Early warning scores generated in developed healthcare settings are not sufficient at predicting early mortality in Blantyre, Malawi: a prospective cohort study

India Wheeler, Charlotte Price, Alice Sitch, Peter Banda, John Kellett, Mulinda Nyirenda, Jamie Rylance, India Wheeler, Charlotte Price, Alice Sitch, Peter Banda, John Kellett, Mulinda Nyirenda, Jamie Rylance

Abstract

Aim: Early warning scores (EWS) are widely used in well-resourced healthcare settings to identify patients at risk of mortality. The Modified Early Warning Score (MEWS) is a well-known EWS used comprehensively in the United Kingdom. The HOTEL score (Hypotension, Oxygen saturation, Temperature, ECG abnormality, Loss of independence) was developed and tested in a European cohort; however, its validity is unknown in resource limited settings. This study compared the performance of both scores and suggested modifications to enhance accuracy.

Methods: A prospective cohort study of adults (≥18 yrs) admitted to medical wards at a Malawian hospital. Primary outcome was mortality within three days. Performance of MEWS and HOTEL were assessed using ROC analysis. Logistic regression analysis identified important predictors of mortality and from this a new score was defined.

Results: Three-hundred-and-two patients were included. Fifty-one (16.9%) died within three days of admission. With a cut-point ≥2, the HOTEL score had sensitivity 70.6% (95% CI: 56.2 to 82.5) and specificity 59.4% (95% CI: 53.0 to 65.5), and was superior to MEWS (cut-point ≥5); sensitivity: 58.8% (95% CI: 44.2 to 72.4), specificity: 56.2% (95% CI: 49.8 to 62.4). The new score, dubbed TOTAL (Tachypnoea, Oxygen saturation, Temperature, Alert, Loss of independence), showed slight improvement with a cut-point ≥2; sensitivity 76.5% (95% CI: 62.5 to 87.2) and specificity 67.3% (95% CI: 61.1 to 73.1).

Conclusion: Using an EWS generated in developed healthcare systems in resource limited settings results in loss of sensitivity and specificity. A score based on predictors of mortality specific to the Malawian population showed enhanced accuracy but not enough to warrant clinical use. Despite an assumption of common physiological responses, disease and population differences seem to strongly determine the performance of EWS. Local validation and impact assessment of these scores should precede their adoption in resource limited settings.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

References

    1. Goldhill R (2001) The critically ill: following your MEWS. QJM; 94 (10): 507–510.
    1. Subbe CP, Kruger M, Rutherford P, Gemmel L (2001) Validation of a Modified Early Warning Score in medical admissions. QJM; 94 (10): 521–526.
    1. Prytherch D, Smith G, Schmidt P, Featherstone P (2010) ViEWS-Towards a national early warning score for detecting adult inpatient deterioration. Resuscitation 81 932–937.
    1. Kellett J, Deane B, Gleeson M (2008) Derivation and validation of a score based on Hypotension, Oxygen saturation, low Temperature, ECG changes and Loss of independence (HOTEL) that predicts early mortality between 15 min and 24 hr after admission to an acute medical unit. Resuscitation 78: 52–58.
    1. Royal College of Physicians (2012) National Early Warning Score. Standardising the assessment of acute-illness severity in the NHS. LondonRCP: 2012.
    1. Rylance J, Baker T, Mushi E, Mashage D (2009) Use of an early warning score and the ability to walk predicts mortality in medical patients admitted to hospitals in Tanzania. Trans R Soc Trop Med Hyg; 103 (8): 790–794.
    1. Nolan T, Angos P, Cunha AJ, Muhe L, Qazi S, et al. (2001) Quality of Hospital Care for seriously ill children in less-developed countries. Lancet 357: 106–110.
    1. Dunser M, Baelani WI, Gambold L (2006) A review and analysis of intensive care medicine in the least developed countries. Crit Care Med 34: 1234–1242.
    1. Roberston M, Molyneux E (2001) Triage in the developing world- can it be done? Arch Dis Child 85: 208–213.
    1. Wallis L, Gottshcalk SB, Wood D, Bruijns S, de Vries S, et al. (2006) The Cape Triage Score- a triage system for South Africa. S Afri Med J; 96 (1): 53–56.
    1. Cei M, Bartolomei C, Mumoli N (2009) In-hospital mortality and morbidity of elderly medical patients can be predicted at admission by the Modified Early Warning Score: a prospective study. Int J ClinPrac; 63 (4): 591–5.
    1. Burch VC, Tarr G, Morroni C (2008) Modified early warning score predicts the need for hospital admission and in-hospital mortality. Emerg Med J 25: 674–678.
    1. Subbe CP, Slater A, Menon D (2006) Gemmell (2006) Validation of physiological scoring systems in the accident emergency department. Emerg Med J 23: 841–845.
    1. Subbe CP, Hibbs R, Williams E Rutherford P, Gemmel L (2002) ASSIST: a screening tool for critically ill patients on general medical wards. Intensive Care Med 28 (supplement 1)S21.
    1. Stewart S, Wilkinson D, Becker A, Askew D, Ntyintyane L, et al. (2006) Mapping the emergence of heart disease in a black urban population in Africa: the Heart of Soweto Study. Int J Cardiol; 108 (1): 101–108.
    1. Mensah GA (2008) Ischaemic heart disease in Africa. Heart. Jul 94(7): 836–43.
    1. Yeguiayan JM, Garrigue D, Binquet C, Jacquot C, Duranteau J, et al. (2011) Medical pre-hospital management reduces mortality in severe blunt trauma: a prospective epidemiological study. Critical Care 15: R34.
    1. Eriksson EA, Barletta JF, Figueroa BE, Bonnell BW, Sloffer CA, et al. (2012) The first 72 hours of brain tissue oxygenation predicts patient survival with traumatic brain injury. J Trauma Acute Care Surg. May 72(5): 1345–9.
    1. Steyerberg EW (2009) Clinical Prediction Models. A Practical Approach to Development, Validation and Updating Series: Statistics for Biology and Health. New York: NY. Springer.
    1. Sowden E, Carmicheal AJ (2004) Autoimmune inflammatory disorders, systemic corticosteroids and pneumocystis pneumonia: A strategy for prevention. BMC Infectious Diseases 4: 42.
    1. Buist M, Bernard S, Nguyen TV, Moore G, Anderson J (2004) Association between clinically abnormal observations and subsequent in-hospital mortality: a prospective study. Resuscitation 62: 137–41.
    1. Kennedy M, Joyce N, Howell MD, Lawrence Mottley J, Shapiro NI (2010) Identifying infected emergency department patients admitted to the hospital ward at risk of clinical deterioration and intensive care unit transfer. AcadEmerg Med 17(10): 1080–5.
    1. Harrison GA, Jacques TC, Kilborn G, Mc Laws ML (2005) The prevalence of recordings of the signs of critical conditions and emergency responses in hospital wards–the SOCCER study. Resuscitation; 65 (2): 149–157.
    1. Jacob ST, Moore CC, Banura P, Pinkerton R, Meya D, et al. (2009) Severe Sepsis in Two Ugandan Hospitals: a Prospective Observational Study of Management and Outcomes in a Predominantly HIV-1 Infected Population. PLoS ONE 4(11): e7782.
    1. Baker T (2009) Critical care in low-income countries Trop Med Int Health. 14: 143–148.
    1. Gove S, Tamburlini G, Molyneux E, Whitesell P, Campbell H (1999) Development and technical basis of simplified guidelines for emergency triage assessment and treatment in developing countries. WHO Integrated Management of Childhood Illness (IMCI) Referral Care Project. Arch Dis Child 81: 473–7.
    1. Tulloch J (1999) Integrated approach to child health in developing countries. Lancet 354: Suppl 2S 16–S: 20.
    1. Moons K, Altman DG, Vergouwe Y, Royston P (2009) Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 338: b606.
    1. Mabiala-Babela JR, Senga P (2009) Night time attendance at the Paediatric Emergency Room of the University Hospital Centre in Brazzaville, Congo. Med Trop 69(3): 281–5.
    1. Wujtewicz MA, Suszyńska-Mosiewicz A, Sawicka W, Piankowski A, Dylczyk-Sommer A (2011) Does the time of admission to ITU affect mortality? AnestezjolIntensTer 43(4): 230–3.

Source: PubMed

3
Tilaa