Near-Infrared Spectroscopy (NIRS) in Traumatic Brain Injury (TBI)

María Roldán, Panayiotis A Kyriacou, María Roldán, Panayiotis A Kyriacou

Abstract

Traumatic brain injury (TBI) occurs when a sudden trauma causes damage to the brain. TBI can result when the head suddenly and violently impacts an object or when an object pierces the skull and enters brain tissue. Secondary injuries after traumatic brain injury (TBI) can lead to impairments on cerebral oxygenation and autoregulation. Considering that secondary brain injuries often take place within the first hours after the trauma, noninvasive monitoring might be helpful in providing early information on the brain's condition. Near-infrared spectroscopy (NIRS) is an emerging noninvasive monitoring modality based on chromophore absorption of infrared light with the capability of monitoring perfusion of the brain. This review investigates the main applications of NIRS in TBI monitoring and presents a thorough revision of those applications on oxygenation and autoregulation monitoring. Databases such as PubMed, EMBASE, Web of Science, Scopus, and Cochrane library were utilized in identifying 72 publications spanning between 1977 and 2020 which were directly relevant to this review. The majority of the evidence found used NIRS for diagnosis applications, especially in oxygenation and autoregulation monitoring (59%). It was not surprising that nearly all the patients were male adults with severe trauma who were monitored mostly with continue wave NIRS or spatially resolved spectroscopy NIRS and an invasive monitoring device. In general, a high proportion of the assessed papers have concluded that NIRS could be a potential noninvasive technique for assessing TBI, despite the various methodological and technological limitations of NIRS.

Keywords: cerebral autoregulation; cerebral oxygenation; near infrared spectroscopy; traumatic brain injury.

Conflict of interest statement

The authors declare no conflict of interests.

Figures

Figure 1
Figure 1
Flowchart of the methodology used to include 72 out of 207 studies published until July 2020.
Figure 2
Figure 2
Global distribution of scientific articles that discussed the use of near-infrared spectroscopy (NIRS) technology in traumatic brain injury (TBI) monitoring until July 2020. The number of publications per country is indicated by the intensity of the color, with darker colors representing a higher number of articles than lighter colors.
Figure 3
Figure 3
Number of publications per year associating TBI with the various types of NIRS applications.
Figure 4
Figure 4
Percentage of diagnosis papers per subgroup according to the outcome measured: oxygenation, autoregulation, hematomas, and neurorehabilitation monitoring.
Figure 5
Figure 5
(a) Absorption coefficient spectra of oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb). (b) The probabilistic trajectory of photons from the source to a detector of incident near-infrared light is described as a “banana shape” [38]. Figure modified from [39].
Figure 6
Figure 6
Schematic diagram of NIRS detection modes. (a) Continuous wave NIRS (CW-NIRS), (b) spatially resolved spectroscopy (SRS), (c) time-resolved spectroscopy (TD-NIRS), and (d) phase modulated spectroscopy (PMS). The figure also shows a representation of the photon path in tissues for each technique. S: source, D: detector. (Figure modified from [49]).
Figure 7
Figure 7
NIRS-derived regional tissue oxygen saturation (green probe) analyzes the oxygen concentration in cerebral microcirculation, which is predominantly from venous oxygenation. Jugular bulb venous saturation (blue probe) analyzes the remaining oxygen concentration that flows from the venous sinuses to the internal jugular vein. Both are indirect measurements of how much oxygen is being used by the brain. Brain tissue oxygenation tension (yellow probe) analyzes the dissolved oxygen within the cerebral plasma that diffuses across the blood brain barrier (BBB). (Figure modified from [57,58]).
Figure 8
Figure 8
Demographics of the evidence on NIRS-derived oxygenation in TBI.
Figure 9
Figure 9
Distribution of NIRS techniques used for oxygenation monitoring in TBI patients. Where continuous wave modified Beer–Lamber law (CW MBL), spatially resolved spectroscopy (SRS), phase modulated spectroscopy (PMS), and ultrasound-tagged near-infrared spectroscopy (UT-NIRS).
Figure 10
Figure 10
Comparisons found in the evidence on NIRS-derived oxygenation in TBI.
Figure 11
Figure 11
Cerebral autoregulation, where cerebral blood flow is maintained constant over a range of MAP/CPP. Out of the autoregulatory plateau, CBF becomes pressure-dependent and intracranial pressure dangerously rises (modified from [80,83,85,86]). Hypotension with disrupted cerebral autoregulation rapidly leads to cerebral ischemia, while hypertension above the autoregulatory threshold increases the risk of hyperemia.
Figure 12
Figure 12
Demographics of the evidence on NIRS-derived autoregulation in TBI.
Figure 13
Figure 13
Distribution of NIRS techniques used for autoregulation monitoring in TBI patients.
Figure 14
Figure 14
Comparisons found in the evidence on NIRS-derived autoregulation in TBI.
Figure 15
Figure 15
Main conclusions of NIRS-derived monitoring in TBI. Each author concluded with a positive (green) or negative (red) statements. In a few cases, authors reported positive results with some limitations (yellow).

References

    1. Brazinova A., Rehorcikova V., Taylor M.S., Buckova V., Majdan M., Psota M., Peeters W., Feigin V., Theadom A., Holkovic L. Epidemiology of Traumatic Brain Injury in Europe: A Living Systematic Review. J. Neurotrauma. 2018 doi: 10.1089/neu.2015.4126.
    1. Maas A.I.R., Menon D.K., Adelson D., Andelic N., Bell M.J., Belli A., Bragge P., Brazinova A., Büki A., Chesnut R.M., et al. The Lancet Neurology Commission Traumatic brain injury: Integrated approaches to improve prevention, clinical care, and research Executive summary The Lancet Neurology Commission. Lancet Neurol. 2017;16:987–1048. doi: 10.1016/S1474-4422(17)30371-X.
    1. Van Dijck J.T.J.M., Dijkman M.D., Ophuis R.H., de Ruiter G.C.W., Peul W.C., Polinder S. In-hospital costs after severe traumatic brain injury: A systematic review and quality assessment. PLoS ONE. 2019;14:e0216743. doi: 10.1371/journal.pone.0216743.
    1. Dismuke C.E., Walker R.J., Egede L.E. Utilization and Cost of Health Services in Individuals with Traumatic Brain Injury. Glob. J. Health Sci. 2015;7:156–169. doi: 10.5539/gjhs.v7n6p156.
    1. Helmick K.M., Spells C.A., Malik S.Z., Davies C.A., Marion D.W., Hinds S.R. Traumatic brain injury in the US military: Epidemiology and key clinical and research programs. Brain Imaging Behav. 2015;9:358–366. doi: 10.1007/s11682-015-9399-z.
    1. Carney N., Ghajar J., Jagoda A., Bedrick S., Davis-O’Reilly C., Du Coudray H., Hack D., Helfand N., Huddleston A., Nettleton T., et al. Concussion guidelines step 1: Systematic review of prevalent indicators. Neurosurgery. 2014;75 doi: 10.1227/NEU.0000000000000433.
    1. Corrigan J.D., Harrison-Felix C., Haarbauer-Krupa J. Epidemiology of Traumatic Brain Injury. In: Silver J.M., McAllister T.W., Arciniegas D.B., editors. Textbook of Traumatic Brain Injury. American Psychiatric Association Publishing; Washington, DC, USA: 2018. pp. 3–24.
    1. Rowson B., Rowson S., Duma S.M. Biomechanical Forces Involved in Brain Injury. In: Silver J.M., McAllister T.W., Arciniegas D.B., editors. Textbook of Traumatic Brain Injury. American Psychiatric Association Publishing; Washington, DC, USA: 2018. pp. 25–39.
    1. Williams W.H., Chitsabesan P., Fazel S., McMillan T., Hughes N., Parsonage M., Tonks J. Traumatic brain injury: A potential cause of violent crime? Lancet Psychiatry. 2018;5:836–844. doi: 10.1016/S2215-0366(18)30062-2.
    1. Macdonald A., Ayton D., Pritchard E., Tsindos T., O’brien P., Dr M.K., Braaf S., Berecki-Gisolf J., Hayman J. Informing the Response to Recommendation 171 of the Victorian Royal Commission into Family Violence. Brain Injury Australia; Sydney: 2018.
    1. Mian M., Shah J., Dalpiaz A., Schwamb R., Miao Y., Warren K., Khan S. Shaken baby syndrome: A review. Fetal Pediatr. Pathol. 2015;34:169–175. doi: 10.3109/15513815.2014.999394.
    1. Stocker R.A. Intensive Care in Traumatic Brain Injury Including Multi-Modal Monitoring and Neuroprotection. Med. Sci. 2019;7:37. doi: 10.3390/medsci7030037.
    1. Herklots M.W., Moudrous W., Oldenbeuving A., Roks G., Mourtzoukos S., Schoonman G.G., Ganslandt O. Prospective Evaluation of Noninvasive HeadSense Intracranial Pressure Monitor in Traumatic Brain Injury Patients Undergoing Invasive Intracranial Pressure Monitoring. World Neurosurg. 2017;106:557–562. doi: 10.1016/j.wneu.2017.07.022.
    1. Ko S.-B. Multimodality Monitoring in the Neurointensive Care Unit: A Special Perspective for Patients with Stroke. J. Stroke. 2013;15:99. doi: 10.5853/jos.2013.15.2.99.
    1. Mazzeo A.T., Gupta D. Monitoring the injured brain. J. Neurosurg. Sci. 2018;62:549–562. doi: 10.23736/S0390-5616.18.04465-X.
    1. Vinciguerra L., Bösel J. Noninvasive Neuromonitoring: Current Utility in Subarachnoid Hemorrhage, Traumatic Brain Injury, and Stroke. Neurocrit. Care. 2017;27:122–140. doi: 10.1007/s12028-016-0361-8.
    1. Martin M., Lobo D., Bitot V., Couffin S., Escalard S., Mounier R., Cook F. Prediction of Early Intracranial Hypertension After Severe Traumatic Brain Injury: A Prospective Study. World Neurosurg. 2019;127:e1242–e1248. doi: 10.1016/j.wneu.2019.04.121.
    1. Sokoloff C., Williamson D., Serri K., Albert M., Odier C., Charbonney E., Bernard F. Clinical Usefulness of Transcranial Doppler as a Screening Tool for Early Cerebral Hypoxic Episodes in Patients with Moderate and Severe Traumatic Brain Injury. Neurocrit. Care. 2019 doi: 10.1007/s12028-019-00763-y.
    1. Wilde E.A., Little D. Clinical Imaging. In: Silver J.M., McAllister T.W., Arciniegas D.B., editors. Textbook of Traumatic Brain Injury. American Psychiatric Association Publishing; Washington, DC, USA: 2018.
    1. Roldan M., Abay T.Y., Kyriacou P.A. Non-invasive techniques for multimodal monitoring in Traumatic Brain Injury (TBI): Systematic review and meta-analysis. J. Neurotrauma. 2020;37:2445–2453. doi: 10.1089/neu.2020.7266.
    1. Jöbsis F.F. Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory Parameters. Science. 1977;23:1264–1267. doi: 10.1126/science.929199.
    1. Oxiplex T.S. A non-invasive, real-time monitor of precise tissue oxygenation and hemoglobin concentration. [(accessed on 24 February 2020)];Newt. Drive. 2001 6 Available online: .
    1. Weigl W., Milej D., Janusek D., Wojtkiewicz S., Sawosz P., Kacprzak M., Gerega A., Maniewski R., Liebert A. Application of optical methods in the monitoring of traumatic brain injury: A review. J. Cereb. Blood Flow Metab. 2016;36:1825–1843. doi: 10.1177/0271678X16667953.
    1. Mathieu F., Khellaf A., Ku J.C., Donnelly J., Thelin E.P., Zeiler F.A. Continuous Near-Infrared Spectroscopy Monitoring in Adult Traumatic Brain Injury. J. Neurosurg. Anesthesiol. 2019 doi: 10.1097/ANA.0000000000000620.
    1. Karamzadeh N., Amyot F., Kenney K., Anderson A., Chowdhry F., Dashtestani H., Wassermann E.M., Chernomordik V., Boccara C., Wegman E., et al. A machine learning approach to identify functional biomarkers in human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy. Brain Behav. 2016;6 doi: 10.1002/brb3.541.
    1. Robertson C.S., Zager E.L., Narayan R.K., Handly N., Sharma A., Hanley D.F., Garza H., Maloney-Wilensky E., Plaum J.M., Koenig C.H., et al. Clinical evaluation of a portable near-infrared device for detection of traumatic intracranial hematomas. J. Neurotrauma. 2010;27:1597–1604. doi: 10.1089/neu.2010.1340.
    1. Robertson C.S., Gopinath S.P., Chance B. A New Application for Near-Infrared Spectroscopy: Detection of Delayed Intracranial Hematomas after Head Injury. J. Neurotrauma. 1995;12:591–600. doi: 10.1089/neu.1995.12.591.
    1. Gopinath S.P., Robertson C.S., Contant C.F., Narayan R.K., Grossman R.G., Chance B. Early detection of delayed traumatic intracranial hematomas using near- infrared spectroscopy. J. Neurosurg. 1995;83:438–444. doi: 10.3171/jns.1995.83.3.0438.
    1. Gopinath S.P., Robertson C.S., Grossman R.G., Chance B. Near-infrared spectroscopic localization of intracranial hematomas. J. Neurosurg. 1993;79:43–47. doi: 10.3171/jns.1993.79.1.0043.
    1. Haddad S.H., Arabi Y.M. Critical care management of severe traumatic brain injury in adults. Scand. J. Trauma. Resusc. Emerg. Med. 2012;20:1–15. doi: 10.1186/1757-7241-20-12.
    1. Nitzan M., Nitzan I., Arieli Y. The various oximetric techniques used for the evaluation of blood oxygenation. Sensors (Switzerland) 2020;20:1–28.
    1. Van de Graaff K.M., Rhees R.W., Palmer S.L. Human Anatomy and Physiology. McGraw-Hill Education; New York, NY, USA: 2013. Cardiovascular System: Blood.
    1. Tortora G.J., Derrickson B. Principles of Anatomy & Physiology. Wiley; Hoboken, NY, USA: 2014. The cardiovascular system: The blood; pp. 693–719.
    1. Sen A.N., Gopinath S.P., Robertson C.S. Clinical application of near-infrared spectroscopy in patients with traumatic brain injury: A review of the progress of the field. Neurophotonics. 2016;3:031409. doi: 10.1117/1.NPh.3.3.031409.
    1. Murkin J.M., Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 2009;103:i3–i13. doi: 10.1093/bja/aep299.
    1. Yamashita Y., Niwayama M. Principles and Instrumentation. In: Jue T., Masuda K., editors. Application of Near Infrared Spectroscopy in Biomedicine. Springer US; Boston, MA, USA: 2013. pp. 1–19.
    1. Owen-Reece H., Smith M., Elwell C.E., Goldstone J.C. Near infrared spectroscopy. Br. J. Anaesth. 1999;82:418–444. doi: 10.1093/bja/82.3.418.
    1. Van der Zee P., Cope M., Arridge S.R., Essenpreis M., Potter L.A., Edwards A.D., Wyatt J.S., McCormick D.C., Roth S.C., Reynolds E.O.R., et al. Advances in Experimental Medicine and Biology. Volume 316. Springer; Boston, MA, USA: 1992. Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing; pp. 143–153.
    1. Choi J.K., Kim J.M., Hwang G., Yang J., Choi M.G., Bae H.M. Time-Divided Spread-Spectrum Code-Based 400 fW-Detectable Multichannel fNIRS IC for Portable Functional Brain Imaging. IEEE J. Solid State Circuits. 2016;51:484–495. doi: 10.1109/JSSC.2015.2504412.
    1. Abay T.Y. Ph.D. Thesis. University of London; London, UK: Mar, 2016. Reflectance photoplethysmography for non-invasive monitoring of tissue perfusion.
    1. Rolfe P. In vivo near-infrared spectroscopy. Annu. Rev. Biomed. Eng. 2000;2:715–754. doi: 10.1146/annurev.bioeng.2.1.715.
    1. Abay T.Y., Kyriacou P.A. Reflectance Photoplethysmography as Non-Invasive Monitoring of Tissue Blood Perfusion. IEEE Trans. Biomed. Eng. 2015 doi: 10.1109/TBME.2015.2417863.
    1. McNulty J., Born M., Pozos R.S. Springer Handbook of Medical Technology. Springer Berlin Heidelberg; Berlin/Heidelberg, Germany: 2011. Near-Infrared Spectroscopy (NIRS) pp. 423–438.
    1. Gagnon R.E., Macnab A.J., Gagnon F.A., Blackstock D., LeBlanc J.G. Comparison of two spatially resolved NIRS oxygenation indices. J. Clin. Monit. Comput. 2002;17:385–391. doi: 10.1023/A:1026274124837.
    1. Ercole A., Gupta A.K. Cerebral oxygenation. In: Matta B.F., Menon D.K., Smith M., editors. Core Topics in Neuroanaesthesia and Neurointensive Care. Cambridge University Press; Cambridge, UK: 2011. pp. 72–84.
    1. Ferrari M., Quaresima V. Review: Near infrared brain and muscle oximetry: From the discovery to current applications. J. Near Infrared Spectrosc. 2012;20:1–14. doi: 10.1255/jnirs.973.
    1. Van Essen T., Goos T.G., Van Ballegooijen L., Pichler G., Urlesberger B., Reiss I.K.M., De Jonge R.C.J. Comparison of frequency-domain and continuous-wave near-infrared spectroscopy devices during the immediate transition. BMC Pediatr. 2020;20:94. doi: 10.1186/s12887-020-1987-4.
    1. Veesa J.D., Dehghani H. Functional near infrared spectroscopy using spatially resolved data to account for tissue scattering: A numerical study and arm-cuff experiment. J. Biophotonics. 2019;12 doi: 10.1002/jbio.201900064.
    1. Lange F., Tachtsidis I. Clinical brain monitoring with time domain NIRS: A review and future perspectives. Appl. Sci. 2019;9:1612. doi: 10.3390/app9081612.
    1. Okada E. Application of Near Infrared Spectroscopy in Biomedicine. Springer US; New York, NY, USA: 2013. Photon migration in NIRS brain imaging; pp. 37–58.
    1. Watzman H.M., Kurth C.D., Montenegro L.M., Rome J., Steven J.M. Arterial and Venous Contributions to Near-infrared Cerebral Oximetry | Anesthesiology | ASA Publications. Anesthesiology. 2000;93:947–953. doi: 10.1097/00000542-200010000-00012.
    1. Vanderah T., Gould D., Nolte J. Nolte’s the human Brain: An Introduction to Its Functional Anatomy. Elsevier; Philadelphia, PA, USA: 2016. Blood supply of the brain; pp. 126–153.
    1. Tortora G.J., Derrickson B. Principles of Anatomy & Physiology. Wiley; Hoboken, NY, USA: 2014. The cardiovascular system: The heart; pp. 720–760.
    1. Samraj R.S., Nicolas L. Near infrared spectroscopy (NIRS) derived tissue oxygenation in critical illness. Clin. Investig. Med. 2015;38:E285–E295. doi: 10.25011/cim.v38i5.25685.
    1. Bhardwaj A., Bhagat H., Grover V. Jugular venous oximetry. J. Neuroanaesth. Crit. Care. 2015;02:225–231. doi: 10.4103/2348-0548.165046.
    1. Rosenthal G., Hemphill J.C., Sorani M., Martin C., Morabito D., Obrist W.D., Manley G.T. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit. Care Med. 2008;36:1917–1924. doi: 10.1097/CCM.0b013e3181743d77.
    1. Giridharan N., Patel S.K., Ojugbeli A., Nouri A., Shirani P., Grossman A.W., Cheng J., Zuccarello M., Prestigiacomo C.J. Understanding the complex pathophysiology of idiopathic intracranial hypertension and the evolving role of venous sinus stenting: A comprehensive review of the literature. Neurosurg. Focus. 2018;45:1–13. doi: 10.3171/2018.4.FOCUS18100.
    1. Lifesciences E. Edwards Lifesciences—the Leader in Heart Valves & Hemodynamic Monitoring. [(accessed on 12 August 2020)]; Available online:
    1. Lang E.W., Jaeger M. Systematic and Comprehensive Literature Review of Publications on Direct Cerebral Oxygenation Monitoring. Open Crit. Care Med. J. 2013;6:1–24. doi: 10.2174/1874828701306010001.
    1. Ngwenya L.B., Burke J.F., Manley G.T. Brain Tissue Oxygen Monitoring and the Intersection of Brain and Lung. Respiratory Care. 2016;61:1232–1244. doi: 10.4187/respcare.04962.
    1. Oddo M., Bösel J., Le Roux P., Menon D.K., Vespa P., Citerio G., Bader M.K., Brophy G.M., Diringer M.N., Stocchetti N., et al. Monitoring of Brain and Systemic Oxygenation in Neurocritical Care Patients. Neurocrit. Care. 2014;21:103–120. doi: 10.1007/s12028-014-0024-6.
    1. Tateishi A., Maekawa T., Soejima Y., Sadamitsu D., Yamamoto M., Matsushita M., Nakashima K. Qualitative comparison of carbon dioxide-induced change in cerebral near-infrared spectroscopy versus jugular venous oxygen saturation in adults with acute brain disease | Ovid. Neurol. Crit. CARE. 1995;23:1734–1738. doi: 10.1097/00003246-199510000-00019.
    1. Kirkpatrick P.J., Smielewski P., Czosnyka M., Menon D.K., Pickard J.D. Near-infrared spectroscopy use in patients with head injury. J. Neurosurg. 1995;83:963–970. doi: 10.3171/jns.1995.83.6.0963.
    1. Lewis S.B., Myburgh J.A., Thornton E.L., Reilly P.L. Cerebral oxygenation monitoring by near-infrared spectroscopy is not clinically useful in patients with severe closed-head injury: A comparison with jugular venous bulb oximetry | Ovid. Clin. Investig. 1996;24:1334–1338. doi: 10.1097/00003246-199608000-00011.
    1. Kampfl A., Pfausler B., Denchev D., Jaring H.P., Schmutzhard E. Near Infrared Spectroscopy (NIRS) in Patients with Severe Brain Injury and Elevated Intracranial Pressure: A Pilot Study. Acta Neurochir. Suppl. 1997;1997:112–114. doi: 10.1007/978-3-7091-6837-0_35.
    1. Kerr M.E., Marion D., Orndoff P.A., Weber B.B., Sereika S.M. Evaluation of near infrared spectroscopy in patients with traumatic brain injury. Adv. Exp. Med. Biol. 1998;454:131–137. doi: 10.1007/978-1-4615-4863-8_16.
    1. Ter Minassian A., Poirier N., Pierrot M., Menei P., Granry J.C., Ursino M., Beydon L. Correlation between cerebral oxygen saturation measured by near-infrared spectroscopy and jugular oxygen saturation in patients with severe closed head injury. Anesthesiology. 1999;91:985–990. doi: 10.1097/00000542-199910000-00018.
    1. Cheng O.S.K., Prowse S., Strong A.J. Oscillations in the near-infrared signal in patients with severe head injury. Acta Neurochir. Suppl. 2002;81:135–137. doi: 10.1007/978-3-7091-6738-0_35.
    1. Brawanski A., Faltermeier R., Rothoerl R.D., Woertgen C. Comparison of Near-Infrared Spectroscopy and Tissue Po 2 Time Series in Patients after Severe Head Injury and Aneurysmal Subarachnoid Hemorrhage. J. Cereb. Blood Flow Metab. 2002;22:605–611. doi: 10.1097/00004647-200205000-00012.
    1. McLeod A.D., Igielman F., Elwell C., Cope M., Smith M. Measuring cerebral oxygenation during normobaric hyperoxia: A comparison of tissue microprobes, near-infrared spectroscopy, and jugular venous oximetry in head injury. Anesth. Analg. 2003;97:851–856. doi: 10.1213/.
    1. Kim M.N., Durduran T., Frangos S., Edlow B.L., Buckley E.M., Moss H.E., Zhou C., Yu G., Choe R., Maloney-Wilensky E., et al. Noninvasive Measurement of Cerebral Blood Flow and Blood Oxygenation Using Near-Infrared and Diffuse Correlation Spectroscopies in Critically Brain-Injured Adults. Neurocrit. Care. 2010;12:173–180. doi: 10.1007/s12028-009-9305-x.
    1. Leal-Noval S.R., Cayuela A., Arellano-Orden V., Marín-Caballos A., Padilla V., Ferrándiz-Millón C., Corcia Y., García-Alfaro C., Amaya-Villar R., Murillo-Cabezas F., et al. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med. 2010;36:1309–1317. doi: 10.1007/s00134-010-1920-7.
    1. Tachtsidis I., Tisdall M.M., Pritchard C., Leung T.S., Ghosh A., Elwell C.E., Smith M. Analysis of the changes in the oxidation of brain tissue cytochrome-c-oxidase in traumatic brain injury patients during hypercapnoea: A broadband NIRS study. Adv. Exp. Med. Biol. 2011;701:9–14. doi: 10.1007/978-1-4419-7756-4_2.
    1. Ghosh A., Tachtsidis I., Kolyva C., Highton D., Elwell C., Smith M. Normobaric Hyperoxia Does Not Change Optical Scattering or Pathlength but Does Increase Oxidised Cytochrome c Oxidase Concentration in Patients with Brain Injury. Adv. Exp. Med. Biol. 2013;765:67–72. doi: 10.1007/978-1-4614-4989-8_10.
    1. Rosenthal G., Furmanov A., Itshayek E., Shoshan Y., Singh V. Assessment of a noninvasive cerebral oxygenation monitor in patients with severe traumatic brain injury: Clinical article. J. Neurosurg. 2014;120:901–907. doi: 10.3171/2013.12.JNS131089.
    1. Vilke A., Bilskiene D., Šaferis V., Gedminas M., Bieliauskaite D., Tama&auskas A., Macas A. Predictive value of early near-infrared spectroscopy monitoring of patients with traumatic brain injury. Medicina. 2014 doi: 10.1016/j.medici.2014.10.001.
    1. Durnev V., Filipce V., Brzanov A.G., Mijovska M.M., Stevanovska M.T. CEREBRAL OXYGENATION NON INVASIVE MONITORING IN TRAUMATIC BRAIN INJURY-A PILOT STUDY. Mac Med. Rev. 2017;71:113–118. doi: 10.1515/mmr-2017-0019.
    1. Davies D.J., Clancy M., Dehghani H., Lucas S.J.E., Forcione M., Yakoub K.M., Belli A. Cerebral oxygenation in traumatic brain injury: Can a non-invasive frequency domain near-infrared spectroscopy device detect changes in brain tissue oxygen tension as well as the established invasive monitor? J. Neurotrauma. 2019;36:1175–1183. doi: 10.1089/neu.2018.5667.
    1. Fantini S., Sassaroli A. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy. Front. Neurosci. 2020;14 doi: 10.3389/fnins.2020.00300.
    1. Kinoshita K. Traumatic brain injury: Pathophysiology for neurocritical care. J. Intensive Care. 2016;4:10. doi: 10.1186/s40560-016-0138-3.
    1. Calviello L.A., Donnelly J., Zeiler F.A., Thelin E.P., Smielewski P., Czosnyka M. Cerebral autoregulation monitoring in acute traumatic brain injury: What’s the evidence? Minerva Anestesiol. 2017;83:844–857. doi: 10.23736/S0375-9393.17.12043-2.
    1. Fabregas N., Fernández-Candil J. Complications in Neuroanesthesia. Elsevier; Amsterdam, The Netherlands: 2016. Hypercapnia; pp. 157–168.
    1. Bor-Seng-Shu E., Kita W.S., Figueiredo E.G., Paiva W.S., Fonoff E.T., Teixeira M.J., Panerai R.B. Cerebral hemodynamics: Concepts of clinical importance. Arq. Neuropsiquiatr. 2012;70:357–365. doi: 10.1590/S0004-282X2012000500010.
    1. Chiluwal A., Narayan R.K., Chaung W., Mehan N., Wang P., Bouton C.E., Golanov E.V., Li C. Neuroprotective effects of trigeminal nerve stimulation in severe traumatic brain injury. Sci. Rep. 2017;7:1–13. doi: 10.1038/s41598-017-07219-3.
    1. Tameemm A., Krovvidi H. Cerebral physiology. Contin. Educ. Anaesthesia, Crit. Care Pain. 2013;13:113–118. doi: 10.1093/bjaceaccp/mkt001.
    1. Adelson P.D., Nemoto E., Colak A., Painter M. The Use of Near Infrared Spectroscopy (NIRS) in Children after Traumatic Brain Injury: A Preliminary Report. Acta Neurochir. Suppl. 1998;1998:250–254. doi: 10.1007/978-3-7091-6475-4_72.
    1. Kreipke C.W., Rafols J.A. Cerebral Blood Flow, Metabolism, and Head Trauma: The Pathotrajectory of Traumatic Brain Injury. Springer; New York, NY, USA: 2013. Situating Cerebral Blood Flow in the Pathotrajectory of Head Trauma; pp. 29–51.
    1. Berry C., Ley E.J., Bukur M., Malinoski D., Margulies D.R., Mirocha J., Salim A. Redefining hypotension in traumatic brain injury. Injury. 2012;43:1833–1837. doi: 10.1016/j.injury.2011.08.014.
    1. Gomes J.A., Bhardwaj A. Normal Intracranial Pressure Physiology. In: Morrison B.M., editor. Cerebrospinal Fluid in Clinical Practice. Elsevier Inc.; Amsterdam, The Netherlands: 2009. pp. 19–25.
    1. Ontario Neurotrauma Foundation . Guideline for Concussion/Mild Traumatic Brain Injury and Persistent Symptoms, Healthcare Professional Version Adults (18+ years of age) Third Edition. Ontario Neurotrauma Foundation; Toronto, ON, Canada: 2018.
    1. Guyton A.C., Hall J.E. GUYTON AND HALL Textbook of Medical Physiology. Saunders; Philadelphia, PA, USA: 2011. Cerebral Blood Flow, Cerebrospinal Fluid, and Brain Metabolism; pp. 764–771.
    1. Dunham C.M., Sosnowski C., Porter J.M., Siegal J., Kohli C. Correlation of noninvasive cerebral oximetry with cerebral perfusion in the severe head injured patient: A pilot study. J. Trauma. 2002;52:40–46. doi: 10.1097/00005373-200201000-00009.
    1. Zweifel C., Castellani G., Czosnyka M., Helmy A., Manktelow A., Carrera E., Brady K.M., Hutchinson P.J.A., Menon D.K., Pickard J.D., et al. Noninvasive monitoring of cerebrovascular reactivity with near infrared spectroscopy in head-injured patients. J. Neurotrauma. 2010;27:1951–1958. doi: 10.1089/neu.2010.1388.
    1. Shafer R., Brown A., Taylor C. Correlation between cerebral blood flow and oxygen saturation in patients with subarachnoid hemorrhage and traumatic brain injury. J. Neurointerventional Surg. 2010 doi: 10.1136/jnis.2010.004184.
    1. Sorrentino E., Diedler J., Kasprowicz M., Budohoski K.P., Haubrich C., Smielewski P., Outtrim J.G., Manktelow A., Hutchinson P.J., Pickard J.D., et al. Critical Thresholds for Cerebrovascular Reactivity After Traumatic Brain Injury. Neurocritical Care. 2011 doi: 10.1007/s12028-010-9492-5.
    1. Taussky P., O’Neal B., Daugherty W.P., Luke S., Thorpe D., Pooley R.A., Evans C., Hanel R.A., Freeman W.D. Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg. Focus. 2012;32:1–6. doi: 10.3171/2011.12.FOCUS11280.
    1. Kim M.N., Edlow B.L., Durduran T., Frangos S., Mesquita R.C., Levine J.M., Greenberg J.H., Yodh A.G., Detre J.A. Continuous Optical Monitoring of Cerebral Hemodynamics During Head-of-Bed Manipulation in Brain-Injured Adults. Neurocritical Care. 2014 doi: 10.1007/s12028-013-9849-7.
    1. Highton D., Ghosh A., Tachtsidis I., Panovska-Griffiths J., Elwell C.E., Smith M. Monitoring Cerebral Autoregulation After Brain Injury: Multimodal Assessment of Cerebral Slow-Wave Oscillations Using Near-Infrared Spectroscopy. Anesth Analg. 2015 doi: 10.1213/ANE.0000000000000790.
    1. Bindra J., Pham P., Aneman A., Chuan A., Jaeger M. Non-invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using Near Infrared Spectroscopy and the Finometer Photoplethysmograph. Neurocrit. Care. 2016 doi: 10.1007/s12028-015-0200-3.
    1. Diedler J., Zweifel C., Budohoski K.P., Kasprowicz M., Sorrentino E., Haubrich C., Brady K.M., Czosnyka M., Pickard J.D., Smielewski P. The limitations of near-infrared spectroscopy to assess cerebrovascular reactivity: The role of slow frequency oscillations. Anesth. Analg. 2011;113:849–857. doi: 10.1213/ANE.0b013e3182285dc0.
    1. McAllister T.W. Overview of Mild Brain Injury. In: Silver J.M., McAllister T.W., Arciniegas D.B., editors. Textbook of Traumatic Brain Injury. American Psychiatric Association Publishing; Washington, DC, USA: 2018. pp. 583–605.
    1. Doğan N.Ö. Bland-Altman analysis: A paradigm to understand correlation and agreement. Turkish J. Emerg. Med. 2018;18:139–141. doi: 10.1016/j.tjem.2018.09.001.

Source: PubMed

3
Tilaa