Rate of force development: physiological and methodological considerations

Nicola A Maffiuletti, Per Aagaard, Anthony J Blazevich, Jonathan Folland, Neale Tillin, Jacques Duchateau, Nicola A Maffiuletti, Per Aagaard, Anthony J Blazevich, Jonathan Folland, Neale Tillin, Jacques Duchateau

Abstract

The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50-75 ms), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way. Therefore, we provide evidence-based practical recommendations for rational quantification of rate of force development in both laboratory and clinical settings.

Keywords: Ballistic contraction; Dynamometry; Explosive strength; Motor unit discharge rate; Musculotendinous stiffness; Strength training.

Figures

Fig. 1
Fig. 1
Illustration of the early phase of the torque- and EMG-time curves of the knee extensor muscles in two subjects during an explosive voluntary isometric contraction (continuous line) and in response to electrical stimulation (8 pulses at 300 Hz; discontinuous line). The rate of torque development during the two types of contraction is similar for subject 2 (b), whereas it is substantially smaller during voluntary activation for subject 1 (a). Interestingly, EMG activity (expressed as % of EMG during MVC) of the vastus lateralis is much greater at the onset of muscle activation in subject 2 (d) compared to subject 1 (c). These data indicate that the rate of torque development is mainly limited by muscle activation (neural factors) in subject 1 whereas it is more likely constrained by muscular factors in subject 2. Arrows and vertical lines indicate, respectively, the onset of torque development and the force attained 40 ms after the onset of the contraction. Figure reproduced with permission from de Ruiter et al. (2004)
Fig. 2
Fig. 2
Distribution of myosin heavy chain (MHC)-II (IIA + IIB) isoforms in soleus (squares), vastus lateralis (triangles) and triceps brachii (circles) in relation to a twitch time to peak torque (TPT), and b maximal rate of rise of evoked torque at 50 Hz (dPo50). Between-muscle differences were strongly associated with differences in muscle fibre type, although the relationship with within-muscle variability was less pronounced. Figure reproduced with permission from Harridge et al. (1996)
Fig. 3
Fig. 3
Motor unit (MU) discharge rate at the onset of maximal ballistic contractions, obtained in the tibialis anterior muscle before and after 12 weeks of ballistic-type strength training. a Representative MU action potential recordings obtained before (left) and after (right) training. Note the marked increases in MU discharge rate and RFD with training. b Mean discharge rate (and SEM) recorded in the first, second and third interspike intervals, respectively. All post-training values were greater than pre-training values (p < 0.001). The number of MU action potentials analysed in each interspike interval ranged between 243 and 609. Figure reproduced with permission from Van Cutsem et al. (1998) and Aagaard (2003)
Fig. 4
Fig. 4
a Representative linear-array EMG recordings obtained in the vastus lateralis muscle during explosive isometric contractions of the knee extensors. EMG signals were analysed in two intervals of 50 ms (shaded boxesI and II) that were initiated 70 ms before the onset of force (I) and centered at the time instant of maximal RFD (peak slope) (II). b Mean RFD (and SEM) obtained before, during (3 weeks) and after 6 weeks of heavy-resistance strength training, endurance training or no training. *p < 0.05. c, d Average rectified EMG amplitude (ARV; mean and SE) measured for the vastus lateralis and vastus medialis muscles in time intervals I (c) and II (d). *p < 0.05; **p < 0.001. Note that increases in RFD and EMG activity were only observed following strength training, while absent in response to endurance training and in non-trained controls. Figure reproduced with permission from Vila-Cha et al. (2010)
Fig. 5
Fig. 5
Rate of force development (RFD) is influenced by numerous factors within the neuromuscular system; those contributing to maximal muscular strength will improve the mean RFD (assuming the rate at which a given proportional force level is reached remains constant), whereas those affecting the time to reach a given force level may additionally influence the RFD measured at different time intervals during the rise in muscle force. CSA cross-sectional area
Fig. 6
Fig. 6
Photograph and baseline-torque recordings from a commercial isokinetic dynamometer (a, c) and a custom-built dynamometer (b, d), measuring knee extensor torque at ~60° knee flexion in the same participant. The padding on the chair/crank-arm adaptor in a, that is not present in b, contributes to dynamometer compliance. Torque in d is the product of force and moment arm. The baseline-torque recordings in c and d are prior to and during the early phase of an explosive contraction, and presented in the same scale for both absolute (Nm) and relative (% MVC) units. The dashed lines are ±3 SDs of the baseline mean which is often used as a threshold for detecting contraction onset, and is comparable with typical objective criteria thresholds for detecting an unstable baseline (e.g., shift above/below this threshold in the preceding 200 ms). The considerably greater baseline noise amplitude in c makes the thresholds for detecting contraction onset and/or an unstable baseline, including any pre-tension or countermovement, markedly less sensitive than in d
Fig. 7
Fig. 7
An unfiltered force–time curve recorded during an explosive contraction of the knee extensors (force is expressed relative to maximal voluntary force). Force onset (0 ms) was detected manually/visually using the systematic method detailed in Tillin et al. (2010). Some automated systems for detecting contraction onset have used arbitrary thresholds between 2 and 3.6 % maximal voluntary force which in this example occurs 24–30 ms after manually detected onset. Figure reproduced with permission from Tillin et al. (2013b)
Fig. 8
Fig. 8
Common measurements of the rising force–time curve. a Force at specific time points (F50, F100, etc.) and overlapping RFD measurements all starting from force onset (RFD0–50, RFD0–100, etc.). b An identical force trace showing measurements of sequential RFD and sequential impulse both assessed over consecutive periods

References

    1. Aagaard P. Training-induced changes in neural function. Exerc Sport Sci Rev. 2003;31:61–67. doi: 10.1097/00003677-200304000-00002.
    1. Aagaard P. Neural adaptations to resistance exercise. In: Cardinale M, Newton RU, Nosaka K, editors. Strength and conditioning: biological principles and practical applications. New York: Wiley-Blackwell; 2010. pp. 105–124.
    1. Aagaard P, Thorstensson A. Neuromuscular aspects of exercise: adaptive responses evoked by strength training. In: Kjaer M, editor. Textbook of sports medicine. London: Blakwell; 2003. pp. 70–106.
    1. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB. A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol. 2001;534:613–623. doi: 10.1111/j.1469-7793.2001.t01-1-00613.x.
    1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol (1985) 2002;93:1318–1326. doi: 10.1152/japplphysiol.00283.2002.
    1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Neural adaptation to resistance training: changes in evoked V-wave and H-reflex responses. J Appl Physiol (1985) 2002;92:2309–2318. doi: 10.1152/japplphysiol.01185.2001.
    1. Aalund PK, Larsen K, Hansen TB, Bandholm T. Normalized knee-extension strength or leg-press power after fast-track total knee arthroplasty: which measure is most closely associated with performance-based and self-reported function? Arch Phys Med Rehabil. 2013;94:384–390. doi: 10.1016/j.apmr.2012.09.031.
    1. Abbate F, Bruton JD, De Haan A, Westerblad H. Prolonged force increase following a high-frequency burst is not due to a sustained elevation of [Ca2+]i. Am J Physiol Cell Physiol. 2002;283:C42–C47. doi: 10.1152/ajpcell.00416.2001.
    1. Allen GM, Gandevia SC, McKenzie DK. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve. 1995;18:593–600. doi: 10.1002/mus.880180605.
    1. Andersen JL. Muscle fibre type characteristics of the runner. In: Bangsbo J, Larsen HB, editors. Running & science in an interdisciplinary perspective. Copenhagen: Munksgaard Publishing; 2001. pp. 49–65.
    1. Andersen JL, Aagaard P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve. 2000;23:1095–1104. doi: 10.1002/1097-4598(200007)23:7<1095::AID-MUS13>;2-O.
    1. Andersen LL, Aagaard P. Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol. 2006;96:46–52. doi: 10.1007/s00421-005-0070-z.
    1. Andersen LL, Andersen JL, Suetta C, Kjaer M, Sogaard K, Sjogaard G. Effect of contrasting physical exercise interventions on rapid force capacity of chronically painful muscles. J Appl Physiol (1985) 2009;107:1413–1419. doi: 10.1152/japplphysiol.00555.2009.
    1. Andersen LL, Andersen JL, Zebis MK, Aagaard P. Early and late rate of force development: differential adaptive responses to resistance training? Scand J Med Sci Sports. 2010;20:e162–e169. doi: 10.1111/j.1600-0838.2009.00933.x.
    1. Angelozzi M, Madama M, Corsica C, Calvisi V, Properzi G, McCaw ST, Cacchio A. Rate of force development as an adjunctive outcome measure for return-to-sport decisions after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42:772–780. doi: 10.2519/jospt.2012.3780.
    1. Anttila K, Manttari S, Jarvilehto M. Effects of different training protocols on Ca2+ handling and oxidative capacity in skeletal muscle of Atlantic salmon (Salmo salar L.) J Exp Biol. 2006;209:2971–2978. doi: 10.1242/jeb.02341.
    1. Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol. 2007;210:2743–2753. doi: 10.1242/jeb.003814.
    1. Aston-Jones G, Rajkowski J, Cohen J. Locus coeruleus and regulation of behavioral flexibility and attention. Prog Brain Res. 2000;126:165–182. doi: 10.1016/S0079-6123(00)26013-5.
    1. Azizi E, Brainerd EL, Roberts TJ. Variable gearing in pennate muscles. Proc Natl Acad Sci USA. 2008;105:1745–1750. doi: 10.1073/pnas.0709212105.
    1. Barry BK, Warman GE, Carson RG. Age-related differences in rapid muscle activation after rate of force development training of the elbow flexors. Exp Brain Res. 2005;162:122–132. doi: 10.1007/s00221-004-2127-3.
    1. Baudry S, Duchateau J. Postactivation potentiation in a human muscle: effect on the rate of torque development of tetanic and voluntary isometric contractions. J Appl Physiol (1985) 2007;102:1394–1401. doi: 10.1152/japplphysiol.01254.2006.
    1. Bawa P, Calancie B. Repetitive doublets in human flexor carpi radialis muscle. J Physiol. 1983;339:123–132. doi: 10.1113/jphysiol.1983.sp014707.
    1. Baylor SM, Hollingworth S. Fura-2 calcium transients in frog skeletal muscle fibres. J Physiol. 1988;403:151–192. doi: 10.1113/jphysiol.1988.sp017244.
    1. Baylor SM, Hollingworth S. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol. 2003;551:125–138. doi: 10.1113/jphysiol.2003.041608.
    1. Bellumori M, Jaric S, Knight CA. The rate of force development scaling factor (RFD-SF): protocol, reliability, and muscle comparisons. Exp Brain Res. 2011;212:359–369. doi: 10.1007/s00221-011-2735-7.
    1. Bemben MG, Clasey JL, Massey BH. The effect of the rate of muscle contraction on the force-time curve parameters of male and female subjects. Res Q Exerc Sport. 1990;61:96–99. doi: 10.1080/02701367.1990.10607484.
    1. Binder-Macleod S, Kesar T. Catchlike property of skeletal muscle: recent findings and clinical implications. Muscle Nerve. 2005;31:681–693. doi: 10.1002/mus.20290.
    1. Blazevich AJ, Horne S, Cannavan D, Coleman DR, Aagaard P. Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps. Muscle Nerve. 2008;38:1133–1146. doi: 10.1002/mus.21021.
    1. Blazevich AJ, Cannavan D, Horne S, Coleman DR, Aagaard P. Changes in muscle force-length properties affect the early rise of force in vivo. Muscle Nerve. 2009;39:512–520. doi: 10.1002/mus.21259.
    1. Bojsen-Moller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol (1985) 2005;99:986–994. doi: 10.1152/japplphysiol.01305.2004.
    1. Bottinelli R, Canepari M, Pellegrino MA, Reggiani C. Force–velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol. 1996;495(Pt 2):573–586. doi: 10.1113/jphysiol.1996.sp021617.
    1. Bottinelli R, Pellegrino MA, Canepari M, Rossi R, Reggiani C. Specific contributions of various muscle fibre types to human muscle performance: an in vitro study. J Electromyogr Kinesiol. 1999;9:87–95. doi: 10.1016/S1050-6411(98)00040-6.
    1. Brainerd EL, Azizi E. Muscle fiber angle, segment bulging and architectural gear ratio in segmented musculature. J Exp Biol. 2005;208:3249–3261. doi: 10.1242/jeb.01770.
    1. Buchthal F, Schmalbruch H. Contraction times and fibre types in intact human muscle. Acta Physiol Scand. 1970;79:435–452. doi: 10.1111/j.1748-1716.1970.tb04744.x.
    1. Buckthorpe MW, Hannah R, Pain TG, Folland JP. Reliability of neuromuscular measurements during explosive isometric contractions, with special reference to electromyography normalization techniques. Muscle Nerve. 2012;46:566–576. doi: 10.1002/mus.23322.
    1. Buller AJ, Lewis DM. The rate of tension development in isometric tetanic contractions of mammalian fast and slow skeletal muscle. J Physiol. 1965;176:337–354. doi: 10.1113/jphysiol.1965.sp007554.
    1. Burke RE, Rudomin P, Zajac FE., 3rd The effect of activation history on tension production by individual muscle units. Brain Res. 1976;109:515–529. doi: 10.1016/0006-8993(76)90031-7.
    1. Casartelli NC, Lepers R, Maffiuletti NA. Assessment of the rate of force development scaling factor for the hip muscles. Muscle Nerve. 2014;50:932–938. doi: 10.1002/mus.24229.
    1. Caserotti P, Aagaard P, Larsen JB, Puggaard L. Explosive heavy-resistance training in old and very old adults: changes in rapid muscle force, strength and power. Scand J Med Sci Sports. 2008;18:773–782. doi: 10.1111/j.1600-0838.2007.00732.x.
    1. Cheng AJ, Place N, Bruton JD, Holmberg HC, Westerblad H. Doublet discharge stimulation increases sarcoplasmic reticulum Ca2+ release and improves performance during fatiguing contractions in mouse muscle fibres. J Physiol. 2013;591:3739–3748. doi: 10.1113/jphysiol.2013.257188.
    1. Christie A, Kamen G. Short-term training adaptations in maximal motor unit firing rates and afterhyperpolarization duration. Muscle Nerve. 2010;41:651–660.
    1. Clark BC, Cook SB, Ploutz-Snyder LL. Reliability of techniques to assess human neuromuscular function in vivo. J Electromyogr Kinesiol. 2007;17:90–101. doi: 10.1016/j.jelekin.2005.11.008.
    1. Clarkson PM, Kroll W, Melchionda AM. Age, isometric strength, rate of tension development and fiber type composition. J Gerontol. 1981;36:648–653. doi: 10.1093/geronj/36.6.648.
    1. Close RI. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972;52:129–197.
    1. Connelly DM, Rice CL, Roos MR, Vandervoort AA. Motor unit firing rates and contractile properties in tibialis anterior of young and old men. J Appl Physiol (1985) 1999;87:843–852.
    1. Crameri RM, Aagaard P, Qvortrup K, Langberg H, Olesen J, Kjaer M. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol. 2007;583:365–380. doi: 10.1113/jphysiol.2007.128827.
    1. Dahmane R, Djordjevic S, Simunic B, Valencic V. Spatial fiber type distribution in normal human muscle Histochemical and tensiomyographical evaluation. J Biomech. 2005;38:2451–2459. doi: 10.1016/j.jbiomech.2004.10.020.
    1. de Haan A. The influence of stimulation frequency on force–velocity characteristics of in situ rat medial gastrocnemius muscle. Exp Physiol. 1998;83:77–84. doi: 10.1113/expphysiol.1998.sp004093.
    1. De Luca CJ, LeFever RS, McCue MP, Xenakis AP. Behaviour of human motor units in different muscles during linearly varying contractions. J Physiol. 1982;329:113–128. doi: 10.1113/jphysiol.1982.sp014293.
    1. de Ruiter CJ, Jones DA, Sargeant AJ, de Haan A. Temperature effect on the rates of isometric force development and relaxation in the fresh and fatigued human adductor pollicis muscle. Exp Physiol. 1999;84:1137–1150. doi: 10.1111/j.1469-445X.1999.01895.x.
    1. de Ruiter CJ, Kooistra RD, Paalman MI, de Haan A. Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles. J Appl Physiol (1985) 2004;97:1693–1701. doi: 10.1152/japplphysiol.00230.2004.
    1. de Ruiter CJ, Van Leeuwen D, Heijblom A, Bobbert MF, de Haan A. Fast unilateral isometric knee extension torque development and bilateral jump height. Med Sci Sports Exerc. 2006;38:1843–1852. doi: 10.1249/01.mss.0000227644.14102.50.
    1. de Ruiter CJ, Vermeulen G, Toussaint HM, de Haan A. Isometric knee-extensor torque development and jump height in volleyball players. Med Sci Sports Exerc. 2007;39:1336–1346. doi: 10.1097/mss.0b013e318063c719.
    1. de Ruiter CJ, Hutter V, Icke C, Groen B, Gemmink A, Smilde H, de Haan A. The effects of imagery training on fast isometric knee extensor torque development. J Sports Sci. 2012;30:166–174. doi: 10.1080/02640414.2011.627369.
    1. Del Balso C, Cafarelli E. Adaptations in the activation of human skeletal muscle induced by short-term isometric resistance training. J Appl Physiol (1985) 2007;103:402–411. doi: 10.1152/japplphysiol.00477.2006.
    1. Desmedt JE, Godaux E. Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol. 1977;264:673–693. doi: 10.1113/jphysiol.1977.sp011689.
    1. Desmedt JE, Godaux E. Ballistic contractions in fast or slow human muscles: discharge patterns of single motor units. J Physiol. 1978;285:185–196. doi: 10.1113/jphysiol.1978.sp012566.
    1. Deutekom M, Beltman JG, de Ruiter CJ, de Koning JJ, de Haan A. No acute effects of short-term creatine supplementation on muscle properties and sprint performance. Eur J Appl Physiol. 2000;82:223–229. doi: 10.1007/s004210050675.
    1. DeWall RJ, Slane LC, Lee KS, Thelen DG. Spatial variations in Achilles tendon shear wave speed. J Biomech. 2014;47:2685–2692. doi: 10.1016/j.jbiomech.2014.05.008.
    1. Di Fabio RP. Reliability of computerized surface electromyography for determining the onset of muscle activity. Phys Ther. 1987;67:43–48.
    1. Domire ZJ, Boros RL, Hashemi J. An examination of possible quadriceps force at the time of anterior cruciate ligament injury during landing: a simulation study. J Biomech. 2011;44:1630–1632. doi: 10.1016/j.jbiomech.2011.03.001.
    1. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15:161–167. doi: 10.1016/j.conb.2005.03.004.
    1. Duchateau J, Baudry S. Maximal discharge rate of motor units determines the maximal rate of force development during ballistic contractions in human. Front Hum Neurosci. 2014;8:234. doi: 10.3389/fnhum.2014.00234.
    1. Duchateau J, Enoka RM. Neural adaptations with chronic activity patterns in able-bodied humans. Am J Phys Med Rehabil. 2002;81:S17–S27. doi: 10.1097/00002060-200211001-00004.
    1. Duchateau J, Enoka RM. Human motor unit recordings: origins and insight into the integrated motor system. Brain Res. 2011;1409:42–61. doi: 10.1016/j.brainres.2011.06.011.
    1. Duchateau J, Hainaut K. Isometric or dynamic training: differential effects on mechanical properties of a human muscle. J Appl Physiol Respir Environ Exerc Physiol. 1984;56:296–301.
    1. Duchateau J, Hainaut K. Nonlinear summation of contractions in striated muscle. II. Potentiation of intracellular Ca2+ movements in single barnacle muscle fibres. J Muscle Res Cell Motil. 1986;7:18–24. doi: 10.1007/BF01756198.
    1. Duclay J, Martin A, Duclay A, Cometti G, Pousson M. Behavior of fascicles and the myotendinous junction of human medial gastrocnemius following eccentric strength training. Muscle Nerve. 2009;39:819–827. doi: 10.1002/mus.21297.
    1. Edgerton VR, Smith JL, Simpson DR. Muscle fibre type populations of human leg muscles. Histochem J. 1975;7:259–266. doi: 10.1007/BF01003594.
    1. Edman KA, Josephson RK. Determinants of force rise time during isometric contraction of frog muscle fibres. J Physiol. 2007;580:1007–1019. doi: 10.1113/jphysiol.2006.119982.
    1. Enoka RM, Duchateau J (2015) Inappropriate interpretation of surface EMG signals and muscle fiber characteristics impedes progress on understanding the control of neuromuscular function. J Appl Physiol (1985) jap 00280 02015
    1. Erskine RM, Fletcher G, Folland JP. The contribution of muscle hypertrophy to strength changes following resistance training. Eur J Appl Physiol. 2014;114:1239–1249. doi: 10.1007/s00421-014-2855-4.
    1. Esmarck B, Andersen JL, Olsen S, Richter EA, Mizuno M, Kjaer M. Timing of postexercise protein intake is important for muscle hypertrophy with resistance training in elderly humans. J Physiol. 2001;535:301–311. doi: 10.1111/j.1469-7793.2001.00301.x.
    1. Farina D, Holobar A, Merletti R, Enoka RM. Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol. 2010;121:1616–1623. doi: 10.1016/j.clinph.2009.10.040.
    1. Ferreira JC, Bacurau AV, Bueno CR, Jr, Cunha TC, Tanaka LY, Jardim MA, Ramires PR, Brum PC. Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice. Exp Biol Med (Maywood) 2010;235:497–505. doi: 10.1258/ebm.2009.009165.
    1. Fitts RH, Widrick JJ. Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev. 1996;24:427–473. doi: 10.1249/00003677-199600240-00016.
    1. Folland JP, Williams AG. The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med. 2007;37:145–168. doi: 10.2165/00007256-200737020-00004.
    1. Folland JP, Mc Cauley TM, Williams AG. Allometric scaling of strength measurements to body size. Eur J Appl Physiol. 2008;102:739–745. doi: 10.1007/s00421-007-0654-x.
    1. Folland JP, Buckthorpe MW, Hannah R. Human capacity for explosive force production: neural and contractile determinants. Scand J Med Sci Sports. 2014;24:894–906. doi: 10.1111/sms.12131.
    1. Franzini-Armstrong C. ER-mitochondria communication. How privileged? Physiology (Bethesda) 2007;22:261–268. doi: 10.1152/physiol.00017.2007.
    1. Fuglevand AJ, Winter DA, Patla AE. Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol. 1993;70:2470–2488.
    1. Gans C. Fiber architecture and muscle function. Exerc Sport Sci Rev. 1982;10:160–207. doi: 10.1249/00003677-198201000-00006.
    1. Gardetto PR, Schluter JM, Fitts RH. Contractile function of single muscle fibers after hindlimb suspension. J Appl Physiol (1985) 1989;66:2739–2749.
    1. Geertsen SS, Lundbye-Jensen J, Nielsen JB. Increased central facilitation of antagonist reciprocal inhibition at the onset of dorsiflexion following explosive strength training. J Appl Physiol (1985) 2008;105:915–922. doi: 10.1152/japplphysiol.01155.2007.
    1. Geertsen SS, van de Ruit M, Grey MJ, Nielsen JB. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion. J Physiol. 2011;589:5819–5831. doi: 10.1113/jphysiol.2011.214387.
    1. Godard MP, Gallagher PM, Raue U, Trappe SW. Alterations in single muscle fiber calcium sensitivity with resistance training in older women. Pflugers Arch. 2002;444:419–425. doi: 10.1007/s00424-002-0821-1.
    1. Grabiner MD. Maximum rate of force development is increased by antagonist conditioning contraction. J Appl Physiol (1985) 1994;77:807–811.
    1. Granacher U, Gruber M, Gollhofer A. Resistance training and neuromuscular performance in seniors. Int J Sports Med. 2009;30:652–657. doi: 10.1055/s-0029-1224178.
    1. Grange RW, Vandenboom R, Houston ME. Physiological significance of myosin phosphorylation in skeletal muscle. Can J Appl Physiol. 1993;18:229–242. doi: 10.1139/h93-020.
    1. Gruber M, Gruber SB, Taube W, Schubert M, Beck SC, Gollhofer A. Differential effects of ballistic versus sensorimotor training on rate of force development and neural activation in humans. J Strength Cond Res. 2007;21:274–282. doi: 10.1519/00124278-200702000-00049.
    1. Haider G, Folland JP. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc. 2014;46:2234–2243. doi: 10.1249/MSS.0000000000000351.
    1. Hakkinen K, Keskinen KL. Muscle cross-sectional area and voluntary force production characteristics in elite strength- and endurance-trained athletes and sprinters. Eur J Appl Physiol Occup Physiol. 1989;59:215–220. doi: 10.1007/BF02386190.
    1. Hakkinen K, Komi PV, Alen M. Effect of explosive type strength training on isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of leg extensor muscles. Acta Physiol Scand. 1985;125:587–600. doi: 10.1111/j.1748-1716.1985.tb07760.x.
    1. Hakkinen K, Newton RU, Gordon SE, McCormick M, Volek JS, Nindl BC, Gotshalk LA, Campbell WW, Evans WJ, Hakkinen A, Humphries BJ, Kraemer WJ. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol A Biol Sci Med Sci. 1998;53:B415–B423. doi: 10.1093/gerona/53A.6.B415.
    1. Hakkinen K, Kraemer WJ, Newton RU, Alen M. Changes in electromyographic activity, muscle fibre and force production characteristics during heavy resistance/power strength training in middle-aged and older men and women. Acta Physiol Scand. 2001;171:51–62.
    1. Hakkinen K, Pakarinen A, Kraemer WJ, Hakkinen A, Valkeinen H, Alen M. Selective muscle hypertrophy, changes in EMG and force, and serum hormones during strength training in older women. J Appl Physiol (1985) 2001;91:569–580.
    1. Hakkinen K, Alen M, Kraemer WJ, Gorostiaga E, Izquierdo M, Rusko H, Mikkola J, Hakkinen A, Valkeinen H, Kaarakainen E, Romu S, Erola V, Ahtiainen J, Paavolainen L. Neuromuscular adaptations during concurrent strength and endurance training versus strength training. Eur J Appl Physiol. 2003;89:42–52. doi: 10.1007/s00421-002-0751-9.
    1. Hamada T, Sale DG, MacDougall JD, Tarnopolsky MA. Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. J Appl Physiol (1985) 2000;88:2131–2137.
    1. Hannah R, Folland JP. Muscle–tendon unit stiffness does not independently affect voluntary explosive force production or muscle intrinsic contractile properties. Appl Physiol Nutr Metab. 2015;40:87–95. doi: 10.1139/apnm-2014-0343.
    1. Hannah R, Minshull C, Buckthorpe MW, Folland JP. Explosive neuromuscular performance of males versus females. Exp Physiol. 2012;97:618–629. doi: 10.1113/expphysiol.2011.063420.
    1. Hannah R, Minshull C, Smith SL, Folland JP. Longer electromechanical delay impairs hamstrings explosive force versus quadriceps. Med Sci Sports Exerc. 2014;46:963–972. doi: 10.1249/MSS.0000000000000188.
    1. Harridge SD, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C, Esbjornsson M, Saltin B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch. 1996;432:913–920. doi: 10.1007/s004240050215.
    1. Harridge SD, Kryger A, Stensgaard A. Knee extensor strength, activation, and size in very elderly people following strength training. Muscle Nerve. 1999;22:831–839. doi: 10.1002/(SICI)1097-4598(199907)22:7<831::AID-MUS4>;2-3.
    1. Heckman CJ, Enoka RM. Motor unit. Compr Physiol. 2012;2:2629–2682.
    1. Hinder MR, Schmidt MW, Garry MI, Carroll TJ, Summers JJ. Absence of cross-limb transfer of performance gains following ballistic motor practice in older adults. J Appl Physiol (1985) 2011;110:166–175. doi: 10.1152/japplphysiol.00958.2010.
    1. Holm L, Reitelseder S, Pedersen TG, Doessing S, Petersen SG, Flyvbjerg A, Andersen JL, Aagaard P, Kjaer M. Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol (1985) 2008;105:1454–1461. doi: 10.1152/japplphysiol.90538.2008.
    1. Holtermann A, Roeleveld K, Engstrom M, Sand T. Enhanced H-reflex with resistance training is related to increased rate of force development. Eur J Appl Physiol. 2007;101:301–312. doi: 10.1007/s00421-007-0503-y.
    1. Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ortenblad N, Kjaer M, Suetta C. Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol (1985) 2010;109:1628–1634. doi: 10.1152/japplphysiol.00637.2010.
    1. Hvid LG, Ortenblad N, Aagaard P, Kjaer M, Suetta C. Effects of ageing on single muscle fibre contractile function following short-term immobilisation. J Physiol. 2011;589:4745–4757. doi: 10.1113/jphysiol.2011.215434.
    1. Izquierdo M, Aguado X, Gonzalez R, Lopez JL, Hakkinen K. Maximal and explosive force production capacity and balance performance in men of different ages. Eur J Appl Physiol Occup Physiol. 1999;79:260–267. doi: 10.1007/s004210050504.
    1. Jaric S. Muscle strength testing: use of normalisation for body size. Sports Med. 2002;32:615–631. doi: 10.2165/00007256-200232100-00002.
    1. Jenkins ND, Buckner SL, Bergstrom HC, Cochrane KC, Goldsmith JA, Housh TJ, Johnson GO, Schmidt RJ, Cramer JT. Reliability and relationships among handgrip strength, leg extensor strength and power, and balance in older men. Exp Gerontol. 2014;58:47–50. doi: 10.1016/j.exger.2014.07.007.
    1. Jenkins ND, Housh TJ, Traylor DA, Cochrane KC, Bergstrom HC, Lewis RW, Schmidt RJ, Johnson GO, Cramer JT. The rate of torque development: a unique, non-invasive indicator of eccentric-induced muscle damage? Int J Sports Med. 2014;35:1190–1195. doi: 10.1055/s-0034-1375696.
    1. Jensen JL, Marstrand PC, Nielsen JB. Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol (1985) 2005;99:1558–1568. doi: 10.1152/japplphysiol.01408.2004.
    1. Johnson MA, Polgar J, Weightman D, Appleton D. Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci. 1973;18:111–129. doi: 10.1016/0022-510X(73)90023-3.
    1. Johnson ST, Kipp K, Norcross MF, Hoffman MA. Spinal and supraspinal motor control predictors of rate of torque development. Scand J Med Sci Sports. 2015;25:623–629. doi: 10.1111/sms.12283.
    1. Jokela M, Hanin YL. Does the individual zones of optimal functioning model discriminate between successful and less successful athletes? A meta-analysis. J Sports Sci. 1999;17:873–887. doi: 10.1080/026404199365434.
    1. Kamen G, Knight CA. Training-related adaptations in motor unit discharge rate in young and older adults. J Gerontol A Biol Sci Med Sci. 2004;59:1334–1338. doi: 10.1093/gerona/59.12.1334.
    1. Kamimura T, Yoshioka K, Ito S, Kusakabe T. Increased rate of force development of elbow flexors by antagonist conditioning contraction. Hum Mov Sci. 2009;28:407–414. doi: 10.1016/j.humov.2009.02.005.
    1. Kawamori N, Rossi SJ, Justice BD, Haff EE, Pistilli EE, O’Bryant HS, Stone MH, Haff GG. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20:483–491.
    1. Kernell D. The motoneurone and its muscle fibres. Oxford: Oxford University Press; 2006.
    1. King MA, Wilson C, Yeadon MR. Evaluation of a torque-driven model of jumping for height. J Appl Biomech. 2006;22:264–274.
    1. Klass M, Baudry S, Duchateau J. Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol (1985) 2008;104:739–746. doi: 10.1152/japplphysiol.00550.2007.
    1. Kongsgaard M, Reitelseder S, Pedersen TG, Holm L, Aagaard P, Kjaer M, Magnusson SP. Region specific patellar tendon hypertrophy in humans following resistance training. Acta Physiol (Oxf) 2007;191:111–121. doi: 10.1111/j.1748-1716.2007.01714.x.
    1. Konrad P (2006) The ABC of EMG: A practical introduction to kinesiological electromyography. Noraxon USA Inc, Scottsdale
    1. Korhonen MT, Cristea A, Alen M, Hakkinen K, Sipila S, Mero A, Viitasalo JT, Larsson L, Suominen H. Aging, muscle fiber type, and contractile function in sprint-trained athletes. J Appl Physiol (1985) 2006;101:906–917. doi: 10.1152/japplphysiol.00299.2006.
    1. Kraemer WJ, Patton JF, Gordon SE, Harman EA, Deschenes MR, Reynolds K, Newton RU, Triplett NT, Dziados JE. Compatibility of high-intensity strength and endurance training on hormonal and skeletal muscle adaptations. J Appl Physiol (1985) 1995;78:976–989.
    1. Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R. Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med. 2007;35:359–367. doi: 10.1177/0363546506293899.
    1. Kubo K, Akima H, Kouzaki M, Ito M, Kawakami Y, Kanehisa H, Fukunaga T. Changes in the elastic properties of tendon structures following 20 days bed-rest in humans. Eur J Appl Physiol. 2000;83:463–468. doi: 10.1007/s004210000309.
    1. Kukulka CG, Clamann HP. Comparison of the recruitment and discharge properties of motor units in human brachial biceps and adductor pollicis during isometric contractions. Brain Res. 1981;219:45–55. doi: 10.1016/0006-8993(81)90266-3.
    1. Larsson L, Li X, Frontera WR. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol. 1997;272:C638–C649.
    1. Lee M, Hinder MR, Gandevia SC, Carroll TJ. The ipsilateral motor cortex contributes to cross-limb transfer of performance gains after ballistic motor practice. J Physiol. 2010;588:201–212. doi: 10.1113/jphysiol.2009.183855.
    1. Leong B, Kamen G, Patten C, Burke JR. Maximal motor unit discharge rates in the quadriceps muscles of older weight lifters. Med Sci Sports Exerc. 1999;31:1638–1644. doi: 10.1097/00005768-199911000-00022.
    1. Lieber RL, Ward SR. Skeletal muscle design to meet functional demands. Philos Trans R Soc Lond B Biol Sci. 2011;366:1466–1476. doi: 10.1098/rstb.2010.0316.
    1. Luden N, Minchev K, Hayes E, Louis E, Trappe T, Trappe S. Human vastus lateralis and soleus muscles display divergent cellular contractile properties. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1593–R1598. doi: 10.1152/ajpregu.90564.2008.
    1. Luff AR, Atwood HL. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development. J Cell Biol. 1971;51:369–383. doi: 10.1083/jcb.51.2.369.
    1. Lynch GS, McKenna MJ, Williams DA. Sprint-training effects on some contractile properties of single skinned human muscle fibres. Acta Physiol Scand. 1994;152:295–306. doi: 10.1111/j.1748-1716.1994.tb09809.x.
    1. Maffiuletti NA, Bizzini M, Widler K, Munzinger U. Asymmetry in quadriceps rate of force development as a functional outcome measure in TKA. Clin Orthop Relat Res. 2010;468:191–198. doi: 10.1007/s11999-009-0978-4.
    1. Malisoux L, Francaux M, Nielens H, Renard P, Lebacq J, Theisen D. Calcium sensitivity of human single muscle fibers following plyometric training. Med Sci Sports Exerc. 2006;38:1901–1908. doi: 10.1249/01.mss.0000232022.21361.47.
    1. Manttiri S, Anttila K, Kaakinen M, Jarvilehto M. Effects of low-intensity training on dihydropyridine and ryanodine receptor content in skeletal muscle of mouse. J Physiol Biochem. 2006;62:293–301. doi: 10.1007/BF03165758.
    1. Marcora S, Miller MK. The effect of knee angle on the external validity of isometric measures of lower body neuromuscular function. J Sports Sci. 2000;18:313–319. doi: 10.1080/026404100402377.
    1. Metzger JM, Moss RL. Calcium-sensitive cross-bridge transitions in mammalian fast and slow skeletal muscle fibers. Science. 1990;247:1088–1090. doi: 10.1126/science.2309121.
    1. Mirkov DM, Nedeljkovic A, Milanovic S, Jaric S. Muscle strength testing: evaluation of tests of explosive force production. Eur J Appl Physiol. 2004;91:147–154. doi: 10.1007/s00421-003-0946-8.
    1. Moritani T, Yoshitake Y. 1998 ISEK Congress Keynote Lecture: the use of electromyography in applied physiology. International Society of Electrophysiology and Kinesiology. J Electromyogr Kinesiol. 1998;8:363–381. doi: 10.1016/S1050-6411(98)00018-2.
    1. Moss BM, Refsnes PE, Abildgaard A, Nicolaysen K, Jensen J. Effects of maximal effort strength training with different loads on dynamic strength, cross-sectional area, load-power and load-velocity relationships. Eur J Appl Physiol Occup Physiol. 1997;75:193–199. doi: 10.1007/s004210050147.
    1. Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M. Role of the human motor cortex in rapid motor learning. Exp Brain Res. 2001;136:431–438. doi: 10.1007/s002210000614.
    1. Muellbacher W, Ziemann U, Wissel J, Dang N, Kofler M, Facchini S, Boroojerdi B, Poewe W, Hallett M. Early consolidation in human primary motor cortex. Nature. 2002;415:640–644. doi: 10.1038/nature712.
    1. Narici MV, Roi GS, Landoni L, Minetti AE, Cerretelli P. Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur J Appl Physiol Occup Physiol. 1989;59:310–319. doi: 10.1007/BF02388334.
    1. Nordez A, Gallot T, Catheline S, Guevel A, Cornu C, Hug F. Electromechanical delay revisited using very high frame rate ultrasound. J Appl Physiol (1985) 2009;106:1970–1975. doi: 10.1152/japplphysiol.00221.2009.
    1. Nuzzo JL, McBride JM, Cormie P, McCaulley GO. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J Strength Cond Res. 2008;22:699–707. doi: 10.1519/JSC.0b013e31816d5eda.
    1. Ogasawara R, Yasuda T, Ishii N, Abe T. Comparison of muscle hypertrophy following 6-month of continuous and periodic strength training. Eur J Appl Physiol. 2013;113:975–985. doi: 10.1007/s00421-012-2511-9.
    1. Ortenblad N, Lunde PK, Levin K, Andersen JL, Pedersen PK. Enhanced sarcoplasmic reticulum Ca(2+) release following intermittent sprint training. Am J Physiol Regul Integr Comp Physiol. 2000;279:R152–R160.
    1. Patten C, Kamen G, Rowland DM. Adaptations in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve. 2001;24:542–550. doi: 10.1002/mus.1038.
    1. Penailillo L, Blazevich A, Numazawa H, Nosaka K. Rate of force development as a measure of muscle damage. Scand J Med Sci Sports. 2015;25:417–427. doi: 10.1111/sms.12241.
    1. Pijnappels M, Bobbert MF, van Dieen JH. Control of support limb muscles in recovery after tripping in young and older subjects. Exp Brain Res. 2005;160:326–333. doi: 10.1007/s00221-004-2014-y.
    1. Reeves ND, Maganaris CN, Narici MV. Effect of strength training on human patella tendon mechanical properties of older individuals. J Physiol. 2003;548:971–981. doi: 10.1113/jphysiol.2002.035576.
    1. Rogasch NC, Dartnall TJ, Cirillo J, Nordstrom MA, Semmler JG. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J Appl Physiol (1985) 2009;107:1874–1883. doi: 10.1152/japplphysiol.00443.2009.
    1. Rousanoglou EN, Herzog W, Boudolos KD. Moment–angle relations in the initial time of contraction. Int J Sports Med. 2010;31:651–655. doi: 10.1055/s-0030-1255114.
    1. Saborido A, Molano F, Moro G, Megias A. Regulation of dihydropyridine receptor levels in skeletal and cardiac muscle by exercise training. Pflugers Arch. 1995;429:364–369. doi: 10.1007/BF00374151.
    1. Sahaly R, Vandewalle H, Driss T, Monod H. Maximal voluntary force and rate of force development in humans–importance of instruction. Eur J Appl Physiol. 2001;85:345–350. doi: 10.1007/s004210100451.
    1. Sale DG. Neural adaptations to strength training. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Science; 2003. pp. 281–314.
    1. Schiaffino S, Margreth A. Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. J Cell Biol. 1969;41:855–875. doi: 10.1083/jcb.41.3.855.
    1. Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev. 1996;76:371–423.
    1. Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–1531. doi: 10.1152/physrev.00031.2010.
    1. Schmidt L, Clery-Melin ML, Lafargue G, Valabregue R, Fossati P, Dubois B, Pessiglione M. Get aroused and be stronger: emotional facilitation of physical effort in the human brain. J Neurosci. 2009;29:9450–9457. doi: 10.1523/JNEUROSCI.1951-09.2009.
    1. Schmidtbleicher D, Buehrle M. Neuronal adaptation and increase of cross-sectional area studying different strength training methods. In: Johnson B, editor. Biomechanics. Champaign: Human Kinetics; 1987. pp. 615–620.
    1. Seynnes OR, Erskine RM, Maganaris CN, Longo S, Simoneau EM, Grosset JF, Narici MV. Training-induced changes in structural and mechanical properties of the patellar tendon are related to muscle hypertrophy but not to strength gains. J Appl Physiol (1985) 2009;107:523–530. doi: 10.1152/japplphysiol.00213.2009.
    1. Simoneau JA, Bouchard C. Genetic determinism of fiber type proportion in human skeletal muscle. FASEB J. 1995;9:1091–1095.
    1. Soda P, Mazzoleni S, Cavallo G, Guglielmelli E, Iannello G. Human movement onset detection from isometric force and torque measurements: a supervised pattern recognition approach. Artif Intell Med. 2010;50:55–61. doi: 10.1016/j.artmed.2010.04.008.
    1. Spector SA, Gardiner PF, Zernicke RF, Roy RR, Edgerton VR. Muscle architecture and force–velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. J Neurophysiol. 1980;44:951–960.
    1. Staron RS, Malicky ES, Leonardi MJ, Falkel JE, Hagerman FC, Dudley GA. Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur J Appl Physiol Occup Physiol. 1990;60:71–79. doi: 10.1007/BF00572189.
    1. Staude G, Wolf W. Objective motor response onset detection in surface myoelectric signals. Med Eng Phys. 1999;21:449–467. doi: 10.1016/S1350-4533(99)00067-3.
    1. Suetta C, Aagaard P, Rosted A, Jakobsen AK, Duus B, Kjaer M, Magnusson SP. Training-induced changes in muscle CSA, muscle strength, EMG, and rate of force development in elderly subjects after long-term unilateral disuse. J Appl Physiol (1985) 2004;97:1954–1961. doi: 10.1152/japplphysiol.01307.2003.
    1. Suetta C, Andersen JL, Dalgas U, Berget J, Koskinen S, Aagaard P, Magnusson SP, Kjaer M. Resistance training induces qualitative changes in muscle morphology, muscle architecture, and muscle function in elderly postoperative patients. J Appl Physiol (1985) 2008;105:180–186. doi: 10.1152/japplphysiol.01354.2007.
    1. Suetta C, Hvid LG, Justesen L, Christensen U, Neergaard K, Simonsen L, Ortenblad N, Magnusson SP, Kjaer M, Aagaard P. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol (1985) 2009;107:1172–1180. doi: 10.1152/japplphysiol.00290.2009.
    1. Taylor AD, Humphries B, Smith P, Bronks R. Electrophoretic separation of myosin heavy chain isoforms in the human m. vastus lateralis: references to reproducibility and relationships with force, electromechanical delay, fibre conduction velocity, endurance and electromyography. Arch Physiol Biochem. 1997;105:10–18. doi: 10.1076/apab.105.1.10.13142.
    1. Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV. Effect of strength training on EMG of human skeletal muscle. Acta Physiol Scand. 1976;98:232–236. doi: 10.1111/j.1748-1716.1976.tb00241.x.
    1. Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol. 2014;114:365–374. doi: 10.1007/s00421-013-2781-x.
    1. Tillin NA, Jimenez-Reyes P, Pain MT, Folland JP. Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc. 2010;42:781–790. doi: 10.1249/MSS.0b013e3181be9c7e.
    1. Tillin NA, Pain MT, Folland JP. Short-term unilateral resistance training affects the agonist–antagonist but not the force–agonist activation relationship. Muscle Nerve. 2011;43:375–384. doi: 10.1002/mus.21885.
    1. Tillin NA, Pain MT, Folland JP. Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts. Proc Biol Sci. 2012;279:2106–2115. doi: 10.1098/rspb.2011.2109.
    1. Tillin NA, Pain MT, Folland JP. Short-term training for explosive strength causes neural and mechanical adaptations. Exp Physiol. 2012;97:630–641. doi: 10.1113/expphysiol.2011.063040.
    1. Tillin NA, Pain MT, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31:66–76. doi: 10.1080/02640414.2012.720704.
    1. Tillin NA, Pain MT, Folland JP (2013b) Identification of contraction onset during explosive contractions. Response to Thompson et al. “Consistency of rapid muscle force characteristics: influence of muscle contraction onset detection methodology” [J Electromyogr Kinesiol 2012;22(6):893–900]. J Electromyogr Kinesiol 23:991–994
    1. Tillin NA, Pain MT, Haider G, Montgomery G, Brownlee T, Folland J (2013c) The human capacity to produce explosive torque is influenced by contraction type and acceleration. Paper presented at the XXIV Congress of the International Society of Biomechanics, Natal, Brazil, 4th–9th August
    1. Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T. Single muscle fibre contractile properties in young and old men and women. J Physiol. 2003;552:47–58. doi: 10.1113/jphysiol.2003.044966.
    1. Tsaopoulos DE, Baltzopoulos V, Richards PJ, Maganaris CN. In vivo changes in the human patellar tendon moment arm length with different modes and intensities of muscle contraction. J Biomech. 2007;40:3325–3332. doi: 10.1016/j.jbiomech.2007.05.005.
    1. Uliam Kuriki H, Micolis de Azevedo F, de Faria Negrao Filho R, Alves N. Comparison of different analysis techniques for the determination of muscle onset in individuals with patellofemoral pain syndrome. J Electromyogr Kinesiol. 2011;21:982–987. doi: 10.1016/j.jelekin.2011.08.002.
    1. Van Cutsem M, Duchateau J. Preceding muscle activity influences motor unit discharge and rate of torque development during ballistic contractions in humans. J Physiol. 2005;562:635–644. doi: 10.1113/jphysiol.2004.074567.
    1. Van Cutsem M, Feiereisen P, Duchateau J, Hainaut K. Mechanical properties and behaviour of motor units in the tibialis anterior during voluntary contractions. Can J Appl Physiol. 1997;22:585–597. doi: 10.1139/h97-038.
    1. Van Cutsem M, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol. 1998;513(Pt 1):295–305. doi: 10.1111/j.1469-7793.1998.295by.x.
    1. Vandenboom R, Grange RW, Houston ME. Threshold for force potentiation associated with skeletal myosin phosphorylation. Am J Physiol. 1993;265:C1456–C1462.
    1. Vikne H, Refsnes PE, Ekmark M, Medbo JI, Gundersen V, Gundersen K. Muscular performance after concentric and eccentric exercise in trained men. Med Sci Sports Exerc. 2006;38:1770–1781. doi: 10.1249/01.mss.0000229568.17284.ab.
    1. Vila-Cha C, Falla D, Farina D. Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J Appl Physiol (1985) 2010;109:1455–1466. doi: 10.1152/japplphysiol.01213.2009.
    1. Wahr PA, Rall JA. Role of calcium and cross bridges in determining rate of force development in frog muscle fibers. Am J Physiol. 1997;272:C1664–C1671.
    1. Waugh CM, Korff T, Fath F, Blazevich AJ. Rapid force production in children and adults: mechanical and neural contributions. Med Sci Sports Exerc. 2013;45:762–771. doi: 10.1249/MSS.0b013e31827a67ba.
    1. Waugh CM, Korff T, Fath F, Blazevich AJ. Effects of resistance training on tendon mechanical properties and rapid force production in prepubertal children. J Appl Physiol (1985) 2014;117:257–266. doi: 10.1152/japplphysiol.00325.2014.
    1. Wei K, Glaser JI, Deng L, Thompson CK, Stevenson IH, Wang Q, Hornby TG, Heckman CJ, Kording KP. Serotonin affects movement gain control in the spinal cord. J Neurosci. 2014;34:12690–12700. doi: 10.1523/JNEUROSCI.1855-14.2014.
    1. Wiesinger HP, Kosters A, Muller E, Seynnes OR. Effects of increased loading on in vivo tendon properties: a systematic review. Med Sci Sports Exerc. 2015;47:1885–1895. doi: 10.1249/MSS.0000000000000603.
    1. Wilkie DR. The relation between force and velocity in human muscle. J Physiol. 1949;110:249–280. doi: 10.1113/jphysiol.1949.sp004437.
    1. Winter DA. Biomechanics and motor control of human movement. New York: Wiley; 1990.

Source: PubMed

3
Tilaa