Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 4: Glycated Haemoglobin

Carolina Bernal-Morales, Aníbal Alé-Chilet, Ruben Martín-Pinardel, Marina Barraso, Teresa Hernández, Cristian Oliva, Irene Vinagre, Emilio Ortega, Marc Figueras-Roca, Anna Sala-Puigdollers, Marga Gimenez, Enric Esmatjes, Alfredo Adán, Javier Zarranz-Ventura, Carolina Bernal-Morales, Aníbal Alé-Chilet, Ruben Martín-Pinardel, Marina Barraso, Teresa Hernández, Cristian Oliva, Irene Vinagre, Emilio Ortega, Marc Figueras-Roca, Anna Sala-Puigdollers, Marga Gimenez, Enric Esmatjes, Alfredo Adán, Javier Zarranz-Ventura

Abstract

The purpose of this study was to evaluate specifically the relationship between glycated haemoglobin (HbA1c) levels and retinal optical coherence tomography (OCT) and OCT angiography (OCTA) parameters in type 1 Diabetes Mellitus (DM). A total of 478 type 1 DM patients and 115 controls were included in a prospective OCTA trial (ClinicalTrials.gov NCT03422965). Subgroup analysis was performed for controls, no diabetic retinopathy (DM-no DR) and DR patients (DM-DR), and HbA1c levels. OCT and OCTA measurements were compared with HbA1c levels (current and previous 5 years). DM-no DR patients with HbA1c levels >7.5% showed lower VD than DM-DR and controls (20.16 vs. 20.22 vs. 20.71, p < 0.05), and showed a significant correlation between HbA1c levels and FAZc (p = 0.04), after adjusting for age, gender, signal strength index, axial length, and DM disease duration. DM-DR patients with HbA1c > 7.5% presented greater CRT than DM-no DR and controls (270.8 vs. 260 vs. 251.1, p < 0.05) and showed a significant correlation between HbA1c and CRT (p = 0.03). In conclusion, greater levels of HbA1c are associated with OCTA changes in DM-no DR patients, and with structural OCT changes in DM-DR patients. The combination of OCTA and OCT measurements and HbA1c levels may be helpful to identify patients at risk of progression to greater stages of the diabetic microvascular disease.

Keywords: HbA1c; diabetic retinopathy; foveal avascular zone; glycated haemoglobin; macular thickness; oculomics; optical coherence tomography; optical coherence tomography angiography; perfusion density; vessel density.

Conflict of interest statement

J.Z.-V. and A.A. are speakers for Topcon and Zeiss. None of the authors have any financial interest in the devices employed in this study. The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Consolidated standard of reporting trials (CONSORT)-style flow diagram describing included and excluded patients and eyes in each individual OCTA analysis. (* 1 eye = ≥ 1 criteria for exclusion).
Figure 2
Figure 2
Glycated Haemoglobin (HbA1c) levels in study subgroups. Left: Actual HbA1c level at the retinal imaging timepoint (2017). Right: Mean HbA1c calculated from previous 5 years timepoints (2013 to 2017).
Figure 3
Figure 3
Optical coherence tomography angiography (OCTA) analysis by glycated haemoglobin (HbA1c) level subgroups in diabetes mellitus (DM) patients without and with diabetic retinopathy (DR). Left: OCTA parameter analysis in DM-no DR patients. Right: OCTA parameter analysis in DM-DR patients. (p = values are adjusted by age, sex, signal strength index, diabetes mellitus duration, and axial length).
Figure 4
Figure 4
Correlations between glycated haemoglobin (HbA1c) levels and structural optical coherence tomography (OCT) parameters in study subgroups. Left: Structural OCT parameters and actual HbA1c level at the retinal imaging timepoint (2017). Right: Structural OCT parameters and Mean HbA1c calculated from previous 5 years timepoints (2013 to 2017). (Numerical values represent the p-value of correlations, p-values are adjusted by age, sex, signal strength index, diabetes mellitus duration, and axial length).
Figure 5
Figure 5
Correlations between glycated haemoglobin (HbA1c) levels and optical coherence tomography angiography (OCTA) parameters in study subgroups. Left: OCTA parameters and actual HbA1c level at the retinal imaging timepoint (2017). Right: OCTA parameters and Mean HbA1c calculated from previous 5 years timepoints (2013 to 2017). (Numerical values represent the p-value of correlations, p-values are adjusted by age, sex, signal strength index, diabetes mellitus duration, and axial length).

References

    1. Wagner S.K., Fu D.J., Faes L., Liu X., Huemer J., Khalid H., Ferraz D., Korot E., Kelly C., Balaskas K., et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Transl. Vis. Sci. Technol. 2020;9:6. doi: 10.1167/tvst.9.2.6.
    1. Ko F., Muthy Z.A., Gallacher J., Sudlow C., Rees G., Yang Q., Keane P.A., Petzold A., Khaw P.T., Reisman C., et al. Association of Retinal Nerve Fiber Layer Thinning with Current and Future Cognitive Decline: A Study Using Optical Coherence Tomography. JAMA Neurol. 2018 doi: 10.1001/jamaneurol.2018.1578.
    1. Coppola G., Di Renzo A., Ziccardi L., Martelli F., Fadda A., Manni G., Barboni P., Pierelli F., Sadun A.A., Parisi V. Optical Coherence Tomography in Alzheimer’s Disease: A Meta-Analysis. PLoS ONE. 2015;10:e0134750. doi: 10.1371/journal.pone.0134750.
    1. Mutlu U., Colijn J.M., Ikram M.A., Bonnemaijer P.W.M., Licher S., Wolters F.J., Tiemeier H., Koudstaal P.J., Klaver C.C.W., Ikram M.K. Association of Retinal Neurodegeneration on Optical Coherence Tomography with Dementia: A Population-Based Study. JAMA Neurol. 2018;75:1256–1263. doi: 10.1001/jamaneurol.2018.1563.
    1. Kim D.H. Retinal Microvascular Signs and Disability in the Cardiovascular Health Study. Arch. Ophthalmol. 2012;130:350. doi: 10.1001/archophthalmol.2011.360.
    1. Günthner R., Hanssen H., Hauser C., Angermann S., Lorenz G., Kemmner S., Matschkal J., Braunisch M.C., Küchle C., Renders L., et al. Impaired Retinal Vessel Dilation Predicts Mortality in End-Stage Renal Disease. Circ. Res. 2019;124:1796–1807. doi: 10.1161/CIRCRESAHA.118.314318.
    1. McGeechan K., Liew G., Macaskill P., Irwig L., Klein R., Klein B.E.K., Wang J.J., Mitchell P., Vingerling J.R., de Jong P.T.V.M., et al. Prediction of Incident Stroke Events Based on Retinal Vessel Caliber: A Systematic Review and Individual-Participant Meta-Analysis. Am. J. Epidemiol. 2009;170:1323–1332. doi: 10.1093/aje/kwp306.
    1. McGeechan K. Meta-analysis: Retinal Vessel Caliber and Risk for Coronary Heart Disease. Ann. Intern. Med. 2009;151:404. doi: 10.7326/0003-4819-151-6-200909150-00005.
    1. Wong T.Y., Mitchell P. Hypertensive Retinopathy. N. Engl. J. Med. 2004;351:2310–2317. doi: 10.1056/NEJMra032865.
    1. Wong T.Y., Mohamed Q., Klein R., Couper D.J. Do retinopathy signs in non-diabetic individuals predict the subsequent risk of diabetes? Br. J. Ophthalmol. 2006;90:301–303. doi: 10.1136/bjo.2005.084400.
    1. Ting D.S.W., Tan G.S.W., Agrawal R., Yanagi Y., Sie N.M., Wong C.W., Yeo I.Y.S., Lee S.Y., Cheung C.M.G., Wong T.Y. Optical coherence tomographic angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017;135:306–312. doi: 10.1001/jamaophthalmol.2016.5877.
    1. Barraso M., Alé-Chilet A., Hernández T., Oliva C., Vinagre I., Ortega E., Figueras-Roca M., Sala-Puigdollers A., Esquinas C., Esmatjes E., et al. Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 1: Diabetic Retinopathy. Transl. Vis. Sci. Technol. 2020;9:34. doi: 10.1167/tvst.9.10.34.
    1. Diabetes Control and Complications Trial Research The Relationship of Glycemic Exposure (HbA1c) to the Risk of Development and Progression of Retinopathy in the Diabetes Control and Complications Trial. Diabetes. 1995;44:968–983. doi: 10.2337/diab.44.8.968.
    1. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352:837–853. doi: 10.1016/S0140-6736(98)07019-6.
    1. Nathan D.M., Balkau B., Bonora E., Borch-Johnsen K., Buse J.B., Colagiuri S., Davidson M.B., DeFronzo R., Genuth S., Holman R.R., et al. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. CPD Bull. Clin. Biochem. 2010;10:25–33.
    1. American Diabetes Association Standards of Medical Care in Diabetes—2010. Diabetes Care. 2010;33:S11–S61. doi: 10.2337/dc10-S011.
    1. Sato K.K., Hayashi T., Harita N., Yoneda T., Nakamura Y., Endo G., Kambe H. Combined measurement of fasting plasma glucose and A1C is effective for the prediction of type 2 diabetes. Diabetes Care. 2009;32:644–646. doi: 10.2337/dc08-1631.
    1. Edelman D., Olsen M.K., Dudley T.K., Harris A.C., Oddone E.Z. Utility of hemoglobin A1c in predicting diabetes risk. J. Gen. Intern. Med. 2004;19:1175–1180. doi: 10.1111/j.1525-1497.2004.40178.x.
    1. Buse J.B., Ginsberg H.N., Bakris G.L., Clark N.G., Costa F., Eckel R., Fonseca V., Gerstein H.C., Grundy S., Nesto R.W., et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: A scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2007;30:162–172. doi: 10.2337/dc07-9917.
    1. Ting D.S.W., Peng L., Varadarajan A.V., Liu T.Y.A. Novel Retinal Imaging in Assessment of Cardiovascular Risk Factors and Systemic Vascular Diseases. Front. Diabetes. 2019;27:106–118. doi: 10.1159/000486269.
    1. Ting D.S.W., Wong T.Y. Eyeing cardiovascular risk factors. Nat. Biomed. Eng. 2018;2:140–141. doi: 10.1038/s41551-018-0210-5.
    1. Subrayan V., Menon S., Peyman M., loo voon pei A. Correlation between optical coherence tomography-derived macular measurements and glycosylated haemoglobin, age, visual acuity and diabetes duration in patients with type 2 diabetes mellitus. Int. J. Diabetes Dev. Ctries. 2015;35:385–388. doi: 10.1007/s13410-015-0362-8.
    1. Chou T.H., Wu P.C., Kuo J.Z.C., Lai C.H., Kuo C.N. Relationship of diabetic macular oedema with glycosylated haemoglobin. Eye. 2009;23:1360–1363. doi: 10.1038/eye.2008.279.
    1. Torabi H., Isfeedvajani M.S., Ramezani M., Daryabari S.H. Choroidal thickness and hemoglobin A1c levels in patients with type 2 diabetes mellitus. J. Ophthalmic Vis. Res. 2019;14:285–290. doi: 10.18502/jovr.v14i3.4784.
    1. Hamed A.H., Bayoumi H.M., Abdulmonem A.M. Optical Coherence Tomography Assessment of Macular and Choroidal Thickness in Patients with Proliferative Diabetic Retinopathy in Relation to Hemoglobin A1C. Egypt. J. Hosp. Med. 2019;77:5355–5366. doi: 10.21608/ejhm.2019.56919.
    1. Gołębiewska J., Olechowski A., Wysocka-Mincewicz M., Odrobina D., Baszyńska-Wilk M., Groszek A., Szalecki M., Hautz W. Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS ONE. 2017;12 doi: 10.1371/journal.pone.0186479.
    1. Zarranz-Ventura J., Barraso M., Alé-Chilet A., Hernandez T., Oliva C., Gascón J., Sala-Puigdollers A., Figueras-Roca M., Vinagre I., Ortega E., et al. Evaluation of microvascular changes in the perifoveal vascular network using optical coherence tomography angiography (OCTA) in type I diabetes mellitus: A large scale prospective trial. BMC Med. Imaging. 2019;19:91. doi: 10.1186/s12880-019-0391-8.
    1. Wilkinson C.P., Ferris F.L., Klein R.E., Lee P.P., Agardh C.D., Davis M., Dills D., Kampik A., Pararajasegaram R., Verdaguer J.T., et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110:1677–1682. doi: 10.1016/S0161-6420(03)00475-5.
    1. Zeng Y., Cao D., Yu H., Yang D., Zhuang X., Hu Y., Li J., Yang J., Wu Q., Liu B., et al. Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy. Br. J. Ophthalmol. 2019 doi: 10.1136/bjophthalmol-2018-313582.
    1. Cao D., Yang D., Huang Z., Zeng Y., Wang J., Hu Y., Zhang L. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol. 2018;55:469–477. doi: 10.1007/s00592-018-1115-1.
    1. Ishibazawa A., Nagaoka T., Takahashi A., Omae T., Tani T., Sogawa K., Yokota H., Yoshida A. Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. Am. J. Ophthalmol. 2015;160:35–44. doi: 10.1016/j.ajo.2015.04.021.
    1. Kim A.Y., Chu Z., Shahidzadeh A., Wang R.K., Puliafito C.A., Kashani A.H. Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Investig. Ophthalmol. Vis. Sci. 2016;57:OCT362–OCT370. doi: 10.1167/iovs.15-18904.
    1. Dimitrova G., Chihara E., Takahashi H., Amano H., Okazaki K. Quantitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2017;58:190–196. doi: 10.1167/iovs.16-20531.
    1. Yeung L., Sun C.C., Ku W.C., Chuang L.H., Chen C.H., Huang B.Y., Ting M.K., Yang K.J. Associations between chronic glycosylated haemoglobin (HbA1c) level and macular volume in diabetes patients without macular oedema. Acta Ophthalmol. 2010;88:753–758. doi: 10.1111/j.1755-3768.2009.01711.x.

Source: PubMed

3
Tilaa