Effect of dexmedetomidine on inflammation in patients with sepsis requiring mechanical ventilation: a sub-analysis of a multicenter randomized clinical trial

Yoshinori Ohta, Kyohei Miyamoto, Yu Kawazoe, Hitoshi Yamamura, Takeshi Morimoto, Yoshinori Ohta, Kyohei Miyamoto, Yu Kawazoe, Hitoshi Yamamura, Takeshi Morimoto

Abstract

Background: Administration of dexmedetomidine has been reported to improve inflammatory response in animals. We explored the effects of administering dexmedetomidine on the levels of C-reactive protein (CRP) and procalcitonin, and thus on inflammation, in patients with sepsis enrolled in a randomized clinical trial.

Methods: The DESIRE trial was a multicenter randomized clinical trial in which adult patients with sepsis were sedated with (DEX group) or without (non-DEX group) dexmedetomidine while on mechanical ventilators. As a prespecified sub-analysis, we compared CRP and procalcitonin levels during the first 14 days of treatment between the two groups. The 14-day mortality rate, albumin level, and the number of patients with disseminated intravascular coagulation (DIC) were also assessed. We used generalized linear models to estimate the differences in these outcomes between groups. We also used the Kaplan-Meier method to estimate the 14-day mortality rate and the log-rank test to assess between-group differences.

Results: Our study comprised 201 patients: 100 in the DEX group and 101 in the non-DEX group. CRP and procalcitonin levels were lower in the DEX vs. non-DEX group during the 14-day treatment period [CRP-range, 5.6-20.3 vs. 8.3-21.1 mg/dL (P = 0.03); procalcitonin-range, 1.2-37.4 vs. 1.7-52.9 ng/mL (P = 0.04)]. Albumin levels were higher in the DEX group (range, 2.3-2.6 g/dL) than in the non-DEX group (range, 2.1-2.7 g/dL; P = 0.01). The percentage of patients with DIC did not significantly differ between the groups (range, 21-59% and 17-56% for the DEX and non-DEX groups, respectively; P = 0.49). The 14-day mortality rates in the DEX and non-DEX groups were 13 and 21%, respectively (P = 0.16).

Conclusion: Sedation using dexmedetomidine reduced inflammation in patients with sepsis requiring mechanical ventilation.

Trial registration: ClinicalTrials.gov, NCT01760967 . Registered on 4 January 2013.

Keywords: C-reactive protein; Dexmedetomidine; Inflammation; Procalcitonin; Sepsis.

Conflict of interest statement

Dr. Ohta has no conflicts of interest. Dr. Miyamoto received lecture fees from Becton Dickinson and Pfizer Japan. Dr. Kawazoe received lecture fees from Hospira Japan and Pfizer Japan and a scholarship from Hospira Japan. Dr. Yamamura received lecture fees from Hospira Japan, Nipro, and Asahi Kasei and educational consulting fees from Toray Industries, CSL Behring, Teijin Pharma, and Nihon Pharmaceutical. Dr. Morimoto received lecture fees from Bayer, Daiichi Sankyo, Japan Lifeline, Kyocera, Mitsubishi Tanabe, Novartis, and Pfizer Japan; a manuscript fee from Pfizer Japan; and consulting fees from Asahi Kasei, Bristol-Myers Squibb, and Boston Scientific.

Figures

Fig. 1
Fig. 1
Changes in outcome measurements in patients with sepsis treated with or without dexmedetomidine (DEX) for 14 days. a C-reactive protein (CRP). b Procalcitonin (PCT). c Albumin (ALB). SD, standard deviation
Fig. 2
Fig. 2
The 14-day mortality rates for the DEX and non-DEX groups

References

    1. Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2006;274:330–353. doi: 10.1111/imr.12499.
    1. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med. 1999;340:207–214. doi: 10.1056/NEJM199901213400307.
    1. Povoa P. C-reactive protein: a valuable marker of sepsis. Intensive Care Med. 2002;28:235–243. doi: 10.1007/s00134-002-1209-6.
    1. Nijsten MW, Olinga P, The TH. de Vries EG, Koops HS, Groothuis GM, Limburg PC, ten Duis HJ, Moshage H, Hoekstra HJ, Bijzet J, Zwaveling JH. Procalcitonin behaves as a fast responding acute phase protein in vivo and in vitro. Crit Care Med. 2000;28:458–461. doi: 10.1097/00003246-200002000-00028.
    1. Wacker C, Prkno A, Brunkhorst FM, Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–435. doi: 10.1016/S1473-3099(12)70323-7.
    1. Venn RM, Bradshaw CJ, Spencer R, Brealey D, Caudwell E, Naughton C, Vedio A, Singer M, Feneck R, Treacher D, Willatts SM, Grounds RM. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia. 1999;54:1136–1142. doi: 10.1046/j.1365-2044.1999.01114.x.
    1. Xu L, Bao H, Si Y, Wang X. Effects of dexmedetomidine on early and late cytokines during polymicrobial sepsis in mice. Inflamm Res. 2013;62:507–514. doi: 10.1007/s00011-013-0604-5.
    1. Taniguchi T, Kidani Y, Kanakura H, Takemoto Y, Yamamoto K. Effects of dexmedetomidine on mortality rate and inflammatory responses to endotoxin-induced shock in rats. Crit Care Med. 2004;32:1322–1326. doi: 10.1097/01.CCM.0000128579.84228.2A.
    1. Li Y, He R, Chen S, Qu Y. Effect of dexmedetomidine on early postoperative cognitive dysfunction and peri-operative inflammation in elderly patients undergoing laparoscopic cholecystectomy. Exp Ther Med. 2015;10:1635–1642. doi: 10.3892/etm.2015.2726.
    1. Kawazoe Y, Miyamoto K, Morimoto T, Yamamoto T, Fuke A, Hashimoto A, Koami H, Beppu S, Katayama Y, Itoh M, Ohta Y, Yamamura H. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial. JAMA. 2017;317:1321–1328. doi: 10.1001/jama.2017.2088.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–1655. doi: 10.1378/chest.101.6.1644.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Sessler CN, Gosnell MS, Grap MJ, Brophy GM, O’Neal PV, Keane KA, Tesoro EP, Elswick RK. The Richmond Agitation-Sedation Scale: validity and reliability in adult intensive care unit patients. Am J Respir Crit Care Med. 2002;166:1338–1344. doi: 10.1164/rccm.2107138.
    1. Oda S, Aibiki M, Ikeda T, Imaizumi H, Endo S, Ochiai R, Kotani J, Shime N, Nishida O, Noguchi T, Matsuda N, Hirasawa H. The Japanese guidelines for the management of sepsis. J Intensive Care. 2014;2:55. doi: 10.1186/s40560-014-0055-2.
    1. Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the negative acute-phase serum proteins, albumin, transferrin and transthyretin: a practical, simple and clinically relevant approach in a large cohort. J Clin Lab Anal. 1999;13:273–279. doi: 10.1002/(SICI)1098-2825(1999)13:6<273::AID-JCLA4>;2-X.
    1. Kushimoto S, Gando S, Saitoh D, Ogura H, Mayumi T, Koseki K, Ikeda T, Ishikura H, Iba T, Ueyama M, Eguchi Y, Otomo Y, Okamoto K, Endo S, Shimazaki S. Clinical course and outcome of disseminated intravascular coagulation diagnosed by Japanese Association for Acute Medicine criteria. Comparison between sepsis and trauma. Thromb Haemost. 2008;100:1099–1105. doi: 10.1160/TH08-05-0306.
    1. Szelenyi J, Kiss JP, Vizi ES. Differential involvement of sympathetic nervous system and immune system in the modulation of TNF-α production by α2- and β-adrenoceptors in mice. J Neuroimmunol. 2000;103:34–40. doi: 10.1016/S0165-5728(99)00234-9.
    1. Klimscha W, Tong C, Eisenach JC. Intrathecal α2-adrenergic agonists stimulate acetylcholine and norepinephrine release from the spinal cord dorsal horn in sheep. An in vivo microdialysis study. Anesthesiology. 1997;87:110–116. doi: 10.1097/00000542-199707000-00015.
    1. Maes M, Lin A, Kenis G, Egyed B, Bosmans E. The effects of noradrenaline and alpha-2 adrenoceptor agents on the production of monocytic products. Psychiatry Res. 2000;96:245–253. doi: 10.1016/S0165-1781(00)00216-X.
    1. Lai YC, Tsai PS, Huang CJ. Effects of dexmedetomidine on regulating endotoxin-induced up-regulation of inflammatory molecules in murine macrophages. J Surg Res. 2009;154:212–219. doi: 10.1016/j.jss.2008.07.010.
    1. Zhang J, Wang Z, Wang Y, Zhou G, Li H. The effect of dexmedetomidine on inflammatory response of septic rats. BMC Anesthesiol. 2015;15:68. doi: 10.1186/s12871-015-0042-8.
    1. Wu Y, Liu Y, Huang H, Zhu Y, Zhang Y, Lu F, Zhou C, Huang L, Li X, Zhou C. Dexmedetomidine inhibits inflammatory reaction in lung tissues of septic rats by suppressing TLR4/NF-κB pathway. Mediat Inflamm. 2013;2013:562154.
    1. Qiao H, Sanders RD, Ma D, Wu X, Maze M. Sedation improves early outcome in severely septic Sprague Dawley rats. Crit Care. 2009;13:R136. doi: 10.1186/cc8012.
    1. Xiang H, Hu B, Li Z, Li J. Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation. 2014;37:1763–1770. doi: 10.1007/s10753-014-9906-1.
    1. Zamani MM, Keshavarz-Fathi M, Fakhri-Bafghi MS, Hirbod-Mobarakeh A, Rezaei N, Bahrami A, Nader ND. Survival benefits of dexmedetomidine used for sedating septic patients in intensive care setting: a systematic review. J Crit Care. 2016;32:93–100. doi: 10.1016/j.jcrc.2015.11.013.
    1. Gatta A, Verardo A, Bolognesi M. Hypoalbuminemia. Intern Emerg Med. 2012;7(Suppl 3):S193–S199. doi: 10.1007/s11739-012-0802-0.
    1. Chelazzi C, Villa G, Mancinelli P, De Gaudio AR Adembri C. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit Care. 2015;19:26. doi: 10.1186/s13054-015-0741-z.
    1. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017;149:38–44. doi: 10.1016/j.thromres.2016.11.007.
    1. Patel P, Walborn A, Rondina M, Fareed J, Hoppensteadt D. Markers of inflammation and infection in sepsis and disseminated intravascular coagulation. Clin Appl Thromb Hemost. 2019;25:1076029619843338. doi: 10.1177/1076029619843338.
    1. Taniguchi T, Kurita A, Kobayashi K, Yamamoto K, Inaba H. Dose- and time-related effects of dexmedetomidine on mortality and inflammatory responses to endotoxin-induced shock in rats. J Anesth. 2008;22:221–228. doi: 10.1007/s00540-008-0611-9.
    1. Otto GP, Sossdorf M, Claus RA, Rodel J, Menge K, Reinhart K, Bauer M, Riedemann NC. The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care. 2011;15:R183. doi: 10.1186/cc10332.
    1. Lobo SM, Lobo FR, Bota DP, Lopes-Ferreira F, Soliman HM, Melot C, Vincent JL. C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest. 2003;123:2043–2049. doi: 10.1378/chest.123.6.2043.
    1. Ranzani OT, Prada LF, Zampieri FG, Battaini LC, Pinaffi JV, Setogute YC, Salluh JI, Povoa P, Forte DN, Azevedo LC, Park M. Failure to reduce C-reactive protein levels more than 25% in the last 24 hours before intensive care unit discharge predicts higher in-hospital mortality: a cohort study. J Crit Care. 2012;27:525.e529–525.e515. doi: 10.1016/j.jcrc.2011.10.013.
    1. Simon L, Gauvin F, Amre DK, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39:206–217. doi: 10.1086/421997.
    1. Huang MY, Chen CY, Chien JH, Wu KH, Chang YJ, Wu KH, Wu HP. Serum procalcitonin and procalcitonin clearance as a prognostic biomarker in patients with severe sepsis and septic shock. Biomed Res Int. 2016. 10.1155/2016/1758501.
    1. Oh TK, Song IA, Lee JH. Clinical usefulness of C-reactive protein to albumin ratio in predicting 30-day mortality in critically ill patients: a retrospective analysis. Sci Rep. 2018;8:14977. doi: 10.1038/s41598-018-33361-7.

Source: PubMed

3
Tilaa