Evolution of RAS Mutations in Cell-Free DNA of Patients with Tissue RAS Wild-Type Metastatic Colorectal Cancer Receiving First-Line Treatment: The PERSEIDA Study

Manuel Valladares-Ayerbes, Pilar Garcia-Alfonso, Jorge Muñoz Luengo, Paola Patricia Pimentel Caceres, Oscar Alfredo Castillo Trujillo, Rosario Vidal-Tocino, Marta Llanos, Beatriz Llorente Ayala, Maria Luisa Limon Miron, Antonieta Salud, Luis Cirera Nogueras, Rocio Garcia-Carbonero, Maria Jose Safont, Esther Falco Ferrer, Jorge Aparicio, Maria Angeles Vicente Conesa, Carmen Guillén-Ponce, Paula Garcia-Teijido, Maria Begoña Medina Magan, Isabel Busquier, Mercedes Salgado, Ariadna Lloansí Vila, PERSEIDA Investigators, Manuel Valladares-Ayerbes, Pilar Garcia-Alfonso, Jorge Muñoz Luengo, Paola Patricia Pimentel Caceres, Oscar Alfredo Castillo Trujillo, Rosario Vidal-Tocino, Marta Llanos, Beatriz Llorente Ayala, Maria Luisa Limon Miron, Antonieta Salud, Luis Cirera Nogueras, Rocio Garcia-Carbonero, Maria Jose Safont, Esther Falco Ferrer, Jorge Aparicio, Maria Angeles Vicente Conesa, Carmen Guillén-Ponce, Paula Garcia-Teijido, Maria Begoña Medina Magan, Isabel Busquier, Mercedes Salgado, Ariadna Lloansí Vila, PERSEIDA Investigators

Abstract

The serial analysis of cell-free DNA (cfDNA) enables minimally invasive monitoring of tumor evolution, providing continuous genetic information. PERSEIDA was an observational, prospective study assessing the cfDNA RAS (KRAS/NRAS) mutational status evolution in first-line, metastatic CRC, RAS wild-type (according to baseline tumor tissue biopsy) patients. Plasma samples were collected before first-line treatment, after 20 ± 2 weeks, and at disease progression. One hundred and nineteen patients were included (102 received panitumumab and chemotherapy as first-line treatment-panitumumab subpopulation). Fifteen (12.6%) patients presented baseline cfDNA RAS mutations (n = 14 [13.7%], panitumumab subpopulation) (mutant allele fraction ≥0.02 for all results). No patients presented emergent mutations (cfDNA RAS mutations not present at baseline) at 20 weeks. At disease progression, 11 patients (n = 9; panitumumab subpopulation) presented emergent mutations (RAS conversion rate: 19.0% [11/58]; 17.7% [9/51], panitumumab subpopulation). In contrast, three (5.2%) patients presenting baseline cfDNA RAS mutations were RAS wild-type at disease progression. No significant associations were observed between overall response rate or progression-free survival and cfDNA RAS mutational status in the total panitumumab subpopulation. Although, in patients with left-sided tumors, a significantly longer progression-free survival was observed in cfDNA RAS wild-type patients compared to those presenting cfDNA RAS mutations at any time. Continuous evaluation of RAS mutations may provide valuable insights on tumor molecular dynamics that can help clinical practice.

Keywords: RAS mutations; cell-free DNA; colorectal cancer; solid biopsy.

Conflict of interest statement

M.V-A. has received grants and personal fees from Roche and personal fees from Merck, Amgen, Sanofi, Servier, Celgene, and Bayer. P.G-A. has received honoraria or consultation fees for speaker, consultancy, or advisory roles from Amgen, Bayer, Bristol, Merck Seorono, MSD, Lilly, Roche, Sanofi, Servier, and Pierre Fabre. R.V.-T. has received speaker fees from Amgen, Merck, Sanofi, Servier, Bristol-MS, Bayer, and Roche and educational and scientific activities and travel support from Amgen, Roche, Lilly, Sanofi, Bristol-MS, Pierre-Fabre, and Servier. R.G-C. has received honoraria for speaker/consulting roles from AAA, Advanz Pharma, Bayer, BMS, HMP, Ipsen, Merck, Midatech Pharma, MSD, Novartis, PharmaMar, Pfizer, Pierre Fabre, Roche, Sanofi, and Servier and research support from ARMO Biosciences, Astrazeneca, Pfizer, Novartis, Ipsen, Roche, Pharmacyclics, Boston Biomedicals, Merck, MSD, Amgen, Sanofi, Bayer, Bristol-Myers-Squibb, Boerhringer, Sysmex, Gilead Sciences, Servier, Adacap, VCN, Lilly, Pharmamar, BMS, and MSD. M-J.S. has received personal fees from Roche, Amgen, Merck, and Sanofi and honoraria for speaker/consulting roles from Amgen, Bayer, BMS, Merck, MSD, Pierre Fabre, Roche, Sanofi, and Servier. JA. has received honoraria for consultancy or advisory roles from Amgen, Merck, Sanofi, Servier, Bayer, and Pierre Fabre. M.S. has received honoraria for speaker and advisory roles for Amgen. A.L.V. is an employee and stakeholder of Amgen S.A. The other authors declare no potential conflicts of interest.

Figures

Figure 1
Figure 1
Percentage of patients with (a) RAS, (b) KRAS, and (c) NRAS mutations in liquid biopsies at baseline, at 20 weeks (±2 weeks), and at disease progression according to mutant allele fraction (MAF) cut-offs. One (n = 1) patient had both KRAS and NRAS mutations (MAF ≥ 0.1% and MAF ≥ 0.02%). n: number of patients with mutations. Percentages calculated based on patients with available samples.
Figure 1
Figure 1
Percentage of patients with (a) RAS, (b) KRAS, and (c) NRAS mutations in liquid biopsies at baseline, at 20 weeks (±2 weeks), and at disease progression according to mutant allele fraction (MAF) cut-offs. One (n = 1) patient had both KRAS and NRAS mutations (MAF ≥ 0.1% and MAF ≥ 0.02%). n: number of patients with mutations. Percentages calculated based on patients with available samples.
Figure 2
Figure 2
Progression free survival according to RAS mutational status in liquid biopsy at any time (panitumumab subpopulation, left tumor location): (a) mutant allele fraction ≥1% cut-off; (b) mutant allele fraction ≥0.1% cut-off; and (c) mutant allele fraction ≥0.02% cut-off.
Figure 2
Figure 2
Progression free survival according to RAS mutational status in liquid biopsy at any time (panitumumab subpopulation, left tumor location): (a) mutant allele fraction ≥1% cut-off; (b) mutant allele fraction ≥0.1% cut-off; and (c) mutant allele fraction ≥0.02% cut-off.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. European Commission Colorectal Cancer Burden in EU-27. 2021. [(accessed on 19 May 2022)]. Available online: .
    1. Sociedad Española de Oncología Médica (SEOM) Las Cifras del Cáncer en España 2022. [(accessed on 19 May 2022)]. Available online: .
    1. Van Cutsem E., Cervantes A., Adam R., Sobrero A., van Krieken J.H., Aderka D., Aguilar E.A., Bardelli A., Benson A., Bodoky G., et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 2016;27:1386–1422. doi: 10.1093/annonc/mdw235.
    1. Fernández-Medarde A., Santos E. Ras in Cancer and Developmental Diseases. Genes Cancer. 2011;2:344–358. doi: 10.1177/1947601911411084.
    1. Douillard J.-Y., Oliner K.S., Siena S., Tabernero J., Burkes R., Barugel M., Humblet Y., Bodoky G., Cunningham D., Jassem J., et al. Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N. Engl. J. Med. 2013;369:1023–1034. doi: 10.1056/NEJMoa1305275.
    1. Van Cutsem E., Lenz H.-J., Köhne C.-H., Heinemann V., Tejpar S., Melezínek I., Beier F., Stroh C., Rougier P., van Krieken J.H., et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J. Clin. Oncol. 2015;33:692–700. doi: 10.1200/JCO.2014.59.4812.
    1. Bokemeyer C., Bondarenko I., Hartmann J., de Braud F., Schuch G., Zubel A., Celik I., Schlichting M., Koralewski P. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: The OPUS study. Ann. Oncol. 2011;22:1535–1546. doi: 10.1093/annonc/mdq632.
    1. Kyrochristos I.D., Roukos D.H. Comprehensive intra-individual genomic and transcriptional heterogeneity: Evidence-based Colorectal Cancer Precision Medicine. Cancer Treat. Rev. 2019;80:101894. doi: 10.1016/j.ctrv.2019.101894.
    1. Bi F., Wang Q., Dong Q., Wang Y., Zhang L., Zhang J. Circulating tumor DNA in colorectal cancer: Opportunities and challenges. Am. J. Transl. Res. 2020;12:1044–1055.
    1. Raimondi C., Nicolazzo C., Belardinilli F., Loreni F., Gradilone A., Mahdavian Y., Gelibter A., Giannini G., Cortesi E., Gazzaniga P. Transient Disappearance of RAS Mutant Clones in Plasma: A Counterintuitive Clinical Use of EGFR Inhibitors in RAS Mutant Metastatic Colorectal Cancer. Cancers. 2019;11:42. doi: 10.3390/cancers11010042.
    1. Siravegna G., Marsoni S., Siena S., Bardelli A. Integrating liquid biopsies into the management of cancer. Nat. Rev. Clin. Oncol. 2017;14:531–548. doi: 10.1038/nrclinonc.2017.14.
    1. Normanno N., Abate R.E., Lambiase M., Forgione L., Cardone C., Iannaccone A., Sacco A., Rachiglio A., Martinelli E., Rizzi D., et al. RAS testing of liquid biopsy correlates with the outcome of metastatic colorectal cancer patients treated with first-line FOLFIRI plus cetuximab in the CAPRI-GOIM trial. Ann. Oncol. 2017;29:112–118. doi: 10.1093/annonc/mdx417.
    1. Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., Knippers R. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665.
    1. Diehl F., Li M., Dressman D., He Y., Shen D., Szabo S., Diaz L.A., Goodman S.N., David K.A., Juhl H., et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc. Natl. Acad. Sci. USA. 2005;102:16368–16373. doi: 10.1073/pnas.0507904102.
    1. Castells A., Puig P., Móra J., Boadas J., Boix L., Urgell E., Solé M., Capellà G., Lluís F., Fernández-Cruz L., et al. K-ras Mutations in DNA Extracted From the Plasma of Patients With Pancreatic Carcinoma: Diagnostic Utility and Prognostic Significance. J. Clin. Oncol. 1999;17:578. doi: 10.1200/JCO.1999.17.2.578.
    1. Ryan B.M., Lefort F., McManus R., Daly J., Keeling P.W.N., Weir D.G., Kelleher D. A prospective study of circulating mutant KRAS2 in the serum of patients with colorectal neoplasia: Strong prognostic indicator in postoperative follow up. Gut. 2003;52:101–108. doi: 10.1136/gut.52.1.101.
    1. Wang S., An T., Wang J., Zhao J., Wang Z., Zhuo M., Bai H., Yang L., Zhang Y., Wang X., et al. Potential Clinical Significance of a Plasma-Based KRAS Mutation Analysis in Patients with Advanced Non–Small Cell Lung Cancer. Clin. Cancer Res. 2010;16:1324–1330. doi: 10.1158/1078-0432.CCR-09-2672.
    1. Crowley E., Di Nicolantonio F., Loupakis F., Bardelli A. Liquid biopsy: Monitoring cancer-genetics in the blood. Nat. Rev. Clin. Oncol. 2013;10:472–484. doi: 10.1038/nrclinonc.2013.110.
    1. Li M., Diehl F., Dressman D., Vogelstein B., Kinzler K.W. BEAMing up for detection and quantification of rare sequence variants. Nat. Methods. 2006;3:95–97. doi: 10.1038/nmeth850.
    1. Diehl F., Li M., He Y., Kinzler K.W., Vogelstein B., Dressman D. BEAMing: Single-molecule PCR on microparticles in water-in-oil emulsions. Nat. Methods. 2006;3:551–559. doi: 10.1038/nmeth898.
    1. Diaz L.A., Jr., Williams R.T., Wu J., Kinde I., Hecht J.R., Berlin J., Allen B., Bozic I., Reiter J.G., Nowak M.A., et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486:537–540. doi: 10.1038/nature11219.
    1. Eisenhauer E.A., Therasse P., Bogaerts J., Schwartz L.H., Sargent D., Ford R., Dancey J., Arbuck S., Gwyther S., Mooney M., et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1) Eur. J. Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. García-Foncillas J., Tabernero J., Élez E., Aranda E., Benavides M., Camps C., Jantus-Lewintre E., López R., Muinelo-Romay L., Montagut C., et al. Prospective multicenter real-world RAS mutation comparison between OncoBEAM-based liquid biopsy and tissue analysis in metastatic colorectal cancer. Br. J. Cancer. 2018;119:1464–1470. doi: 10.1038/s41416-018-0293-5.
    1. Grasselli J., Elez E., Caratù G., Matito J., Santos C., Macarulla T., Vidal J., Garcia M., Viéitez J., Paéz D., et al. Concordance of blood- and tumor-based detection of RAS mutations to guide anti-EGFR therapy in metastatic colorectal cancer. Ann. Oncol. 2017;28:1294–1301. doi: 10.1093/annonc/mdx112.
    1. Schmiegel W., Scott R.J., Dooley S., Lewis W., Meldrum C.J., Pockney P., Draganic B., Smith S., Hewitt C., Philimore H., et al. Blood-based detection of RAS mutations to guide anti-EGFR therapy in colorectal cancer patients: Concordance of results from circulating tumor DNA and tissue-based RAS testing. Mol. Oncol. 2017;11:208–219. doi: 10.1002/1878-0261.12023.
    1. Thomsen C.B., Andersen R.F., Lindebjerg J., Hansen T.F., Jensen L.H., Jakobsen A. Plasma Dynamics of RAS/RAF Mutations in Patients with Metastatic Colorectal Cancer Receiving Chemotherapy and Anti-EGFR Treatment. Clin. Color. Cancer. 2019;18:28–33.e3. doi: 10.1016/j.clcc.2018.10.004.
    1. Kagawa Y., Elez E., García-Foncillas J., Bando H., Taniguchi H., Vivancos A., Akagi K., García A., Denda T., Ros J., et al. Combined Analysis of Concordance between Liquid and Tumor Tissue Biopsies for RAS Mutations in Colorectal Cancer with a Single Metastasis Site: The METABEAM Study. Clin. Cancer Res. 2021;27:2515–2522. doi: 10.1158/1078-0432.CCR-20-3677.
    1. Wang F., Huang Y.-S., Wu H.-X., Wang Z.-X., Jin Y., Yao Y.-C., Chen Y.-X., Zhao Q., Chen S., He M.-M., et al. Genomic temporal heterogeneity of circulating tumour DNA in unresectable metastatic colorectal cancer under first-line treatment. Gut. 2021;71:1340–1349. doi: 10.1136/gutjnl-2021-324852.
    1. Formica V., Lucchetti J., Doldo E., Riondino S., Morelli C., Argirò R., Renzi N., Nitti D., Nardecchia A., Dell’Aquila E., et al. Clinical utility of plasma KRAS, NRAS and BRAF mutational analysis with real time PCR in metastatic colorectal cancer patients-the importance of tissue/plasma discordant cases. J. Clin. Med. 2020;10:87. doi: 10.3390/jcm10010087.
    1. Bando H., Kagawa Y., Kato T., Akagi K., Denda T., Nishina T., Komatsu Y., Oki E., Kudo T., Kumamoto H., et al. A multicentre, prospective study of plasma circulating tumour DNA test for detecting RAS mutation in patients with metastatic colorectal cancer. Br. J. Cancer. 2019;120:982–986. doi: 10.1038/s41416-019-0457-y.
    1. Hamfjord J., Guren T.K., Glimelius B., Sorbye H., Pfeiffer P., Dajani O., Lingjaerde O.C., Tveit K.M., Pallisgaard N., Spindler K.G., et al. Clinicopathological factors associated with tumour-specific mutation detection in plasma of patients with RAS-mutated or BRAF-mutated metastatic colorectal cancer. Int. J. Cancer. 2021;149:1385–1397. doi: 10.1002/ijc.33672.
    1. Peeters M., Price T., Boedigheimer M., Kim T.W., Ruff P., Gibbs P., Thomas A.L., Demonty G., Hool K., Ang A. Evaluation of Emergent Mutations in Circulating Cell-Free DNA and Clinical Outcomes in Patients with Metastatic Colorectal Cancer Treated with Panitumumab in the ASPECCT Study. Clin. Cancer Res. 2019;25:1216–1225. doi: 10.1158/1078-0432.CCR-18-2072.
    1. Siena S., Sartore-Bianchi A., Garcia-Carbonero R., Karthaus M., Smith D., Tabernero J., Van Cutsem E., Guan X., Boedigheimer M., Ang A., et al. Dynamic molecular analysis and clinical correlates of tumor evolution within a phase II trial of panitumumab-based therapy in metastatic colorectal cancer. Ann. Oncol. 2018;29:119–126. doi: 10.1093/annonc/mdx504.
    1. Kim T.W., Peeters M., Thomas A.L., Gibbs P., Hool K., Zhang J., Ang A.L., Bach B.A., Price T. Impact of Emergent Circulating Tumor DNA RAS Mutation in Panitumumab-Treated Chemoresistant Metastatic Colorectal Cancer. Clin. Cancer Res. 2018;24:5602–5609. doi: 10.1158/1078-0432.CCR-17-3377.
    1. Parseghian C.M., Sun R., Napolitano S., Morris V.K., Henry J., Willis J., Sanchez E.V., Raghav K.P.S., Ang A., Kopetz S. Rarity of acquired mutations (MTs) after first-line therapy with anti-EGFR therapy (EGFRi) J. Clin. Oncol. 2021;39:3514. doi: 10.1200/JCO.2021.39.15_suppl.3514.
    1. Misale S., Di Nicolantonio F., Sartore-Bianchi A., Siena S., Bardelli A. Resistance to Anti-EGFR Therapy in Colorectal Cancer: From Heterogeneity to Convergent Evolution. Cancer Discov. 2014;4:1269–1280. doi: 10.1158/-14-0462.
    1. Maurel J., Alonso V., Escudero P., Fernández-Martos C., Salud A., Méndez M., Gallego J., Rodriguez J.R., Martín-Richard M., Fernández-Plana J., et al. Clinical Impact of Circulating Tumor RAS and BRAF Mutation Dynamics in Patients with Metastatic Colorectal Cancer Treated with First-Line Chemotherapy Plus Anti–Epidermal Growth Factor Receptor Therapy. JCO Precis. Oncol. 2019;18:1–16. doi: 10.1200/PO.18.00289.
    1. Morano F., Corallo S., Lonardi S., Raimondi A., Cremolini C., Rimassa L., Murialdo R., Zaniboni A., Sartore-Bianchi A., Tomasello G., et al. Negative Hyperselection of Patients with RAS and BRAF Wild-Type Metastatic Colorectal Cancer Who Received Panitumumab-Based Maintenance Therapy. J. Clin. Oncol. 2019;37:3099–3110. doi: 10.1200/JCO.19.01254.
    1. Arnold D., Lueza B., Douillard J.-Y., Peeters M., Lenz H.-J., Venook A., Heinemann V., Van Cutsem E., Pignon J.-P., Tabernero J., et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann. Oncol. 2017;28:1713–1729. doi: 10.1093/annonc/mdx175.
    1. Holch J.W., Ricard I., Stintzing S., Modest D.P., Heinemann V. The relevance of primary tumour location in patients with metastatic colorectal cancer: A meta-analysis of first-line clinical trials. Eur. J. Cancer. 2017;70:87–98. doi: 10.1016/j.ejca.2016.10.007.
    1. Parseghian C.M., Napolitano S., Loree J.M., Kopetz S. Mechanisms of Innate and Acquired Resistance to Anti-EGFR Therapy: A Review of Current Knowledge with a Focus on Rechallenge Therapies. Clin. Cancer Res. 2019;25:6899–6908. doi: 10.1158/1078-0432.CCR-19-0823.
    1. Callesen L.B., Hamfjord J., Boysen A.K., Pallisgaard N., Guren T.K., Kure E.H., Spindler K.-L.G. Circulating tumour DNA and its clinical utility in predicting treatment response or survival in patients with metastatic colorectal cancer: A systematic review and meta-analysis. Br. J. Cancer. 2022;127:500–513. doi: 10.1038/s41416-022-01816-4.

Source: PubMed

3
Tilaa