Role of uncertainty in sensorimotor control

Robert J van Beers, Pierre Baraduc, Daniel M Wolpert, Robert J van Beers, Pierre Baraduc, Daniel M Wolpert

Abstract

Neural signals are corrupted by noise and this places limits on information processing. We review the processes involved in goal-directed movements and how neural noise and uncertainty determine aspects of our behaviour. First, noise in sensory signals limits perception. We show that, when localizing our hand, the central nervous system (CNS) integrates visual and proprioceptive information, each with different noise properties, in a way that minimizes the uncertainty in the overall estimate. Second, noise in motor commands leads to inaccurate movements. We review an optimal-control framework, known as 'task optimization in the presence of signal-dependent noise', which assumes that movements are planned so as to minimize the deleterious consequences of noise and thereby minimize inaccuracy. Third, during movement, sensory and motor signals have to be integrated to allow estimation of the body's state. Models are presented that show how these signals are optimally combined. Finally, we review how the CNS deals with noise at the neural and network levels. In all of these processes, the CNS carries out the tasks in such a way that the detrimental effects of noise are minimized. This shows that it is important to consider effects at the neural level in order to understand performance at the behavioural level.

References

    1. Nat Neurosci. 1998 Nov;1(7):635-40
    1. Neuroscience. 1996 Nov;75(1):301-14
    1. J Neurosci. 1984 Nov;4(11):2745-54
    1. J Neurosci. 1985 Jul;5(7):1688-703
    1. Exp Brain Res. 1983;51(2):247-60
    1. Neuroreport. 2001 Jul 3;12(9):1879-84
    1. Nature. 1971 Apr 30;230(5296):598-9
    1. Exp Brain Res. 1998 Oct;122(4):367-77
    1. J Neurosci Methods. 1998 Aug 31;83(1):73-88
    1. Neural Comput. 1999 Jan 1;11(1):91-101
    1. Psychol Med. 2000 Sep;30(5):1131-9
    1. Science. 1995 Sep 29;269(5232):1880-2
    1. Psychol Rev. 1965 Sep;72(5):373-84
    1. J Neurophysiol. 1996 Oct;76(4):2423-38
    1. Neural Comput. 1998 Feb 15;10(2):403-30
    1. Neural Comput. 2002 Jun;14(6):1233-60
    1. Vision Res. 1985;25(4):493-9
    1. J Neurophysiol. 1989 Jul;62(1):198-211
    1. Exp Brain Res. 1984;53(2):244-58
    1. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):719-23
    1. J Mot Behav. 1993 Sep;25(3):203-16
    1. Vision Res. 1999 Oct;39(21):3621-9
    1. J Neurosci. 1985 Sep;5(9):2318-30
    1. Psychol Rev. 1988 Jul;95(3):340-70
    1. Vision Res. 1995 Mar;35(5):691-701
    1. J Neurosci. 1982 Nov;2(11):1527-37
    1. J Comp Physiol Psychol. 1950 Dec;43(6):482-9
    1. Brain Res. 1986 Sep 3;381(2):401-4
    1. Neural Netw. 1996 Nov;9(8):1265-1279
    1. Nature. 1998 Aug 20;394(6695):780-4
    1. J Exp Psychol. 1968 May;77(1):155-8
    1. J Physiol. 1988 Oct;404:157-82
    1. J Cogn Neurosci. 1999 Sep;11(5):551-9
    1. J Neurophysiol. 1999 Mar;81(3):1355-64
    1. J Cogn Neurosci. 2002 May 15;14(4):538-49
    1. Exp Brain Res. 1988;71(2):320-8
    1. Nat Neurosci. 1998 Jul;1(3):210-7
    1. Cereb Cortex. 2001 Oct;11(10):906-17
    1. IEEE Trans Biomed Eng. 1987 Jan;34(1):43-55
    1. Exp Brain Res. 1981;42(2):223-7
    1. Biol Cybern. 1989;61(2):89-101
    1. Neural Comput. 1998 Feb 15;10(2):373-401
    1. J Neurosci. 1995 Oct;15(10):6461-74
    1. Acta Psychol (Amst). 1983 Oct;54(1-3):115-30
    1. Annu Rev Psychol. 1991;42:135-59
    1. Science. 1995 Jun 9;268(5216):1503-6
    1. Science. 1996 Dec 6;274(5293):1724-6
    1. Percept Mot Skills. 1980 Jun;50(3 Pt 2):1111-8
    1. J Neurophysiol. 1981 Oct;46(4):725-43
    1. Psychol Rev. 1979 Sep;47(5):415-51
    1. Exp Brain Res. 1996 Sep;111(2):253-61
    1. Nat Neurosci. 1999 Aug;2(8):740-5
    1. J Exp Psychol. 1954 Jun;47(6):381-91
    1. Curr Biol. 2002 May 14;12(10):834-7

Source: PubMed

3
Tilaa