Clinical Trials with Combination of Cytokine-Induced Killer Cells and Dendritic Cells for Cancer Therapy

Francesca Garofano, Maria A Gonzalez-Carmona, Dirk Skowasch, Roland Schmidt-Wolf, Alina Abramian, Stefan Hauser, Christian P Strassburg, Ingo G H Schmidt-Wolf, Francesca Garofano, Maria A Gonzalez-Carmona, Dirk Skowasch, Roland Schmidt-Wolf, Alina Abramian, Stefan Hauser, Christian P Strassburg, Ingo G H Schmidt-Wolf

Abstract

Adoptive cellular immunotherapy (ACI) is a promising treatment for a number of cancers. Cytokine-induced killer cells (CIKs) are considered to be major cytotoxic immunologic effector cells. Usually cancer cells are able to suppress antitumor responses by secreting immunosuppressive factors. CIKs have significant antitumor activity and are capable of eradicating tumors with few side effects. They are a very encouraging cell population used against hematological and solid tumors, with an inexpensive expansion protocol which could yield to superior clinical outcome in clinical trials employing adoptive cellular therapy combination. In the last decade, clinical protocols have been modified by enriching lymphocytes with CIK cells. They are a subpopulation of lymphocytes characterized by the expression of CD3+ and CD56+ wich are surface markers common to T lymphocytes and natural killer NK cells. CIK cells are mainly used in two diseases: in hematological patients who suffer relapse after allogeneic transplantation and in patients with hepatic carcinoma after surgical ablation to eliminate residual tumor cells. Dendritic cells DCs could play a pivotal role in enhancing the antitumor efficacy of CIKs.

Keywords: Cytokine-induced killer cells; Dendritic cells; adoptive cellular immunotherapy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Signaling pathway of DNAM-1 receptor.
Figure 2
Figure 2
Schematic representation of the Fas/Fas-L pathway.

References

    1. Schmidt-Wolf I.G., Negrin R.S., Kiem H.P., Blume K.G., Weissman I.L. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor activity. Exp. Med. 1991;174:139–149. doi: 10.1084/jem.174.1.139.
    1. Sangiolo D., Martinuzzi E., Todorovic M., Vitaggio K., Vallario A., Jordaney N., Carnevale-Schianca F., Capaldi A., Geuna M., Casorzo L., et al. Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: Implications for their infusion across major HLA barriers. Int. Immunol. 2008;20:841–848. doi: 10.1093/intimm/dxn042.
    1. Lopez R.D., Waller E.K., Lu P.H., Negrin R.S. CD58/LFA-3 and IL-12 provided by activated monocytes are critical in the in vitro expansion of CD56+ T cells. Cancer Immunol. Immunother. 2000;49:629–640. doi: 10.1007/s002620000148.
    1. Verneris M.R., Karami M., Baker J., Jayaswal A., Negrin R.S. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+T cells. Blood. 2004;103:3065–3072. doi: 10.1182/blood-2003-06-2125.
    1. Groh V., Rhinehart R., Secrist H., Bauer S., Grabstein K.H., Spies T. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA. 1999;96:6879–6884. doi: 10.1073/pnas.96.12.6879.
    1. Iudicone P., Fioravanti D., Cicchetti E., Zizzari I.G., Pandolfi A., Scocchera R., Fazzina R., Pierelli L. Interleukin-15 enhances cytokine induced killer (CIK) cytotoxic potential against epithelial cancer cell lines via an innate pathway. Hum. Immunol. 2016;77:1239–1247. doi: 10.1016/j.humimm.2016.09.003.
    1. Rettinger E., Kuçi S., Naumann I., Becker P., Kreyenberg H., Anzaghe M., Willasch A., Koehl U., Bug G., Ruthardt M., et al. The cytotoxic potential of interleukin-15-stimulated cytokine-induced killer cells against leukemia cells. Cytotherapy. 2012;14:91–103. doi: 10.3109/14653249.2011.613931.
    1. Rajbhandary S., Zhao M.F., Zhao N., Lu W.Y., Zhu H.B., Xiao X., Deng Q., Li Y.M. Multiple cytotoxic factors involved in IL-21 enhanced antitumor function of CIK cells signaled through STAT-3 and STAT5b pathways. Asian Pac. J. Cancer Prev. 2013;14:5825–5831. doi: 10.7314/APJCP.2013.14.10.5825.
    1. Cappuzzello E., Tosi A., Zanovello P., Sommaggio R., Rosato A. Retargeting cytokine-induced killer cell activity by CD16 engagement with clinical-grade antibodies. Oncoimmunology. 2016;5:e1199311. doi: 10.1080/2162402X.2016.1199311.
    1. Schmidt-Wolf G.D., Negrin R.S., Schmidt-Wolf I.G. Activated T cells and cytokine-induced CD3+CD56+killer cells. Ann. Hematol. 1997;74:51–56. doi: 10.1007/s002770050257.
    1. Thorne S.H., Negrin R.S., Contag C.H. Synergistic antitumor effects of immune cell-viral biotherapy. Science. 2006;311:1780–1784. doi: 10.1126/science.1121411.
    1. Marten A., Ziske C., Schottker B., Renoth S., Weineck S., Buttgereit P., Schakowski F., Von Rücker A., Sauerbruch T., Schmidt-Wolf I.G.H. Interactions between dendritic cells and cytokine-induced killer cells lead to an activation of both populations. J. Immunother. 2001;24:502–510. doi: 10.1097/00002371-200111000-00007.
    1. Franceschetti M., Pievani A., Borleri G., Vago L., Fleischhauer K., Golay J., Introna M. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp. Hematol. 2009;37:616–628. doi: 10.1016/j.exphem.2009.01.010.
    1. Jelenčić V., Lenartić M., Wensveen F.M., Polić B. NKG2D: A versatile player in the immune system. Immunol. Lett. 2017;189:48–53. doi: 10.1016/j.imlet.2017.04.006.
    1. Salih H.R., Antropius H., Gieseke F., Lutz S.Z., Kanz L., Rammensee H.G., Steinle A. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood. 2003;102:1389–1396. doi: 10.1182/blood-2003-01-0019.
    1. Pende D., Rivera P., Marcenaro S., Chang C.C., Biassoni R., Conte R., Kubin M., Cosman D., Ferrone S., Moretta L., et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: Analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 2002;62:6178–6186.
    1. De Andrade L.F., Smyth M.J., Martinet L. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 2014;92:237–244. doi: 10.1038/icb.2013.95.
    1. Shibuya A., Lanier L.L., Phillips J.H. Protein Kinase C Is Involved in the Regulation of Both Signaling and Adhesion Mediated by DNAX Accessory Molecule-1 Receptor. J. Immunol. 1998;161:1671–1676.
    1. Valgardsdottir R., Capitanio C., Texido G., Pende D., Cantoni C., Pesenti E., Rambaldi A., Golay J., Introna M. Direct involvement of CD56 in cytokine-induced killer-mediated lysis of CD56+ hematopoietic target cells. Exp. Hematol. 2014;42:1013–1021. doi: 10.1016/j.exphem.2014.08.005.
    1. Dai C., Lin F., Geng R., Ge X., Tang W., Chang J., Wu Z., Liu X., Lin Y., Zhang Z., et al. Implication of combined PD-L1/PD-1 blockade with cytokine-induced killer cells as a synergistic immunotherapy for gastrointestinal cancer. Oncotarget. 2016;7:10332–10344. doi: 10.18632/oncotarget.7243.
    1. O’Brien D.I., Nally K., Kelly R.G., O’Connor T.M., Shanahan F., O’Connell J. Targeting the Fas/Fas ligand pathway in cancer. Expert Opin. Ther. Targets. 2005;9:1031–1044. doi: 10.1517/14728222.9.5.1031.
    1. Waring P., Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol. Cell Biol. 1999 doi: 10.1046/j.1440-1711.1999.00837.x.
    1. Verneris M.R., Kornacker M., Mailänder V., Negrin R.S. Resistance of ex vivo expanded CD3+CD56+ T cells to Fas-mediated apoptosis. Cancer Immunol. Immunother. 2000;49:335–345. doi: 10.1007/s002620000111.
    1. Durrieu L., Dieng M.M., Le Deist F., Haddad E. Cord blood-derived and peripheral blood-derived cytokine-induced killer cells are sensitive to Fas-mediated apoptosis. Biol. Blood Marrow Transplant. 2013;9:1407–1411. doi: 10.1016/j.bbmt.2013.07.007.
    1. Ladhams A., Schmidt C., Sing G., Butterworth L., Fielding G., Tesar P., Strong R., Leggett B., Powell L., Maddern G., et al. Treatment of non-resectable hepatocellular carcinoma with autologous tumor-pulsed dendritic cells. J. Gastroenterol. Hepatol. 2002;17:889–896. doi: 10.1046/j.1440-1746.2002.02817.x.
    1. Llovet J., Briux J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 2003;37:429–442. doi: 10.1053/jhep.2003.50047.
    1. Llovet J.M., Ricci S., Mazzaferro V., Hilgard P., Gane E., Blanc J.F., de Oliveira A.C., Santoro A., Raoul J.L., Forner A., et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008;359:378–390. doi: 10.1056/NEJMoa0708857.
    1. Bruix J., Qin S., Merle P., Granito A., Huang Y.H., Bodoky G., Pracht M., Yokosuka O., Rosmorduc O., Breder V., et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389:56–66. doi: 10.1016/S0140-6736(16)32453-9.
    1. Kudo M., Finn R.S., Qin S., Han K.H., Ikeda K., Piscaglia F., Baron A., Park J.W., Han G., Jassem J., et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet. 2018;391:1163–1173. doi: 10.1016/S0140-6736(18)30207-1.
    1. Abou-Alfa G.K., Meyer T., Cheng A.L., El-Khoueiry A.B., Rimassa L., Ryoo B.Y., Cicin I., Merle P., Chen Y., Park J.W., et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018;379:54–63. doi: 10.1056/NEJMoa1717002.
    1. Zhu A.X., Park J.O., Ryoo B.Y., Yen C.J., Poon R., Pastorelli D., Blanc J.F., Chung H.C., Baron A.D., Pfiffer T.E., et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. Lancet. 2015 doi: 10.1016/S1470-2045(15)00050-9.
    1. El-Khoueiry A.B., Sangro B., Yau T., Crocenzi T.S., Kudo M., Hsu C., Kim T.Y., Choo S.P., Trojan J., Welling T.H., et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 2017;389:2492–2502. doi: 10.1016/S0140-6736(17)31046-2.
    1. Zhu A.X., Finn R.S., Edeline J., Cattan S., Ogasawara S., Palmer D., Verslype C., Zagonel V., Fartoux L., Vogel A., et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018;19:940–952. doi: 10.1016/S1470-2045(18)30351-6.
    1. Takayama T., Sekine T., Makuuchi M., Yamasaki S., Kosuge T., Yamamoto J., Shimada K., Sakamoto M., Hirohashi S., Ohashi Y., et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocellular carcinoma: A randomized trial. Lancet. 2000;356:802–807. doi: 10.1016/S0140-6736(00)02654-4.
    1. Xie F., Zhang X., Li H., Zheng T., Xu F., Shen R., Yan L., Yang J., He J. Adoptive Immunotherapy in Postoperative Hepatocellular Carcinoma: A Systemic Review. PLoS ONE. 2012;7:e42879. doi: 10.1371/journal.pone.0042879.
    1. Zhou W., Wu M., Yao X., Yang J. The Effects of Combined Hepatectomy and Immunochemotherapy on Postoperative Recurrence of Primary Liver Cancer. Chin. Ger. J. Clin. Oncol. 2002;1:163–165. doi: 10.1007/BF02851714.
    1. Xie L., Pang R., Jin Y., Xiang S., Li H. Effects of hepatic artery chemotherapeutic embolization combined with perfusing LAK cells into hepatic artery after radical operation of liver cancer. Chin. J. Hepatol. 2000;8:142–143.
    1. Wang H., Liu A., Bo W., Feng X., Hu Y., Tian L., Zhang H., Tang X. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma patients after curative resection, a systematic review and meta-analysis. Dig. Liver Dis. 2016;48:1275–1282. doi: 10.1016/j.dld.2016.07.010.
    1. Hao M.Z., Lin H.L., Chen Q., Ye Y.B., Chen Q.Z., Chen M.S. Efficacy of transcatheter arterial chemoembolization combined with cytokine-induced killer cell therapy on hepatocellular carcinoma: A comparative study. Chin. J. Cancer. 2010;29:172–177. doi: 10.5732/cjc.009.10410.
    1. Wang J.P., Li W., Huang Z.L., Wu P.H., Li X.S., Wei Y.D., Zhou Q.M., Pan C.C., Xia J.C., Zhao M. Value of CIK in the treatment of TACE combined with RFA for HCC in long-term survival and prognostic analysis. Chin. Med J. 2012;92:3062–3066.
    1. Lee J.H., Lee J.H., Lim Y.S., Yeon J.E., Song T.J., Yu S.J., Gwak G.Y., Kim K.M., Kim Y.J., Lee J.W., et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology. 2015;148:1383–1391. doi: 10.1053/j.gastro.2015.02.055.
    1. He G., Zheng C., Huo H., Zhang H., Zhu Z., Li J., Zhang H. TACE combined with dendritic cells and cytokine-induced killer cells in the treatment of hepatocellular carcinoma: A meta-analysis. Int. Immunopharmacol. 2016;40:436–442. doi: 10.1016/j.intimp.2016.09.015.
    1. Cai X.R., Li X., Lin J.X., Wang T.T., Dong M., Chen Z.H., Jia C.C., Hong Y.F., Lin Q., Wu X.Y. Autologous transplantation of cytokine-induced killer cells as an adjuvant therapy for hepatocellular carcinoma in Asia: An update meta-analysis and systematic review. Oncotarget. 2017;8:31318–31328. doi: 10.18632/oncotarget.15454.
    1. American Cancer Society . Global Cancer Facts & Figures. 2nd ed. American Cancer Society; Atlanta, GA, USA: 2011.
    1. Liu K., Song G., Hu X., Zhou Y., Li Y., Chen Q., Feng G. A Positive Role of Cytokine-Induced Killer Cell Therapy on Gastric Cancer Therapy in a Chinese Population: A Systematic Meta-Analysis. Med. Sci. Monit. 2015;21:3363–3370. doi: 10.12659/MSM.894504.
    1. Douillard J.Y., Oliner K.S., Siena S., Tabernero J., Burkes R., Barugel M., Humblet Y., Bodoky G., Cunningham D., Jassem J., et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 2013;369:1023–1034. doi: 10.1056/NEJMoa1305275.
    1. Heinemann V., von Weikersthal L.F., Decker T., Kiani A., Vehling-Kaiser U., Al-Batran S.E., Heintges T., Lerchenmüller C., Kahl C., Seipelt G., et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): A randomised, open-label, phase 3 trial. Lancet Oncol. 2014;15:1065–1075. doi: 10.1016/S1470-2045(14)70330-4.
    1. Mizukoshi E., Yamashita T., Arai K., Sunagozaka H., Ueda T., Arihara F., Kagaya T., Fushimi K., Kaneko S. Enhancement of tumor-associated antigen-specific t cell responses by radiofrequency ablation of hepatocellular carcinoma. Hepatology. 2013;57:1448–1457. doi: 10.1002/hep.26153.
    1. Fujiwara T., Nakatsura T. Radiofrequency ablation for hepatocellular carcinoma induces glypican-3 peptide-specific cytotoxic t lymphocytes. Int. J. Oncol. 2012;40:63–70.
    1. Li X., Dai X., Shi L., Jiang Y., Chen X., Chen L., Zhao J., Qiang W., Wu J., Ji M., et al. Phase II/III Study of Radiofrequency Ablation Combined with Cytokine-Induced Killer Cells Treating Colorectal Liver Metastases. Cell Physiol. Biochem. 2016;40:137–145. doi: 10.1159/000452531.
    1. Lowenfels A.B., Maisonneuve P. Epidemiology and risk factors for pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 2006;20:197–209. doi: 10.1016/j.bpg.2005.10.001.
    1. Hidalgo M. Pancreatic Cancer. N. Engl. J. Med. 2010;362:1605–1617. doi: 10.1056/NEJMra0901557.
    1. Ryan D.P., Hong T.S., Bardeesy N. Pancreatic Adenocarcinoma. N. Engl. J. Med. 2014;371:1039–1049. doi: 10.1056/NEJMra1404198.
    1. Jemal A., Bray F., Center M.M., Ferlay J., Ward E., Forman D. Global cancer statistics. CA Cancer J. Clin. 2011;61:69–90. doi: 10.3322/caac.20107.
    1. Burris H.A., Moore M.J., Andersen J., Green M.R., Rothenberg M.L., Modiano M.R., Christine Cripps M., Portenoy R.K., Storniolo A.M., Tarassoff P. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 1997;15:2403–2413. doi: 10.1200/JCO.1997.15.6.2403.
    1. Chen L., Zhang X. Primary analysis for clinical efficacy of immunotherapy in patients with pancreatic cancer. Immunotherapy. 2015;8:223–234. doi: 10.2217/imt.15.105.
    1. Wang M., Cao J.X., Pan J.H., Liu Y.S., Xu B.L., Li D., Zhang X.Y., Li J.L., Liu J.L., Wang H.B., et al. Adoptive immunotherapy of cytokine-induced killer cell therapy in the treatment of non-small cell lung cancer. PLoS ONE. 2014;9:e112662. doi: 10.1371/journal.pone.0112662.
    1. Zheng F.C., Zhang X.Y., Feng H.Z., Chen J., Sun Y., Zhong G. Clinical Study of Stereotactic Conformal Body c-knife Combined with Adoptive Immunotherapy (Dendritic Cell and Cytokine-induced Killer Cell) in the Treatment for Advanced Non-small Cell Lung Cancer. J. Chin. Oncol. 2012;18:815–818.
    1. Wang Y.Y., Wang Y.S., Liu T., Yang K., Yang G.Q., Liu H.C., Wang S.S., Yang J.L. Efficacy study of Cyber Knife stereotactic radio surgery combined with CIK cell immunotherapy for advanced refractory lung cancer. Exp. Ther. Med. 2013;5:453–456. doi: 10.3892/etm.2012.818.
    1. Mi D., Ren W., Yang K. Adoptive immunotherapy with interleukin-2 & induced killer cells in non-small cell lung cancer: A systematic review and meta-analysis. Indian J. Med. Res. 2016;143:S1–S10. doi: 10.4103/0971-5916.191738.
    1. Lange J.R., Raubitschek A.A., Pockaj B.A., Spencer W.F., Lotze M.T., Topalian S.L., Yang J.C., Rosenberg S.A. A pilot study of the combination of interleukin-2-based immunotherapy and radiation therapy. J. Immunother. 1992;12:265–271. doi: 10.1097/00002371-199211000-00007.
    1. Rosenberg S.A., Lotze M.T., Yang J.C., Aebersold P.M., Linehan W.M., Seipp C.A., White D.E. Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann. Surg. 1989;210:474–485. doi: 10.1097/00000658-198910000-00008.
    1. Treisman J., Hwu P., Minamoto S., Shafer G.E., Cowherd R., Morgan R.A., Rosenberg S.A. Interleukin-2-transduced lymphocytes grow in an autocrine fashion and remain responsive to antigen. Blood. 1995;85:139–145.
    1. Xiao Z., Wang C.Q., Zhou M.H., Li N.N., Liu S.Y., He Y.J., Wang Y.Z., Feng J.H., Yao X.S., Chen L., et al. Clinical efficacy and safety of CIK plus radiotherapy for lung cancer: A meta-analysis of 16 randomized controlled trials. Int. Immunopharmacol. 2018;61:363–375. doi: 10.1016/j.intimp.2018.06.012.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics. CA Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387.
    1. Gralow J.R. Breast cancer 2004: Progress and promise on the clinical front. Phys. Med. 2006;21:2. doi: 10.1016/S1120-1797(06)80011-6.
    1. American Cancer Society . Breast Cancer Facts & Figures 2017–18. American Cancer Society; Atlanta, GA, USA: 2017.
    1. Wang Z.X., Cao J.X., Wang M., Li D., Cui Y.X., Zhang X.Y., Liu J.L., Li J.L. Adoptive cellular immunotherapy for the treatment of patients with breast cancer: A meta-analysis. Cytotherapy. 2014;16:934–945. doi: 10.1016/j.jcyt.2014.02.011.
    1. Lin M., Liang S., Jiang F., Xu J., Zhu W., Qian W., Hu Y., Zhou Z., Chen J., Niu L., et al. 2003-2013, A valuable study: Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in stage IV breast cancer. Immunol. Lett. 2017;183:37–43. doi: 10.1016/j.imlet.2017.01.014.
    1. Hu J., Hu J., Liu X., Hu C., Li M., Han W. Effect and safety of cytokine-induced killer (CIK) cell immunotherapy in patients with breast cancer: A meta-analysis. Medicine. 2017;96:e8310. doi: 10.1097/MD.0000000000008310.
    1. Ostrom Q.T., Gittleman H., Fulop J., Liu M., Blanda R., Kromer C., Wolinsky Y., Kruchko C., Barnholtz-Sloan J.S. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17:iv1–iv62. doi: 10.1093/neuonc/nov189.
    1. Verhaak R.G., Hoadley K.A., Purdom E., Wang V., Qi Y., Wilkerson M.D., Miller C.R., Ding L., Golub T., Mesirov J.P. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110. doi: 10.1016/j.ccr.2009.12.020.
    1. Charles N.A., Holland E.C., Gilbertson R., Glass R., Kettenmann H. The brain tumor microenvironment. Glia. 2012;60:502–514. doi: 10.1002/glia.21264.
    1. Feng X., Szulzewsky F., Yerevanian A., Chen Z., Heinzmann D., Rasmussen R.D., Alvarez-Garcia V., Kim Y., Wang B., Tamagno I. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget. 2015;6:15077–15094. doi: 10.18632/oncotarget.3730.
    1. Kong D.S., Nam D.H., Kang S.H., Lee J.W., Chang J.H., Kim J.H., Lim Y.J., Koh Y.C., Chung Y.G., Kim J.M., et al. Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget. 2017;8:7003–7013. doi: 10.18632/oncotarget.12273.
    1. Muglia V.F., Prando A. Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiol. Bras. 2015;48:166–174. doi: 10.1590/0100-3984.2013.1927.
    1. Wang Z.X., Li J.L., Cao J.X., Liu Y.S., Li D., Zhang X.Y., Wang M., Wu M., Xu B.L., Liu J.L., et al. Cytokine-induced killer cells in the treatment of patients with renal cell carcinoma: A pooled meta-analysis. Immunotherapy. 2014;6:787–795. doi: 10.2217/imt.14.41.
    1. Zhao X., Zhang Z., Li H., Huang J., Yang S., Xie T., Huang L., Yue D., Xu L., Wang L., et al. Cytokine induced killer cell-based immunotherapies in patients with different stages of renal cell carcinoma. Cancer Lett. 2015;362:192–198. doi: 10.1016/j.canlet.2015.03.043.
    1. Vercauteren S.M., Starczynowski D.T., Sung S., McNeil K., Salski C., Jensen C.L., Bruyere H., Lam W.L., Karsan A. T cells of patients with myelodysplastic syndrome are frequently derived from the malignant clone. Br. J. Haematol. 2012;156:409–412. doi: 10.1111/j.1365-2141.2011.08872.x.
    1. Jung S.H., Lee H.J., Vo M.C., Kim H.J., Lee J.J. Immunotherapy for the treatment of multiple myeloma. Crit. Rev. Oncol. Hematol. 2017;111:87–93. doi: 10.1016/j.critrevonc.2017.01.011.
    1. Wang Y., Lv B., Li K., Zhang A., Liu H. Adjuvant immunotherapy of dendritic cells and cytokine-induced killer cells is safe and enhances chemotherapy efficacy for multiple myeloma in China: A meta-analysis of clinical trials. Drug Des. Dev. Ther. 2017;11:3245–3256. doi: 10.2147/DDDT.S146959.
    1. Bader P. CIK-Cells in Relapsing Patients With Acute Leukemia or Myelodysplastic Syndromes After SCT. [(accessed on 2 September 2019)]; Available online: .
    1. Yu S., Li A., Liu Q., Li T., Yuan X., Han X., Wu K. Chimeric antigen receptor T cells: A novel therapy for solid tumors. J. Hematol. Oncol. 2017 doi: 10.1186/s13045-017-0444-9.
    1. Liu B., Song Y., Liu D. Clinical trials of CAR-T cells in China. J. Hematol. Oncol. 2017;10:166. doi: 10.1186/s13045-017-0535-7.
    1. Schmeel L.C., Schmeel F.C., Coch C., Schmidt-Wolf I.G.H. Cytokine-induced killer (CIK) cells in cancer immunotherapy: Report of the international registry on CIK cells (IRCC) J. Cancer Res. Clin. Oncol. 2015;141:839–849. doi: 10.1007/s00432-014-1864-3.

Source: PubMed

3
Tilaa