gases on cerebral blood flow velocity in the preterm newborn. Neuropediatrics. 1988;19:27–32. doi: 10.1055/s-2008-1052397.
    1. D’Orey MC, et al. Cerebral blood flow velocimetry in infants with polycythemia: effects of partial exchange transfusion. Prenat. Neonatal Med. 1999;4:135–138.
    1. Hamon I, Hascoet JM, Debbiche A, Vert P. Effects of fentanyl administration on general and cerebral haemodynamics in sick newborn infants. Acta Paediatr. 1996;85:361–365. doi: 10.1111/j.1651-2227.1996.tb14033.x.
    1. Ichihashi K, et al. Effect of head position to the cerebral arterial flow in neonates. Early Hum. Dev. 2002;69:35–46. doi: 10.1016/S0378-3782(02)00037-3.
    1. Buckley EM, et al. Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound. Opt. Express. 2009;17:12571–12581. doi: 10.1364/OE.17.012571.
    1. Duckrow RB. Decreased cerebral blood flow during acute hyperglycemia. Brain Res. 1995;703:145–150. doi: 10.1016/0006-8993(95)01077-7.
    1. Pezzati M, et al. Early postnatal Doppler assessment of cerebral blood flow velocity in healthy preterm and term infants. Dev. Med. Child Neurol. 2002;44:745–752. doi: 10.1111/j.1469-8749.2002.tb00281.x.
    1. Setanen S, et al. Neurological examination combined with brain MRI or cranial US improves prediction of neurological outcome in preterm infants. Early Hum. Dev. 2014;90:851–856. doi: 10.1016/j.earlhumdev.2014.09.007.
    1. Greisen G, et al. Cerebral blood flow in the newborn infant: comparison of Doppler ultrasound and 133xenon clearance. J. Pediatr. 1984;104:411–418. doi: 10.1016/S0022-3476(84)81108-7.
    1. Kluckow M, Evans N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch. Dis. Child. Fetal Neonatal Ed. 2000;82:F182–F187. doi: 10.1136/fn.82.3.F182.
    1. Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2000;82:F188–F194. doi: 10.1136/fn.82.3.F188.
    1. Ficial B, et al. Validation study of the accuracy of echocardiographic measurements of systemic blood flow volume in newborn infants. J. Am. Soc. Echocardiogr. 2013;26:1365–1371. doi: 10.1016/j.echo.2013.08.019.
    1. Lee A, et al. Superior vena cava flow: feasibility and reliability of the off-line analyses. Arch. Dis. Child. Fetal Neonatal Ed. 2010;95:F121–F125. doi: 10.1136/adc.2009.176883.
    1. McGovern M, Miletin J. A review of superior vena cava flow measurement in the neonate by functional echocardiography. Acta Paediatr. 2017;106:22–29. doi: 10.1111/apa.13584.
    1. Mertens L, et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC) J. Am. Soc. Echocardiogr. 2011;24:1057–1078. doi: 10.1016/j.echo.2011.07.014.
    1. Camfferman FA, et al. Calibrating Doppler imaging of preterm intracerebral circulation using a microvessel flow phantom. Front. Hum. Neurosci. 2015;8:1068. doi: 10.3389/fnhum.2014.01068.
    1. Ikeda T, et al. Changes in the perfusion waveform of the internal cerebral vein and intraventricular hemorrhage in the acute management of extremely low-birth-weight infants. Eur. J. Pediatr. 2015;174:331–338. doi: 10.1007/s00431-014-2396-1.

Source: PubMed

3
Tilaa