Factors Associated With Virtual Reality Sickness in Head-Mounted Displays: A Systematic Review and Meta-Analysis

Dimitrios Saredakis, Ancret Szpak, Brandon Birckhead, Hannah A D Keage, Albert Rizzo, Tobias Loetscher, Dimitrios Saredakis, Ancret Szpak, Brandon Birckhead, Hannah A D Keage, Albert Rizzo, Tobias Loetscher

Abstract

The use of head-mounted displays (HMD) for virtual reality (VR) application-based purposes including therapy, rehabilitation, and training is increasing. Despite advancements in VR technologies, many users still experience sickness symptoms. VR sickness may be influenced by technological differences within HMDs such as resolution and refresh rate, however, VR content also plays a significant role. The primary objective of this systematic review and meta-analysis was to examine the literature on HMDs that report Simulator Sickness Questionnaire (SSQ) scores to determine the impact of content. User factors associated with VR sickness were also examined. A systematic search was conducted according to PRISMA guidelines. Fifty-five articles met inclusion criteria, representing 3,016 participants (mean age range 19.5-80; 41% female). Findings show gaming content recorded the highest total SSQ mean 34.26 (95%CI 29.57-38.95). VR sickness profiles were also influenced by visual stimulation, locomotion and exposure times. Older samples (mean age ≥35 years) scored significantly lower total SSQ means than younger samples, however, these findings are based on a small evidence base as a limited number of studies included older users. No sex differences were found. Across all types of content, the pooled total SSQ mean was relatively high 28.00 (95%CI 24.66-31.35) compared with recommended SSQ cut-off scores. These findings are of relevance for informing future research and the application of VR in different contexts.

Keywords: cybersickness; head-mounted display; simulator sickness; virtual environment; virtual reality.

Copyright © 2020 Saredakis, Szpak, Birckhead, Keage, Rizzo and Loetscher.

Figures

Figure 1
Figure 1
The article selection and screening process using the PRISMA flow diagram (Liberati et al., 2009).
Figure 2
Figure 2
Content characteristics and participant's sickness response. Emoticons indicate participant level of discomfort according to total Simulator Sickness Questionnaire (SSQ) scores averaged across all studies.
Figure 3
Figure 3
VR sickness symptoms across the different SSQ subscales of all measured factors including (A) Visual Stimulation, (B) Time, (C) VR Sickness Condition, (D) Locomotion, (E) Age, and (F) Content. SSQ, Simulator Sickness Questionnaire; Error bars represent standard error.

References

    1. Aged Care Virtual Reality (2018). VR Programs for Health Benefits. Retrieved from (accessed December 17, 2018).
    1. Ames L. S., Wolffsohn S. J., McBrien A. N. (2005). The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom. Vis. Sci. 82, 168–176. 10.1097/01.OPX.0000156307.95086.6
    1. Arcioni B., Palmisano S., Apthorp D., Kim J. (2018). Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays 58, 3–11. 10.1016/j.displa.2018.07.001
    1. Benoit M., Guerchouche R., Petit P.-D., Chapoulie E., Manera V., Chaurasia G., et al. . (2015). Is it possible to use highly realistic virtual reality in the elderly? A feasibility study with image-based rendering. Neuropsychiatr. Dis. Treat. 11, 557–563. 10.2147/NDT.S73179
    1. Bermúdez Rey M. C., Clark T. K., Wang W., Leeder T., Bian Y., Merfeld D. M. (2016). Vestibular perceptual thresholds increase above the age of 40. Front. Neurol. 7:162. 10.3389/fneur.2016.00162
    1. Bessa M., Melo M., Narciso D., Barbosa L., Vasconcelos-Raposo J. (2016). Does 3D 360 video enhance user's VR experience? An evaluation study, in Proceedings of the XVII International Conference on Human Computer (New York, NY: ), 1–4. 10.1145/2998626.2998669
    1. Borenstein M., Hedges L., Higgins J., Rothstein H. (2013). Comprehensive Meta-Analysis Version 3. Englewood, NJ: Biostat.
    1. Borenstein M., Hedges L. V., Higgins J. P., Rothstein H. R. (2011). Introduction to Meta-Analysis. John Wiley & Sons.
    1. Bos J. E., MacKinnon S. N., Patterson A. (2005). Motion sickness symptoms in a ship motion simulator: effects of inside, outside, and no view. Aviat. Space Environ. Med. 76, 1111–1118.
    1. Brooks J., Lodge R., White D. (2017). Comparison of a head-mounted display and flat screen display during a micro-UAV target detection Task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 61, 1514–1518. 10.1177/1541931213601863
    1. Budhiraja P., Miller M. R., Modi A. K., Forsyth D. (2017). Rotation blurring: use of artificial blurring to reduce cybersickness in virtual reality first person shooters. arXiv [Preprint]. arXiv:1710.02599.
    1. Carnegie K., Rhee T. (2015). Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Comput. Graph. Appl. 35, 34–41. 10.1109/MCG.2015.98
    1. Chance S. S., Gaunet F., Beall A. C., Loomis J. M. (1998). Locomotion mode affects the updating of objects encountered euring travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence Teleop. Virt. Environ. 7, 168–178. 10.1162/105474698565659
    1. Cheung B., Hofer K. (2002). Lack of gender difference in motion sickness induced by vestibular Coriolis cross-coupling. J. Vestibul. Res. 12, 191–200.
    1. Christou C. G., Aristidou P. (2017). Steering Versus Teleport Locomotion for Head Mounted Displays. Cham: Springer; 10.1007/978-3-319-60928-7_37
    1. Clemes S. A., Howarth P. A. (2005). The menstrual cycle and susceptibility to virtual simulation sickness. J. Biol. Rhythms. 20, 71–82. 10.1177/0748730404272567
    1. Cobb S. V. G., Nichols S., Ramsey A., Wilson J. R. (1999). Virtual Reality-Induced Symptoms and Effects (VRISE). Presence Teleop. Virt. Environ. 8, 169–186. 10.1162/105474699566152
    1. Corriveau Lecavalier N., Ouellet É., Boller B., Belleville S. (2018). Use of immersive virtual reality to assess episodic memory: a validation study in older adults. Neuropsychol. Rehabil. 1–19. 10.1080/09602011.2018.1477684
    1. Covidence (2019). Covidence Systematic Review Software. Melbourne, Australia: Veritas Health Innovation; Retrieved from: (accessed February 4, 2019).
    1. Deb S., Carruth D. W., Sween R., Strawderman L., Garrison T. M. (2017). Efficacy of virtual reality in pedestrian safety research. Appl. Ergon. 65, 449–460. 10.1016/j.apergo.2017.03.007
    1. Dennison M. S., D'Zmura M. (2017). Cybersickness without the wobble: experimental results speak against postural instability theory. Appl. Ergon. 58, 215–223. 10.1016/j.apergo.2016.06.014
    1. Dennison M. S., D'Zmura M. (2018). Effects of unexpected visual motion on postural sway and motion sickness. Appl. Ergon. 71, 9–16. 10.1016/j.apergo.2018.03.015
    1. Dennison M. S., Wisti A. Z., D'Zmura M. (2016). Use of physiological signals to predict cybersickness. Displays 44, 42–52. 10.1016/j.displa.2016.07.002
    1. Dorado J. L., Figueroa P. A. (2014). Ramps are better than stairs to reduce cybersickness in applications based on a HMD and a Gamepad, in 2014 IEEE Symposium on 3D User Interfaces (3DUI) (Minneapolis, MN: ), 47–50. 10.1109/3DUI.2014.6798841
    1. Duzmanska N., Strojny P., Strojny A. (2018). Can simulator sickness be avoided? a review on temporal aspects of simulator sickness. Front. Psychol. 9:2132. 10.3389/fpsyg.2018.02132
    1. Era P., Sainio P., Koskinen S., Haavisto P., Vaara M., Aromaa A. (2006). Postural balance in a random sample of 7,979 subjects aged 30 years and over. Gerontology 52, 204–213. 10.1159/000093652
    1. Farmani Y., Teather R. J. (2018). Viewpoint snapping to reduce cybersickness in virtual reality, in Proceedings of Graphics Interface (Toronto, ON: ). 10.20380/GI2018.21
    1. Fernandes A. S., Feiner S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification, in 2016 IEEE Symposium on 3D User Interfaces (3DUI) (Greenville, SC: ). 10.1109/3DUI.2016.7460053
    1. Frommel J., Sonntag S., Weber M. (2017). Effects of controller-based locomotion on player experience in a virtual reality exploration game, in Proceedings of the 12th International Conference on the Foundations of Digital Games (Hyannis, MA: ), 1–6. 10.1145/3102071.3102082
    1. Fujikake K., Miyao M., Watanabe T., Hasegawa S., Omori M., Takada H. (2009). Evaluation of body sway and the relevant dynamics while viewing a three-dimensional movie on a head-mounted display by using stabilograms, in International Conference on Virtual and Mixed Reality, ed Shumaker R. (Berlin; Heidelberg: ), 41–50. 10.1007/978-3-642-02771-0_5
    1. Fulvio J. M., Ji M., Rokers B. (2019). Variability in sensory sensitivity predicts motion sickness in virtual reality. bioRxiv [Preprint]. 488817 10.1101/488817
    1. Gallagher M., Ferrè E. R. (2018). Cybersickness: a multisensory integration perspective. Multisens. Res. 31, 645–674. 10.1163/22134808-20181293
    1. Gavgani A. M., Nesbitt K. V., Blackmore K. L., Nalivaiko E. (2017). Profiling subjective symptoms and autonomic changes associated with cybersickness. Auton. Neurosci. 203, 41–50. 10.1016/j.autneu.2016.12.004
    1. Golding J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Pers. Individ. Dif. 41, 237–248. 10.1016/j.paid.2006.01.012
    1. Guna J., Geršak G., Humar I., Song J., Drnovšek J., Pogačnik M. (2019). Influence of video content type on users' virtual reality sickness perception and physiological response. Future Gener. Comput. Syst. 91, 263–276. 10.1016/j.future.2018.08.049
    1. Hale K. S., Stanney K. M. (2014). Handbook of Virtual Environments: Design, Implementation, and Applications, 2nd Edn. Boca Raton, FL: CRC Press; 10.1201/b17360
    1. Howarth P. A., Costello P. J. (1997). The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system. Displays, 18, 107–116. 10.1016/S0141-9382(97)00011-5
    1. Howett D., Castegnaro A., Krzywicka K., Hagman J., Marchment D., Henson R., et al. . (2019). Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766. 10.1093/brain/awz116
    1. Hutton C., Ziccardi S., Medina J., Rosenbarg E. S. (2018). Please don't puke: early detection of severe motion sickness in VR, in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (Reutlingen: ), 579–580. 10.1109/VR.2018.8446382
    1. Iskenderova A., Weidner F., Broll W. (2017). Drunk virtual reality gaming: exploring the influence of alcohol on cybersickness, in Conference: Annual Symposium on Computer-Human Interaction in Play (Amsterdam: ), 561–572. 10.1145/3116595.3116618
    1. Kang Y. J., Ku J., Han K., Kim S. I., Yu T. W., Lee J. H., et al. . (2008). Development and clinical trial of virtual reality-based cognitive assessment in people with stroke: preliminary study. Cyberpsychol. Behav. 11, 329–339. 10.1089/cpb.2007.0116
    1. Karl I., Berg G., Ruger F., Farber B. (2013). Driving behavior and simulator sickness while driving the vehicle in the loop: validation of longitudinal driving behavior. IEEE Trans. Intell. Transp. Syst. Mag. 5, 42–57. 10.1109/MITS.2012.2217995
    1. Kennedy R. S., Drexler J., Kennedy R. C. (2010). Research in visually induced motion sickness. Appl. Ergon. 41, 494–503. 10.1016/j.apergo.2009.11.006
    1. Kennedy R. S., Drexler J. M., Compton D. E., Stanney K. M., Lanham D. S., Harm D. L. (2003). Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: similarities and differences, in Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues, eds Hettinger L. J., Haas M. W. (Lawrence Erlbaum Associates Publishers; ), 247–278. 10.1201/9781410608888.ch12
    1. Kennedy R. S., Lane N. E., Berbaum K. S., Lilienthal M. G. (1993). Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3, 203–220. 10.1207/s15327108ijap0303_3
    1. Keshavarz B., Hecht H. (2011). Validating an efficient method to quantify motion sickness. Hum. Factors. 53, 415–426. 10.1177/0018720811403736
    1. Kesztyues T. I., Mehlitz M., Schilken E., Weniger G., Wolf S., Piccolo U., et al. (2000). Preclinical evaluation of a virtual reality neuropsychological test system: occurrence of side effects. Cyberpsychol. Behav. 3, 343–349. 10.1089/10949310050078788
    1. Kim A., Darakjian N., Finley J. M. (2017). Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals with Parkinson's disease. J. Neuroeng. Rehabil. 14:16. 10.1186/s12984-017-0225-2
    1. Kim H. K., Park J., Choi Y., Choe M. (2018). Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69, 66–73. 10.1016/j.apergo.2017.12.016
    1. Kim J., Kane D., Banks M. S. (2014). The rate of change of vergence–accommodation conflict affects visual discomfort. Vision Res. 105, 159–165. 10.1016/j.visres.2014.10.021
    1. Kim Y. Y., Kim H. J., Kim E. N., Ko H. D., Kim H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology 42, 616–625. 10.1111/j.1469-8986.2005.00349.x
    1. Kinsella A., Mattfeld R., Muth E., Hoover A. (2016). Frequency, not amplitude, of latency affects subjective sickness in a head-mounted display. Aerosp. Med. Hum. Perform. 87, 604–609. 10.3357/AMHP.4351.2016
    1. Kourtesis P., Collina S., Doumas L. A. A., MacPherson S. E. (2019). Technological competence is a pre-condition for effective implementation of virtual reality head mounted displays in human neuroscience: a technological review and meta-analysis. Front. Hum. Neurosci. 13:342. 10.3389/fnhum.2019.00342
    1. Kruse L., Langbehn E., Steinicke F. (2018). I can see on my feet while walking: sensitivity to translation gains with visible feet, in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (Reutlingen: ), 305–312. 10.1109/VR.2018.8446216
    1. Kuiper O. X., Bos J. E., Diels C. (2018). Vection does not necessitate visually induced motion sickness. Displays 58, 82–87. 10.1016/j.displa.2018.10.001
    1. LaViola J. J. J. (2000). A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56. 10.1145/333329.333344
    1. Lawson B. D. (2015). Motion sickness symptomatology and origins, in Handbook of Virtual Environments, eds Hale K. S., Stanney K. M. (Boca Raton FL: Taylor & Francis Group; ), 531–600. 10.1201/b17360-29
    1. Lawson B. D., Kass S., Lambert C., Smith S. (2004). Survey and review concerning evidence for gender differences in motion susceptibility. Aviat. Space Environ. Med. 75:105.
    1. Lee J., Kim M., Kim J. (2017). A study on immersion and VR sickness in walking interaction for immersive virtual reality applications. Symmetry 9:78 10.3390/sym9050078
    1. Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P. A., et al. . (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6:e1000100. 10.1371/journal.pmed.1000100
    1. Ling Y., Brinkman W. P., Nefs H. T., Qu C., Heynderickx I. (2012). Effects of stereoscopic viewing on presence, anxiety, and cybersickness in a virtual reality environment for public speaking. Presence Teleop. Virt. Environ. 21, 254–267. 10.1162/PRES_a_00111
    1. Llorach G., Evans A., Blat J. (2014). Simulator sickness and presence using HMDs: comparing use of a game controller and a position estimation system, in VRST '14 Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology (Edinburgh: ), 137–140. 10.1145/2671015.2671120
    1. McCauley M. E., Sharkey T. J. (1992). Cybersickness: perception of self-motion in virtual environments. Presence Teleop. Virt. Environ. 1, 311–318. 10.1162/pres.1992.1.3.311
    1. McGill M., Ng A., Brewster S. (2017). I am the passenger: how visual motion cues can influence sickness for in-car VR, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, CO: ), 5655–5668. 10.1145/3025453.3026046
    1. Merhi O., Faugloire E., Flanagan M., Stoffregen T. A. (2007). Motion sickness, console video games, and head-mounted displays. Hum. Factors. 49, 920–934. 10.1518/001872007X230262
    1. Min B.-C., Chung S.-C., Min Y.-K., Sakamoto K. (2004). Psychophysiological evaluation of simulator sickness evoked by a graphic simulator. Appl. Ergon. 35, 549–556. 10.1016/j.apergo.2004.06.002
    1. Misha S., Xuhai X., Aske M., Pattie M. (2018). VMotion: designing a seamless walking experience in VR, Proceedings of the 2018 Designing Interactive Systems Conference (Hong Kong: ).
    1. Mittelstaedt J., Wacker J., Stelling D. (2018). Effects of display type and motion control on cybersickness in a virtual bike simulator. Displays 51, 43–50. 10.1016/j.displa.2018.01.002
    1. Moss J. D., Austin J., Salley J., Coats J., Williams K., Muth E. R. (2011). The effects of display delay on simulator sickness. Displays 32, 159–168. 10.1016/j.displa.2011.05.010
    1. Moss J. D., Muth E. R. (2011). Characteristics of head-mounted displays and their effects on simulator sickness. Hum. Factors. 53, 308–319. 10.1177/0018720811405196
    1. Moss J. D., Scisco J., Muth E. (2008). Simulator sickness during head mounted display (HMD) of real world video captured scenes, in Proceedings of the Human Factors and Ergonomics Society Annual Meeting (New York, NY: ), 52, 1631–1634.
    1. Munafo J., Diedrick M., Stoffregen T. A. (2017). The virtual reality head-mounted display oculus rift induces motion sickness and is sexist in its effects. Exp. Brain Res. 235, 889–901. 10.1007/s00221-016-4846-7
    1. Nesbitt K., Davis S., Blackmore K., Nalivaiko E. (2017). Correlating reaction time and nausea measures with traditional measures of cybersickness. Displays 48, 1–8. 10.1016/j.displa.2017.01.002
    1. Neth C. T., Souman J. L., Engel D., Kloos U., Bülthoff H. H., Mohler B. J. (2011). Velocity-dependent dynamic curvature gain for redirected walking, in IEEE Transactions on Visualization and Computer Graphics 18 (Singapore: ), 1041–1052. 10.1109/VR.2011.5759454
    1. Nichols S. (1999). Physical ergonomics of virtual environment use. Appl. Ergon. 30, 79–90. 10.1016/S0003-6870(98)00045-3
    1. Optale G., Urgesi C., Busato V., Marin S., Piron L., Priftis K., et al. . (2010). Controlling memory impairment in elderly adults using virtual reality memory training: a randomized controlled pilot study. Neurorehabil. Neural Repair. 24, 348–357. 10.1177/1545968309353328
    1. Paillard A., Quarck G., Paolino F., Denise P., Paolino M., Golding J. F., et al. . (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: effects of gender, age and trait-anxiety. J. Vestib. Res. 23, 203–209. 10.3233/VES-130501
    1. Papachristos N. M., Vrellis I., Mikropoulos T. A. (2017). A comparison between oculus rift and a low-cost smartphone VR headset: immersive user experience and learning, in 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (Timisoara: ), 477–481. 10.1109/ICALT.2017.145
    1. Parijat P., Lockhart T. E. (2011). Can virtual reality be used as a gait training tool for older adults? in Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 55 (Las Vegas, NV: ), 157–161. 10.1177/1071181311551033
    1. Pettijohn K. A., Geyer D., Gomez J., Becker W. J., Biggs A. T. (2018). Postural instability and simulator seasickness. Aerosp. Med. Hum. Perform. 89, 634–641. 10.3357/AMHP.4998.2018
    1. Pot-Kolder R., Veling W., Counotte J., van der Gaag M. (2018). Anxiety partially mediates cybersickness symptoms in immersive virtual reality environments. Cyberpsychol. Behav. Soc. Netw. 21, 187–193. 10.1089/cyber.2017.0082
    1. Pouke M., Tiiro A., LaValle S. M., Ojala T. (2018). Effects of visual realism and moving detail on cybersickness, in 25th IEEE Conference on Virtual Reality and 3D User Interfaces, (VR) (Reutlingen: ), 665–666. 10.1109/VR.2018.8446078
    1. Powell W., Rizzo A., Sharkey P., Merrick J. (2018). Innovations and challenges in the use of virtual reality technologies for rehabilitation. J. Altern. Med. Res. 10, 3–4.
    1. Ragan E. D., Scerbo S., Bacim F., Bowman D. A. (2017). Amplified head rotation in virtual reality and the effects on 3D search, training transfer, and spatial orientation. IEEE Trans. Vis. Comput. Graph. 23, 1880–1895. 10.1109/TVCG.2016.2601607
    1. Ray B., Jung J., Larabi M. (2018,. 3-7 Sept. 2018). On the possibility to achieve 6-DoF for 360 video using divergent multi- view content, in 2018 26th European Signal Processing Conference (EUSIPCO) (Rome: ), 211–215. 10.23919/EUSIPCO.2018.8553397
    1. Reason J. T., Brand J. J. (1975). Motion Sickness. Oxford: Academic Press.
    1. Rebenitsch L., Owen C. (2016). Review on cybersickness in applications and visual displays. Virtual Real 20, 101–125. 10.1007/s10055-016-0285-9
    1. Reminiscience (2018). Reminiscence Based Virtual Reality. Retrieved from (accessed December 17, 2018).
    1. Rendever (2018). Virtual Reality for Seniors. Retrieved from (accessed December 17, 2018).
    1. Rizzo A. S., Koenig S. T. (2017). Is clinical virtual reality ready for primetime? Neuropsychology 31, 877–899. 10.1037/neu0000405
    1. Rupp M. A., Odette K. L., Kozachuk J., Michaelis J. R., Smither J. A., McConnell D. S. (2019). Investigating learning outcomes and subjective experiences in 360-degree videos. Comput. Educ. 128, 256–268. 10.1016/j.compedu.2018.09.015
    1. Saldana S. J., Marsh A. P., Rejeski W. J., Haberl J. K., Wu P., Rosenthal S., et al. . (2017). Assessing balance through the use of a low-cost head-mounted display in older adults: a pilot study. Clin. Interv. Aging. 12, 1363–1370. 10.2147/CIA.S141251
    1. Schmitz P., Hildebrandt J., Valdez A. C., Kobbelt L., Ziefle M. (2018). You spin my head right round: threshold of limited immersion for rotation gains in redirected walking, in IEEE Trans. Vis. Comput. Graph 24, 1623–1632. 10.1109/TVCG.2018.2793671
    1. Serge S. R., Fragomeni G. (2017). Assessing the relationship between type of head movement and simulator sickness using an immersive virtual reality head mounted display: a pilot study, in International Conference on Virtual, Augmented and Mixed Reality, Vol. 10280 (Cham: Springer; ) 556–566. 10.1007/978-3-319-57987-0_45
    1. Sharples S., Cobb S., Moody A., Wilson J. R. (2008). Virtual reality induced symptoms and effects (VRISE): comparison of head mounted display (HMD), desktop and projection display systems. Displays 29, 58–69. 10.1016/j.displa.2007.09.005
    1. Shin J., An G., Park J.-S., Baek S. J., Lee K. (2016). Application of precise indoor position tracking to immersive virtual reality with translational movement support. Multimed. Tools Appl. 75, 12331–12350. 10.1007/s11042-016-3520-1
    1. Singla A., Fremerey S., Robitza W., Lebreton P., Raake A. (2017). Comparison of subjective quality evaluation for HEVC encoded omnidirectional videos at different bit-rates for UHD and FHD resolution, in Proceedings of the on Thematic Workshops of ACM Multimedia (Mountain View, CA: ), 511–519. 10.1145/3126686.3126768
    1. Song E.-J. (2017). A Study on cyber sickness of virtual reality based on HMD. International Information Institute (Tokyo). Information 20, 5015–5022.
    1. Stanney K. M., Hale K. S., Nahmens I., Kennedy R. S. (2003). What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Hum. Factors. 45, 504–520. 10.1518/hfes.45.3.504.27254
    1. Stanney K. M., Kennedy R. S. (1997). The psychometrics of cybersickness. Commun. ACM. 40, 66–68. 10.1145/257874.257889
    1. Stauffert J. P., Niebling F., Latoschik M. E. (2018). Effects of Latency Jitter on Simulator Sickness in a Search Task, in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (Reutlingen: ), 121–127. 10.1109/VR.2018.8446195
    1. St. Pierre M. E., Banerjee S., Hoover A. W., Muth E. R. (2015). The effects of 0.2 Hz varying latency with 20-100 ms varying amplitude on simulator sickness in a helmet mounted display. Displays 36, 1–8. 10.1016/j.displa.2014.10.005
    1. Terzić K., Hansard M. (2016). Methods for reducing visual discomfort in stereoscopic 3D: a review. Signal Process. Image Commun. 47, 402–416. 10.1016/j.image.2016.08.002
    1. Tyrrell R., Sarig-Bahat H., Williams K., Williams G., Treleaven J. (2018). Simulator sickness in patients with neck pain and vestibular pathology during virtual reality tasks. Virtual Real. 22, 211–219. 10.1007/s10055-017-0324-1
    1. Walch M., Frommel J., Rogers K., Schüssel F., Hock P., Dobbelstein D., et al. (2017). Evaluating VR driving simulation from a player experience perspective, in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (Denver, CO: ), 2982–2989. 10.1145/3027063.3053202
    1. Wang P., Wu P., Wang J., Chi H.-L., Wang X. (2018). A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health. 15:1204. 10.3390/ijerph15061204
    1. Weidner F., Hoesch A., Poeschl S., Broll W. (2017). Comparing VR and non-VR driving simulations: an experimental user study, in 2017 IEEE Virtual Reality (VR) (Los Angeles, CA: ), 281–282. 10.1109/VR.2017.7892286
    1. White P. J., Byagowi A., Moussavi Z. (2015). Effect of viewing mode on pathfinding in immersive virtual reality. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 4619–4622. 10.1109/EMBC.2015.7319423
    1. Young M. K., Gaylor G. B., Andrus S. M., Bodenheimer B. (2014). A comparison of two cost-differentiated virtual reality systems for perception and action tasks, in Proceedings of the ACM Symposium on Applied Perception (Vancouver, BC: ), 83–90. 10.1145/2628257.2628261
    1. Ziegler P., Roth D., Knots A., Kreuzer M., von Mammen S. (2018). Simulator sick but still immersed: a comparison of head-object collision handling and their impact on fun, immersion, and simulator sickness, in 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (Reutlingen: ), 743–744. 10.1109/VR.2018.8446221

Source: PubMed

3
Tilaa