NAD+-Precursor Supplementation With L-Tryptophan, Nicotinic Acid, and Nicotinamide Does Not Affect Mitochondrial Function or Skeletal Muscle Function in Physically Compromised Older Adults

N J Connell, L Grevendonk, C E Fealy, E Moonen-Kornips, Y M H Bruls, V B Schrauwen-Hinderling, J de Vogel, R Hageman, J Geurts, R Zapata-Perez, R H Houtkooper, B Havekes, J Hoeks, P Schrauwen, N J Connell, L Grevendonk, C E Fealy, E Moonen-Kornips, Y M H Bruls, V B Schrauwen-Hinderling, J de Vogel, R Hageman, J Geurts, R Zapata-Perez, R H Houtkooper, B Havekes, J Hoeks, P Schrauwen

Abstract

Background: Boosting NAD+ via supplementation with niacin equivalents has been proposed as a potential modality capable of promoting healthy aging and negating age-dependent declines of skeletal muscle mass and function.

Objectives: We investigated the efficacy of NAD+-precursor supplementation (tryptophan, nicotinic acid, and nicotinamide) on skeletal muscle mitochondrial function in physically compromised older adults.

Methods: A randomized, double-blind, controlled trial was conducted in 14 (female/male: 4/10) community-dwelling, older adults with impaired physical function [age, 72.9 ± 4.0 years; BMI, 25.2 ± 2.3 kg/m2]. Participants were supplemented with 207.5 mg niacin equivalents/day [intervention (INT)] and a control product (CON) that did not contain niacin equivalents, each for 32 days. The primary outcomes tested were mitochondrial oxidative capacity and exercise efficiency, analyzed by means of paired Student's t-tests. Secondary outcomes, such as NAD+ concentrations, were analyzed accordingly.

Results: Following supplementation, skeletal muscle NAD+ concentrations [7.5 ± 1.9 compared with 7.9 ± 1.6 AU, respectively] in INT compared with CON conditions were not significantly different compared to the control condition, whereas skeletal muscle methyl-nicotinamide levels were significantly higher under NAD+-precursor supplementation [INT, 0.098 ± 0.063 compared with CON, 0.025 ± 0.014; P = 0.001], suggesting an increased NAD+ metabolism. Conversely, neither ADP-stimulated [INT, 82.1 ± 19.0 compared with CON, 84.0 ± 19.2; P = 0.716] nor maximally uncoupled mitochondrial respiration [INT, 103.4 ± 30.7 compared with CON, 108.7 ± 33.4; P = 0.495] improved under NAD+-precursor supplementation, nor did net exercise efficiency during the submaximal cycling test [INT, 20.2 ± 2.77 compared with CON, 20.8 ± 2.88; P = 0.342].

Conclusions: Our findings are consistent with previous findings on NAD+ efficacy in humans, and we show in community-dwelling, older adults with impaired physical function that NAD+-precursor supplementation through L-tryptophan, nicotinic acid, and nicotinamide does not improve mitochondrial or skeletal muscle function. This study was registered at clinicaltrials.gov as NCT03310034.

Keywords: NAD+-precursors; metabolism; mitochondrial function; muscle health; older adults; skeletal muscle.

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.

Figures

FIGURE 1
FIGURE 1
(A) Study timeline and (B) study protocol depicting a CONSORT flow diagram of participant inclusion in the study. Abbreviations: B, baseline measurements preceding randomization; COVID-19, coronavirus disease 2019; M, end of study period measurements on days 29, 31, and 33.
FIGURE 2
FIGURE 2
NAD+ metabolome in skeletal muscle tissue obtained from older adults with compromised physical function administered supplemental niacin equivalents and placebo, each for 32 days. The y-axis defines the AUC (AUC* IS AUC–1) per mg of dry tissue used in the MS analysis. Data are displayed as means ± SDs, n = 11. *P < 0.01. Abbreviations: ADPr, adenosine diphosphate riboside; AUC, area under curve; CON, control; INT, NAD intervention; IS, internal standard; MeNAM, methyl-nicotinamide; NA, nicotinic acid; NAAD, nicotinic acid adenine dinucleotide; NAM, nicotinamide; NMN, nicotinamide mononucleotide; NR, nicotinamide riboside.
FIGURE 3
FIGURE 3
Skeletal muscle acylcarnitine levels in older adults with compromised physical function administered supplemental niacin equivalents and placebo. (A) Acylcarnitine levels in skeletal muscle for free (C0) and independent species (C2). Acylcarnitine levels for (B) short chain, (C) medium chain, and (D) long chain species (LC). Data are displayed as means ± SDs, n = 11.
FIGURE 4
FIGURE 4
States of mitochondrial respiration of skeletal muscle tissue obtained from older adults with compromised physical function administered supplemental niacin equivalents and placebo, each for 32 days. (A) State 2 respiration. (B) State 3 respiration under ADP stimulation with lipid substrates. (C) State 3 respiration with substrates focusing on Complex I. (D) State 3 respiration with parallel substrates focus on Complex I and II. (E) Uncoupled respiration under FCCP addition. (F) State 4o respiration uncoupled from ATP synthase. Values are represented as means ± SDs, n = 13. *P < 0.05. Abbreviations: FCCP, carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone; G, glutamate; M, malate; O, octanoyl-carnitine; S, succinate.
FIGURE 5
FIGURE 5
Whole-body indirect calorimetry of older adults with compromised physical function administered supplemental niacin equivalents and placebo. (A) Basal metabolic rate and (B) respiratory exchange ratio, with corresponding (C) carbohydrate oxidation rate and (D) lipid oxidation rate. (E) Submaximal exercise energy expenditure with corresponding (F) respiratory exchange ratio with corresponding (G) carbohydrate and (H) lipid oxidation rates. (I) Gross and (J) net exercise efficiency from submaximal cycling test. Data are represented as means ± SDs, n = 13. Abbreviations: CO, control; INT, NAD intervention.
FIGURE 6
FIGURE 6
RAND-36 Health Survey 1.0 questionnaire of older adults with compromised physical function administered supplemental niacin equivalents and placebo over 8 domains on Day 29. All domains can be scored between 0 and 100, with higher scores being better. Data are represented as means ± SDs, n = 12, *P < 0.05.

References

    1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.
    1. Roubenoff R. Sarcopenia and its implications for the elderly. Eur J Clin Nutr. 2000;54(S3):S40–7.
    1. Crescenzo R, Bianco F, Mazzoli A, Giacco A, Liverini G, Iossa S. Skeletal muscle mitochondrial energetic efficiency and aging. Int J Mol Sci. 2015;16(12):10674–85.
    1. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BPet al. . Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624–38.
    1. Conley KE, Jubrias SA, Esselman PC. Oxidative capacity and ageing in human muscle. J Physiol. 2000;526(1):203–10.
    1. Kim Y, Triolo M, Hood DA. Impact of aging and exercise on mitochondrial quality control in skeletal muscle. Oxid Med Cell Longev. 2017;2017:3165396.
    1. Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discovery. 2013;12(6):465–83.
    1. Camacho-Pereira J, Tarrago MG, Chini CCS, Nin V, Escande C, Warner GM, Puranik AS, Schoon RA, Reid JM, Galina Aet al. . CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell Metab. 2016;23(6):1127–39.
    1. Zhu XH, Lu M, Lee BY, Ugurbil K, Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci. 2015;112(9):2876–81.
    1. Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab. 2011;14(4):528–36.
    1. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida Ket al. . Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806.
    1. Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38.
    1. Canto C, Auwerx J. Targeting sirtuin 1 to improve metabolism: All you need is NAD(+)?. Pharmacol Rev. 2012;64(1):166–87.
    1. de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Sogaard D, Helge JW, Larsen S, Brandauer J, Houmard JA, Treebak JT. Aerobic and resistance exercise training reverses age-dependent decline in NAD(+) salvage capacity in human skeletal muscle. Physiol Rep. 2019;7(12):e14139.
    1. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B, Guillemin GJ. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One. 2012;7(7):e42357.
    1. Mouchiroud L, Houtkooper RH, Auwerx J. NAD(+) metabolism: A therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol. 2013;48(4):397–408.
    1. Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115–30.
    1. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold Ret al. . NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science. 2016;352(6292):1436–43.
    1. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M, Seals DR. Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD(+) in healthy middle-aged and older adults. Nat Commun. 2018;9(1):1286.
    1. Remie CME, Roumans KHM, Moonen MPB, Connell NJ, Havekes B, Mevenkamp J, Lindeboom L, de Wit VHW, van de Weijer T, Aarts Set al. . Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112:413–26.
    1. Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, Stodkilde-Jorgensen H, Moller N, Brenner C, Treebak JTet al. . A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: Safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr. 2018;108(2):343–53.
    1. Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV, Jenkinson Net al. . Nicotinamide riboside augments the aged human skeletal muscle NAD(+) metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep. 2019;28(7):1717–1728.e6.
    1. Irie J, Inagaki E, Fujita M, Nakaya H, Mitsuishi M, Yamaguchi S, Yamashita K, Shigaki S, Ono T, Yukioka Het al. . Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr J. 2020;67(2):153–60.
    1. Conze D, Brenner C, Kruger CL. Safety and metabolism of long-term administration of NIAGEN (nicotinamide riboside chloride) in a randomized, double-blind, placebo-controlled clinical trial of healthy overweight adults. Sci Rep. 2019;9(1):9772.
    1. Katsyuba E, Mottis A, Zietak M, De Franco F, van der Velpen V, Gariani K, Ryu D, Cialabrini L, Matilainen O, Liscio Pet al. . De novo NAD(+) synthesis enhances mitochondrial function and improves health. Nature. 2018;563(7731):354–9.
    1. Grootswagers P, Mensink M, Berendsen AAM, Deen CPJ, Kema IP, Bakker SJL, Santoro A, Franceschi C, Meunier N, Malpuech-Brugere Cet al. . Vitamin B-6 intake is related to physical performance in European older adults: Results of the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) study. Am J Clin Nutr. 2021;113:781–9.
    1. Baecke JA, Burema J, Frijters JE. A short questionnaire for the measurement of habitual physical activity in epidemiological studies. Am J Clin Nutr. 1982;36(5):936–42.
    1. de Ligt M, Bruls YMH, Hansen J, Habets MF, Havekes B, Nascimento EBM, Moonen-Kornips E, Schaart G, Schrauwen-Hinderling VB, van Marken Lichtenbelt Wet al. . Resveratrol improves ex vivo mitochondrial function but does not affect insulin sensitivity or brown adipose tissue in first degree relatives of patients with type 2 diabetes. Mol Metab. 2018;12:39–47.
    1. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. . Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, pantothenic acid, biotin, and choline. Washington, DC: 1998.10.17226/6015
    1. Fukuwatari T, Shibata K. Nutritional aspect of tryptophan metabolism. Int J Tryptophan Res. 2013;6(Suppl 1):3–8.
    1. Kuipers H, Verstappen FT, Keizer HA, Geurten P, van Kranenburg G. Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med. 1985;6(4):197–201.
    1. VanderZee KI, Sanderman R, Heyink JW, de Haes H. Psychometric qualities of the RAND 36-Item Health Survey 1.0: A multidimensional measure of general health status. Int J Behav Med. 1996;3(2):104–22.
    1. VanderZee KI, Sanderman R. Het meten van de algemene gezondheidstoestand met de RAND-36, een handleiding. UMGC /Rijksuniversiteit Groningen, Research Institute SHARE:. 2012; 2nd edition. Available from: .
    1. Lindeboom L, Nabuurs CI, Hesselink MK, Wildberger JE, Schrauwen P, Schrauwen-Hinderling VB. Proton magnetic resonance spectroscopy reveals increased hepatic lipid content after a single high-fat meal with no additional modulation by added protein. Am J Clin Nutr. 2015;101(1):65–71.
    1. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA, Wallace RB. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–94.
    1. Bergstrom J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest. 1975;35(7):609–16.
    1. Hoeks J, van Herpen NA, Mensink M, Moonen-Kornips E, van Beurden D, Hesselink MK, Schrauwen P. Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes. 2010;59(9):2117–25.
    1. Phielix E, Meex R, Ouwens DM, Sparks L, Hoeks J, Schaart G, Moonen-Kornips E, Hesselink MK, Schrauwen P. High oxidative capacity due to chronic exercise training attenuates lipid-induced insulin resistance. Diabetes. 2012;61(10):2472–8.
    1. Weir JB. New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol. 1949;109(1–2):1–9.
    1. Matomaki P, Linnamo V, Kyrolainen H. A comparison of methodological approaches to measuring cycling mechanical efficiency. Sports Med Open. 2019;5(1):23.
    1. van Vlies N, Tian L, Overmars H, Bootsma AH, Kulik W, Wanders RJ, Wood PA, Vaz FM. Characterization of carnitine and fatty acid metabolism in the long-chain acyl-CoA dehydrogenase-deficient mouse. Biochem J. 2005;387(Pt 1):185–93.
    1. Kato T, Berger SJ, Carter JA, Lowry OH. An enzymatic cycling method for nicotinamide-adenine dinucleotide with malic and alcohol dehydrogenases. Anal Biochem. 1973;53(1):86–97.
    1. Timmers S, Konings E, Bilet L, Houtkooper RH, van de Weijer T, Goossens GH, Hoeks J, van der Krieken S, Ryu D, Kersten Set al. . Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14:612–22.
    1. van de Weijer T, Phielix E, Bilet L, Williams EG, Ropelle ER, Bierwagen A, Livingstone R, Nowotny P, Sparks LM, Paglialunga Set al. . Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes. 2015;64(4):1193–201.
    1. Remie CM, Roumans KH, Moonen MP, Connell NJ, Havekes B, Mevenkamp J, Lindeboom L, de Wit VH, van de Weijer T, Aarts SA. Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans. Am J Clin Nutr. 2020;112:413–26.
    1. Dollerup OL, Chubanava S, Agerholm M, Sondergard SD, Altintas A, Moller AB, Hoyer KF, Ringgaard S, Stodkilde-Jorgensen H, Lavery GGet al. . Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54.
    1. Zhou CC, Yang X, Hua X, Liu J, Fan MB, Li GQ, Song J, Xu TY, Li ZY, Guan YFet al. . Hepatic NAD(+) deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol. 2016;173(15):2352–68.
    1. Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X, Ropelle ER, Moullan N, Zhang H, Perino A, Lemos Vet al. . Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology. 2016;63(4):1190–204.
    1. Trammell SA, Weidemann BJ, Chadda A, Yorek MS, Holmes A, Coppey LJ, Obrosov A, Kardon RH, Yorek MA, Brenner C. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci Rep. 2016;6:26933.
    1. Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5(5):1544–60.
    1. Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MSet al. . Niacin cures systemic NAD(+) deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metab. 2020;31(6):1078–1090.e5.
    1. Lim CS, Potts M, Helm RF. Nicotinamide extends the replicative life span of primary human cells. Mech Ageing Dev. 2006;127(6):511–4.
    1. Mitchell SJ, Bernier M, Aon MA, Cortassa S, Kim EY, Fang EF, Palacios HH, Ali A, Navas-Enamorado I, Di Francesco Aet al. . Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab. 2018;27(3):667–676.e4.
    1. Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, Oh KW, Park SW, Park CY. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem. 2014;25(1):66–72.
    1. Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME, Brenner C. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun. 2016;7:12948.
    1. Benyo Z, Gille A, Bennett CL, Clausen BE, Offermanns S. Nicotinic acid-induced flushing is mediated by activation of epidermal langerhans cells. Mol Pharmacol. 2006;70(6):1844–9.
    1. Liu L, Su X, Quinn WJ 3rd,, Hui S, Krukenberg K, Frederick DW, Redpath P, Zhan L, Chellappa K, White Eet al. . Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–1080.e5.
    1. Abellan van Kan G, Rolland Y, Andrieu S, Bauer J, Beauchet O, Bonnefoy M, Cesari M, Donini LM, Gillette Guyonnet S, Inzitari Met al. . Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J Nutr Health Aging. 2009;13(10):881–9.
    1. Tompkins BA, DiFede DL, Khan A, Landin AM, Schulman IH, Pujol MV, Heldman AW, Miki R, Goldschmidt-Clermont PJ, Goldstein BJet al. . Allogeneic mesenchymal stem cells ameliorate aging frailty: A phase II randomized, double-blind, placebo-controlled clinical trial. J Gerontol A Biol Sci Med Sci. 2017;72(11):1513–22.

Source: PubMed

3
Tilaa