Molecular imaging of microglial activation in amyotrophic lateral sclerosis

Philippe Corcia, Clovis Tauber, Johnnie Vercoullie, Nicolas Arlicot, Caroline Prunier, Julien Praline, Guillaume Nicolas, Yann Venel, Caroline Hommet, Jean-Louis Baulieu, Jean-Philippe Cottier, Catherine Roussel, Mickael Kassiou, Denis Guilloteau, Maria-Joao Ribeiro, Philippe Corcia, Clovis Tauber, Johnnie Vercoullie, Nicolas Arlicot, Caroline Prunier, Julien Praline, Guillaume Nicolas, Yann Venel, Caroline Hommet, Jean-Louis Baulieu, Jean-Philippe Cottier, Catherine Roussel, Mickael Kassiou, Denis Guilloteau, Maria-Joao Ribeiro

Abstract

There is growing evidence of activated microglia and inflammatory processes in the cerebral cortex in amyotrophic lateral sclerosis (ALS). Activated microglia is characterized by increased expression of the 18 kDa translocator protein (TSPO) in the brain and may be a useful biomarker of inflammation. In this study, we evaluated neuroinflammation in ALS patients using a radioligand of TSPO, (18)F-DPA-714. Ten patients with probable or definite ALS (all right-handed, without dementia, and untreated by riluzole or other medication that might bias the binding on the TSPO), were enrolled prospectively and eight healthy controls matched for age underwent a PET study. Comparison of the distribution volume ratios between both groups were performed using a Mann-Whitney's test. Significant increase of distribution of volume ratios values corresponding to microglial activation was found in the ALS sample in primary motor, supplementary motor and temporal cortex (p = 0.009, p = 0.001 and p = 0.004, respectively). These results suggested that the cortical uptake of (18)F-DPA-714 was increased in ALS patients during the "time of diagnosis" phase of the disease. This finding might improve our understanding of the pathophysiology of ALS and might be a surrogate marker of efficacy of treatment on microglial activation.

Trial registration: ClinicalTrials.gov NCT00563537.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Parametric (DVR) 18F-DPA-714 images (axial,…
Figure 1. Parametric (DVR) 18F-DPA-714 images (axial, coronal and sagittal slices) obtained for a healthy volunteer and an ALS patient, respectively.
Note the significant but normal 18F-DPA-714 uptake in nasal epithelium (a tissue rich in TSPO).
Figure 2. Individual DVR values for the…
Figure 2. Individual DVR values for the two motor cortex regions and the temporal cortex obtained for all subjects.
These are the regions where statistically significant differences were observed between the two groups studied.

References

    1. Kiernan M, Vucic S, Cheah B, Turner MR, Eisen A, et al. (2011) Amyotrophic lateral sclerosis. Lancet 377: 942–955.
    1. Mitchell JD, Borasio GD (2007) Amyotrophic lateral sclerosis. Lancet 369: 2031–2041.
    1. Andersen PM, Al-Chalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat Rev Neurol 7: 603–615.
    1. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, et al. (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62.
    1. Bruijn LJ, Miller TM, Cleveland DW (2004) Unravelling the mechanisms involved in motor neuron degeneration in ALS. Ann. Rev Neurosci. 27: 723–749.
    1. Henkel J, Beers D, Zhao W, Appel SH (2009) Microglia in ALS: the good, the bad, and the resting. J NeuroimmunePharmacol 4: 389–398.
    1. Philips T, Robberecht W (2011) Neuroinflammation in amyotrophic lateral sclerosis: role of glial activation in motor neuron disease. Lancet Neurol 10: 253–263.
    1. Appel SH, Zhao W, Beers DR, Henkel J (2011) The Microglial-Motoneuron dialogue in ALS. Acta Myologica 1: 4–8.
    1. McGeer PL, Mc Geer EG (2002) Inflammatory process in amyotrophic lateral sclerosis. Muscle Nerve 26: 459–470.
    1. Papadopoulos V, Baraldi M, Guilarte TR, Papadopoulos V, Baraldi M, et al. (2006) Translocator protein (18 kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol Sci. 27: 402–409.
    1. Veenman L, Gavish M (2000) Peripheral-Type Benzodiazepine Receptors: Their Implication in Brain Disease. Drug Development Research 50: 355–370.
    1. Veenman L, Gavish M (2012) The role of 18 kDa mitochondrial translocator protein (TSPO) in programmed cell death, and effects of steroids on TSPO expression. Curr Mol Med 12: 398–412.
    1. Petit-Taboué MC, Baron JC, Barré L, Travère JM, Speckel D, et al. (1991) Brain kinetics and specific binding of [11C]PK 11195 to omega 3 sites in baboons: positron emission tomography study. Eur J Pharmacol. 200: 347–351.
    1. Hirvonen J, Roivainen A, Virta J, Helin S, Någren K, et al. (2010) Human biodistribution and radiation dosimetry of 11C-(R)-PK11195; the prototypic PET ligand to image inflammation. Eur J Nucl Med Mol Imaging. 37: 606–612.
    1. James ML, Fulton RR, Vercoullie J, Henderson DJ, Garreau L, et al. (2008) DPA-714; a new translocator protein-specific ligand: synthesis; radiofluorination; and pharmacologic characterization. J Nucl Med. 49: 814–822.
    1. Arlicot N, Vercouillie J, Ribeiro MJ, Tauber C, Venel Y, et al. (20&2) Initial evaluation in healthy humans of [18F]DPA-714, a potential PET biomarker for neuroinflammation. Nucl Med Biol. 39: 570–578.
    1. Tang D, Hight MR, McKinley ET, Fu A, Buck JR, et al. (2012) Quantitative preclinical imaging of TSPO expression in glioma using N,N-diethyl-2-(2-(4-(2–18F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide. J Nucl Med. 53: 287–94.
    1. Abourbeh G, Thézé B, Maroy R, Dubois A, Brulon V, et al. (2012) Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kDa translocator protein radioligand [18F]DPA-714. J Neurosci. 32: 5728–36.
    1. Brooks BR, Miller RG, Swash M, Munsat TL (2000) El Escorial revisited: revised criteria for the diagnostic of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1: 293–299.
    1. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 12: 189–198.
    1. Dubois B, Slachevsky A, Litvan I, Pillon B (2000) The FAB: a Frontal Assessment Battery at bedside. Neurology. 55: 1621–1626.
    1. Cedarbaum JM, Stambler N, Malta E, Fuller C, Hilt D, et al. (1999) The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS Study Group (Phase III) J Neurol Sci. 169: 13–21.
    1. Wong KP, Wardak M, Shao W, Dahlbom M, Kepe V, et al. (2010) Quantitative analysis of [18F]FDDNP PET using subcortical white matter as reference region. EurJNucl. MedMolImaging 37: 575–588.
    1. Banati RB (2002) Visualising microglial activation in vivo. Glia 40: 206–217.
    1. Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, et al. (2004) Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study. Neurobiology of Disease 15: 601–609.
    1. Gunn RN, Lammertsma AA, Cunningham VJ (1998) Parametric imaging of ligand-receptor interactions using a reference tissue model and cluster analysis. In: Carson, RE, Daube-Witherspoon, ME, Herscovitch, P (Eds.), Quantitative Functional Brain Imaging with Positron Emission Tomography. Academic Press, San Diego, 401–406.
    1. Bertrand I, Van Bogaert L (1925) La sclérose latérale amyotrophique (Anatomie pathologique). RevNeurol 1: 779–806.
    1. Filippini N, Doauad G, McKay CE, Knight S, Talbot K, et al. (2010) Corpus callosum involvement is a consistent feature of amyotrophic lateral sclerosis. Neurology 75: 1645–1652.
    1. Agosta F, Pagani E, Rocca MA, Caputo D, Perini M, et al. (2007) Voxel-Based Morphometry Study of Brain Volumetry and Diffusivity in Amyotrophic Lateral Sclerosis Patients with Mild Disability. Human Brain Mapping 28: 1430–1438.
    1. Lepow L, Van Sweringen J, Strutt A, Jawaid A, MacAdam C, et al. (2010) Frontal and Temporal lobe involvement on verbal fluency measures in amyotrophic lateral sclerosis. J Clin Exp Neuropsychol 32: 913–922.
    1. Geser F, Brandmeir NJ, Kwong LK, Martinez-Lage M, Elman L, et al. (2008) Evidence of Multisystem Disorder in Whole-Brain Map of Pathological TDP-43 in Amyotrophic Lateral Sclerosis Arch Neurol. 65: 636–641.
    1. Piao YS, Wakabayashi K, Kakita A, Yamada M, Hayashi S, et al. (2003) Neuropathology with clinical correlations of sporadic amyotrophic lateral sclerosis 102 autopsy cases examined between 1962 and 2000. Brain Pathol 12: 10–22.
    1. Ringholz GM, Appel SH, Bradshaw M, Cooke NA, Mosnik DM, et al.. (2005) Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 65; 586–590.
    1. Phukan J, Pender NP, Hardiman O (2007) Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol 6: 994–1003.
    1. Lillo P, Savage S, Mioshi E, Kiernan MC, Hodges JR (2012) Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum. Amyotroph Lateral Scler 13: 102–109.
    1. Hsiung G, DeJesus-Hernandez M, Feldman H, Feldman HH, Sengdy P, et al. (2012) Clinical and pathological features of familial frontotemporal dementia caused by C9ORF72 mutation on chromosome 9p. Brain 135: 709–722.
    1. Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, et al. (2010) Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage 49: 2924–32.
    1. Owen DR, Gunn RN, Rabiner EA, Bennacef I, Fujita M, et al. (2011) Mixed-affinity binding in humans with 18-kDa translocator protein ligands. J Nucl Med 52: 24–32.

Source: PubMed

3
Tilaa