Pharmacokinetics and pharmacodynamics studies of a loading dose of cisatracurium in critically ill patients with respiratory failure

Panadda Panusitthikorn, Chuthamanee Suthisisang, Viratch Tangsujaritvijit, Wichit Nosoongnoen, Pitchaya Dilokpattanamongkol, Panadda Panusitthikorn, Chuthamanee Suthisisang, Viratch Tangsujaritvijit, Wichit Nosoongnoen, Pitchaya Dilokpattanamongkol

Abstract

Background: Previous studies reported a slow neuromuscular response with the currently recommended dose of cisatracurium in critically ill patients. Pharmacokinetic and pharmacodynamic studies of cisatracurium in critically ill patients are still limited. To our knowledge, this is the first study performed to better understand the pharmacokinetics (PKs) and pharmacodynamics (PDs) of a loading dose of cisatracurium and to identify factors that affect PK and PD changes in critically ill patients.

Methods: A prospective PKs and PDs study was designed. Arterial blood samples of 10 critically ill patients with respiratory failure were collected after administering a loading dose of 0.2 mg/kg of cisatracurium. Plasma cisatracurium and laudanosine concentrations were determined using liquid chromatography-tandem mass spectrometry. The achievement of the desired pharmacodynamic response was evaluated by both 1) clinical assessment and 2) train-of-four monitoring. The PK/PD indices were analyzed for their correlation with patient'characteristics and other factors.

Results: The one-compartment model best described the plasma pharmacokinetic parameters of cisatracurium. The volume of distribution at steady state and total clearance were 0.11 ± 0.04 L/kg and 2.74 ± 0.87 ml/minute/kg, respectively. The mean time to train-of-four 0/4 was 6 ± 3.86 minutes. A time to the desired pharmacodynamic response of less than 5 minutes was found in 10% of the patients. A positive correlation was found between cisatracurium concentration and albumin levels and between pharmacokinetics data and patient factors [partial pressure of carbon dioxide and respiratory alkalosis].

Conclusion: The currently recommended loading dose of cisatracurium might not lead to the desired pharmacodynamic response in critically ill patients with respiratory failure.

Trial registration: ClinicalTrials.gov , NCT03337373. Registered on 9 November 2017.

Keywords: Critical care; Neuromuscular blockers; Pharmacodynamics; Pharmacokinetics; Respiratory Failure.

Conflict of interest statement

The author(s) declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Mean and standard deviation (error bar) of the total cisatracurium and laudanosine plasma concentrations 60 minutes after an intravenous bolus of 0.2 mg/kg of cisatracurium

References

    1. Forel JM, Roch A, Marin V, Michelet P, Demory D, Blache JL, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34(11):2749–2757. doi: 10.1097/01.CCM.0000239435.87433.0D.
    1. Kisor DF, Schmith VD. Clinical pharmacokinetics of cisatracurium besilate. Clin Pharmacokinet. 1999;36(1):27–40. doi: 10.2165/00003088-199936010-00003.
    1. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, Loundou A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363(12):1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Lien CA, Belmont MR, Abalos A, Eppich L, Quessy S, Abou-Donia MM, et al. The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology. 1995;82(5):1131–1138. doi: 10.1097/00000542-199505000-00007.
    1. Gainnier M, Roch A, Forel JM, Thirion X, Arnal JM, Donati S, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32(1):113–119. doi: 10.1097/01.CCM.0000104114.72614.BC.
    1. Alhazzani W, Alshahrani M, Jaeschke R, Forel JM, Papazian L, Sevransky J, et al. Neuromuscular blocking agents in acute respiratory distress syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2013;17(2):R43. doi: 10.1186/cc12557.
    1. Boyd AH, Eastwood NB, Parker CJ, Hunter JM. Comparison of the pharmacodynamics and pharmacokinetics of an infusion of cis-atracurium (51W89) or atracurium in critically ill patients undergoing mechanical ventilation in an intensive therapy unit. Br J Anaesth. 1996;76(3):382–388. doi: 10.1093/bja/76.3.382.
    1. Platt M, Hayward A, Cooper A, Hirsch N. Effect of arterial carbon dioxide tension on the duration of action of atracurium. Br J Anaesth. 1991;66(1):45–47. doi: 10.1093/bja/66.1.45.
    1. Lim J, Cox J, Nguyen T, Arya R. Cisatracurium dosing in a patient with hyperthermia. Am J Health Syst Pharm. 2019;76(14):1029–1032. doi: 10.1093/ajhp/zxz098.
    1. Kim YB, Sung TY, Yang HS. Factors that affect the onset of action of non-depolarizing neuromuscular blocking agents. Korean J Anesthesiol. 2017;70(5):500–510. doi: 10.4097/kjae.2017.70.5.500.
    1. Murray MJ, DeBlock H, Erstad B, Gray A, Jacobi J, Jordan C, et al. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient. Crit Care Med. 2016;44(11):2079–2103. doi: 10.1097/CCM.0000000000002027.
    1. Hraiech S, Forel JM, Guervilly C, Rambaud R, Lehingue S, Adda M, et al. How to reduce cisatracurium consumption in ARDS patients: the TOF-ARDS study. Ann Intensive Care. 2017;7(1):79. doi: 10.1186/s13613-017-0305-2.
    1. Liu X, Kruger PS, Weiss M, Roberts MS. The pharmacokinetics and pharmacodynamics of cisatracurium in critically ill patients with severe sepsis. Br J Clin Pharmacol. 2012;73(5):741–749. doi: 10.1111/j.1365-2125.2011.04149.x.
    1. Bouju P, Tadie JM, Barbarot N, Letheulle J, Uhel F, Fillatre P, et al. Clinical assessment and train-of-four measurements in critically ill patients treated with recommended doses of cisatracurium or atracurium for neuromuscular blockade: a prospective descriptive study. Ann Intensive Care. 2017;7(1):10. doi: 10.1186/s13613-017-0234-0.
    1. Dieye E, Minville V, Asehnoune K, Conil C, Georges B, Cougot P, et al. Pharmacodynamics of cisatracurium in the intensive care unit: an observational study. Ann Intensive Care. 2014;4(1):3. doi: 10.1186/2110-5820-4-3.
    1. De Wolf AM, Freeman JA, Scott VL, Tullock W, Smith DA, Kisor DF, et al. Pharmacokinetics and pharmacodynamics of cisatracurium in patients with end-stage liver disease undergoing liver transplantation. Br J Anaesth. 1996;76(5):624–628. doi: 10.1093/bja/76.5.624.
    1. Eastwood NB, Boyd AH, Parker CJ, Hunter JM. Pharmacokinetics of 1R-cis 1'R-cis atracurium besylate (51W89) and plasma laudanosine concentrations in health and chronic renal failure. Br J Anaesth. 1995;75(4):431–435. doi: 10.1093/bja/75.4.431.
    1. Kisor DF, Schmith VD, Wargin WA, Lien CA, Ornstein E, Cook DR. Importance of the organ-independent elimination of cisatracurium. Anesth Analg. 1996;83(5):1065–1071. doi: 10.1213/00000539-199611000-00029.
    1. National Heart L. Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT et al. Comparison of two fluid-management strategies in acute lung injury. N Engl J Med. 2006;354(24):2564–2575. doi: 10.1056/NEJMoa062200.
    1. Belmont MR, Lien CA, Quessy S, Abou-Donia MM, Abalos A, Eppich L, et al. The clinical neuromuscular pharmacology of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology. 1995;82(5):1139–1145. doi: 10.1097/00000542-199505000-00008.
    1. Lepage J-Y, Malinovsky J-M, Malinge M, Lechevalier T, Dupuch C, Cozian A, et al. Pharmacodynamic dose-response and safety study of cisatracurium (51W89) in adult surgical patients during N2 O-O2-opioid anesthesia. Anesth Analg. 1996;83(4):823–829. doi: 10.1213/00000539-199610000-00030.
    1. Ono K, Nagano O, Ohta Y, Kosaka F. Neuromuscular effects of respiratory and metabolic acid-base changes in vitro with and without nondepolarizing muscle relaxants. Anesthesiology. 1990;73(4):710–716. doi: 10.1097/00000542-199010000-00017.
    1. Welch RM, Brown A, Ravitch J, Dahl R. The in vitro degradation of cisatracurium, the R, cis-R'-isomer of atracurium, in human and rat plasma. Clin Pharmacol Ther. 1995;58(2):132–142. doi: 10.1016/0009-9236(95)90190-6.
    1. Lingya T, Lianhua C, Haoling M, Yachun Z, Shitong L. Effects of arterial carbon dioxide on recovery from rocuronium-induced neuromuscular blockade in anesthetized patients. Asian Biomedicine. 2013;7(1):73–79.
    1. T'Jollyn H, Vermeulen A, Van Bocxlaer J, Colin P. A Physiologically Based Pharmacokinetic Perspective on the Clinical Utility of Albumin-Based Dose Adjustments in Critically Ill Patients. Clin Pharmacokinet. 2018;57(1):59–69. doi: 10.1007/s40262-017-0549-x.
    1. Lien CA, Schmith VD, Belmont MR, Abalos A, Kisor DF, Savarese JJ. Pharmacokinetics of cisatracurium in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology. 1996;84(2):300–308. doi: 10.1097/00000542-199602000-00007.
    1. Colombo D, Cammarota G, Alemani M, Carenzo L, Barra FL, Vaschetto R, et al. Efficacy of ventilator waveforms observation in detecting patient-ventilator asynchrony. Crit Care Med. 2011;39(11):2452–2457. doi: 10.1097/CCM.0b013e318225753c.
    1. Derendorf H, Meibohm B. Modeling of pharmacokinetic/pharmacodynamic (PK/PD) relationships: concepts and perspectives. Pharm Res. 1999;16(2):176–185. doi: 10.1023/A:1011907920641.

Source: PubMed

3
Tilaa