Altered metabolic connectivity between the amygdala and default mode network is related to pain perception in patients with cancer

Wen-Ying Lin, Jen-Chuen Hsieh, Ching-Chu Lu, Yumie Ono, Wen-Ying Lin, Jen-Chuen Hsieh, Ching-Chu Lu, Yumie Ono

Abstract

We investigated the neural correlates for chronic cancer pain conditions by retrospectively analyzing whole brain regions on 18F-fluoro-2-deoxyglucose-positron emission tomography images acquired from 80 patients with head and neck squamous cell carcinoma and esophageal cancer. The patients were divided into three groups according to perceived pain severity and type of analgesic treatment, namely patients not under analgesic treatment because of no or minor pain, patients with good pain control under analgesic treatment, and patients with poor pain control despite analgesic treatment. Uncontrollable cancer pain enhanced the activity of the hippocampus, amygdala, inferior temporal gyrus, and temporal pole. Metabolic connectivity analysis further showed that amygdala co-activation with the hippocampus was reduced in the group with poor pain control and preserved in the groups with no or minor pain and good pain control. The increased although imbalanced activity of the medial temporal regions may represent poor pain control in patients with cancer. The number of patients who used anxiolytics was higher in the group with poor pain control, whereas the usage rates were comparable between the other two groups. Therefore, further studies should investigate the relationship between psychological conditions and pain in patients with cancer and analyze the resultant brain activity.Trial registration: This study was registered at clinicaltrials.gov on 9/3/20 (NCT04537845).

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Differences in brain activities related to varying levels of perceived cancer pain (cluster corrected FWE, p < 0.05). A statistically significant main effect among the groups is shown in the bilateral amygdala (Amy) and right temporal pole (TP) (a). Representative contrast estimates and the 95% confidence interval in the left amygdala [− 26, − 2, − 20] demonstrated that glucose uptake increased in the order N, AG, and AP (b). Multiple comparisons further indicated enhanced activity within the amygdala and inhibited activity in the inferior parietal lobe, precuneus, and middle cingulate cortex in the AP group relative to the N group (c). The right TP shows increased activity in the AP group relative to the AG group (d). There are no significant activity differences between groups AG and N. AG patients with good pain control under analgesics; Amy amygdala, Ang angular gyrus, AP patients with poor pain control despite analgesic treatment, Hip hippocampus, IPL inferior parietal lobe, mCing middle cingulate gyrus, N patients not on analgesics, Prc precuneus, TP temporal pole.
Figure 2
Figure 2
Brain regions showing metabolic connectivity from the left amygdala region of interest (ROI) (a), the right amygdala ROI (b), and the right temporal pole ROI (c) within the DMN regions. The seed ROIs are shown in yellow. Red and blue regions show the areas of co-activation and -deactivation with the seed ROIs (FWE corrected, p < 0.05), respectively, based on conjugate increase or decrease in the cerebral metabolic rate of glucose. AG patients with good pain control under analgesics, Ang angular gyrus, AP patients with poor pain control despite analgesic treatments, FWE family-wise error, Hip hippocampus, IPL inferior parietal lobe, N patients without analgesics, TP temporal pole.
Figure 3
Figure 3
Brain regions showing metabolic connectivity from the left amygdala region of interest (ROI) (a) and the right amygdala ROI (b) within the CEN regions. The seed ROIs are shown in yellow. Statistically significant metabolic connectivity appeared only in the AG group from the bilateral amygdala ROIs. Only co-deactivation regions were found, which are shown in blue. AG patients with good pain control under analgesics, Ang angular gyrus, CEN central executive network, DLPFC dorsolateral prefrontal cortex, FWE family-wise error, IPL inferior parietal lobe.

References

    1. Bossi P, et al. The point of pain in head and neck cancer. Crit. Rev. Oncol. Hematol. 2019;138:51–59. doi: 10.1016/j.critrevonc.2019.04.001.
    1. Kallurkar A, Kulkarni S, Delfino K, Ferraro D, Rao K. Characteristics of chronic pain among head and neck cancer patients treated with radiation therapy: A retrospective study. Pain Res. Manag. 2019;2019:9675654. doi: 10.1155/2019/9675654.
    1. van den Beuken-van Everdingen MH, Hochstenbach LM, Joosten EA, Tjan-Heijnen VC, Janssen DJ. Update on prevalence of pain in patients with cancer: Systematic review and meta-analysis. J. Pain Symptom Manag. 2016;51:1070–1090. doi: 10.1016/j.jpainsymman.2015.12.340.
    1. Vendrell I, Macedo D, Alho I, Dionisio MR, Costa L. Treatment of cancer pain by targeting cytokines. Mediat. Inflamm. 2015;2015:984570. doi: 10.1155/2015/984570.
    1. Deandrea S, Montanari M, Moja L, Apolone G. Prevalence of undertreatment in cancer pain. A review of published literature. Ann. Oncol. 2008;19:1985–1991. doi: 10.1093/annonc/mdn419.
    1. Reis-Pina P, Lawlor PG, Barbosa A. Adequacy of cancer-related pain management and predictors of undertreatment at referral to a pain clinic. J. Pain Res. 2017;10:2097–2107. doi: 10.2147/JPR.S139715.
    1. Shen WC, et al. Impact of undertreatment of cancer pain with analgesic drugs on patient outcomes: A nationwide survey of outpatient cancer patient care in Taiwan. J. Pain Symptom Manag. 2017;54:55–65. doi: 10.1016/j.jpainsymman.2017.02.018.
    1. Wiech K, Tracey I. The influence of negative emotions on pain: Behavioral effects and neural mechanisms. Neuroimage. 2009;47:987–994. doi: 10.1016/j.neuroimage.2009.05.059.
    1. Liu MG, Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog. Neurobiol. 2014;116:13–32. doi: 10.1016/j.pneurobio.2014.01.003.
    1. Martin EI, Ressler KJ, Binder E, Nemeroff CB. The neurobiology of anxiety disorders: Brain imaging, genetics, and psychoneuroendocrinology. Psychiatr. Clin. N. Am. 2009;32:549–575. doi: 10.1016/j.psc.2009.05.004.
    1. Rajmohan V, Mohandas E. The limbic system. Indian J. Psychiatry. 2007;49:132–139. doi: 10.4103/0019-5545.33264.
    1. Cai YQ, Wang W, Paulucci-Holthauzen A, Pan ZZ. Brain circuits mediating opposing effects on emotion and pain. J. Neurosci. 2018;38:6340–6349. doi: 10.1523/JNEUROSCI.2780-17.2018.
    1. Neugebauer V, Li W, Bird GC, Han JS. The amygdala and persistent pain. Neuroscientist. 2004;10:221–234. doi: 10.1177/1073858403261077.
    1. Boellaard R, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:328–354. doi: 10.1007/s00259-014-2961-x.
    1. Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M. Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain. 1995;63:225–236. doi: 10.1016/0304-3959(95)00048-W.
    1. Kupers R, Lonsdale MN, Aasvang E, Kehlet H. A positron emission tomography study of wind-up pain in chronic postherniotomy pain. Eur. J. Pain. 2011;15(698):e691–e616. doi: 10.1016/j.ejpain.2011.01.003.
    1. Peyron R, et al. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur. J. Pain. 2013;17:1327–1337. doi: 10.1002/j.1532-2149.2013.00307.x.
    1. Yakushev I, Drzezga A, Habeck C. Metabolic connectivity: Methods and applications. Curr. Opin. Neurol. 2017;30:677–685. doi: 10.1097/WCO.0000000000000494.
    1. Lin WY, Chu WH, Chao TH, Sun WZ, Yen CT. Longitudinal FDG-PET scan study of brain changes in mice with cancer-induced bone pain and after morphine analgesia. Mol. Pain. 2019;15:1744806919841194. doi: 10.1177/1744806919841194.
    1. Buvanendran A, Ali A, Stoub TR, Kroin JS, Tuman KJ. Brain activity associated with chronic cancer pain. Pain Physician. 2010;13:E337–342.
    1. Kato M, et al. Endoscopic surveillance of head and neck cancer in patients with esophageal squamous cell carcinoma. Endosc. Int. Open. 2016;4:E752–755. doi: 10.1055/s-0042-106720.
    1. Kim JS, Kim BW. Esophageal cancer and head and neck cancer: The earlier, the better. Gut Liver. 2015;9:131–132. doi: 10.5009/gnl15002.
    1. Ma H, Wang LE, Liu Z, Sturgis EM, Wei Q. Association between novel PLCE1 variants identified in published esophageal cancer genome-wide association studies and risk of squamous cell carcinoma of the head and neck. BMC Cancer. 2011;11:258. doi: 10.1186/1471-2407-11-258.
    1. Wang WL, et al. Human papillomavirus infection on initiating synchronous esophageal neoplasia in patients with head and neck cancer. Laryngoscope. 2016;126:1097–1102. doi: 10.1002/lary.25728.
    1. Della Rosa PA, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–593. doi: 10.1007/s12021-014-9235-4.
    1. Lee DS, et al. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:1681–1691. doi: 10.1007/s00259-008-0808-z.
    1. Rahmani F, Sanjari Moghaddam H, Rahmani M, Aarabi MH. Metabolic connectivity in Alzheimer’s diseases. Clin. Transl. Imaging. 2020;8:157–166. doi: 10.1007/s40336-020-00371-3.
    1. Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann. N. Y. Acad. Sci. 2014;1316:29–52. doi: 10.1111/nyas.12360.
    1. Chen AC, et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc. Natl. Acad. Sci. U.S.A. 2013;110:19944–19949. doi: 10.1073/pnas.1311772110.
    1. Jiang Y, et al. Perturbed connectivity of the amygdala and its subregions with the central executive and default mode networks in chronic pain. Pain. 2016;157:1970–1978. doi: 10.1097/j.pain.0000000000000606.
    1. Kim J, et al. Somatotopically specific primary somatosensory connectivity to salience and default mode networks encodes clinical pain. Pain. 2019;160:1594–1605. doi: 10.1097/j.pain.0000000000001541.
    1. Menon V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn. Sci. 2011;15:483–506. doi: 10.1016/j.tics.2011.08.003.
    1. Napadow V, et al. Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum. 2010;62:2545–2555. doi: 10.1002/art.27497.
    1. Otti A, Guendel H, Wohlschlager A, Zimmer C, Noll-Hussong M. Frequency shifts in the anterior default mode network and the salience network in chronic pain disorder. BMC Psychiatry. 2013;13:84. doi: 10.1186/1471-244X-13-84.
    1. van Ettinger-Veenstra H, et al. Chronic widespread pain patients show disrupted cortical connectivity in default mode and salience networks, modulated by pain sensitivity. J. Pain Res. 2019;12:1743–1755. doi: 10.2147/JPR.S189443.
    1. De Ridder D, Vanneste S, Smith M, Adhia D. Pain and the triple network model. Front. Neurol. 2022;13:757241. doi: 10.3389/fneur.2022.757241.
    1. Bressler SL, Menon V. Large-scale brain networks in cognition: Emerging methods and principles. Trends Cogn. Sci. 2010;14:277–290. doi: 10.1016/j.tics.2010.04.004.
    1. Carlen M. What constitutes the prefrontal cortex? Science. 2017;358:478–482. doi: 10.1126/science.aan8868.
    1. Geng JJ, Vossel S. Re-evaluating the role of TPJ in attentional control: Contextual updating? Neurosci. Biobehav. Rev. 2013;37:2608–2620. doi: 10.1016/j.neubiorev.2013.08.010.
    1. Rolls ET, Huang CC, Lin CP, Feng J, Joliot M. Automated anatomical labelling atlas 3. Neuroimage. 2020;206:116189. doi: 10.1016/j.neuroimage.2019.116189.
    1. Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19:1233–1239. doi: 10.1016/s1053-8119(03)00169-1.
    1. Schmidt BL. What pain tells us about cancer. Pain. 2015;156(Suppl 1):S32–34. doi: 10.1097/j.pain.0000000000000099.
    1. Galloway SK, et al. Depression and anxiety symptoms relate to distinct components of pain experience among patients with breast cancer. Pain Res. Treat. 2012;2012:851276. doi: 10.1155/2012/851276.
    1. Tavoli A, Montazeri A, Roshan R, Tavoli Z, Melyani M. Depression and quality of life in cancer patients with and without pain: The role of pain beliefs. BMC Cancer. 2008;8:177. doi: 10.1186/1471-2407-8-177.
    1. Gerrits M, et al. Impact of pain on the course of depressive and anxiety disorders. Pain. 2012;153:429–436. doi: 10.1016/j.pain.2011.11.001.
    1. Velasco RV, et al. Synergistic effects of pain intensity and anxiety sensitivity in relation to anxiety and depressive symptoms and disorders among economically disadvantaged latinos in a community-based primary care setting. J. Anxiety Disord. 2016;43:23–31. doi: 10.1016/j.janxdis.2016.07.007.
    1. Reyes-Gibby CC, et al. Molecular epidemiology, cancer-related symptoms, and cytokines pathway. Lancet Oncol. 2008;9:777–785. doi: 10.1016/S1470-2045(08)70197-9.
    1. Hur J, et al. Anxiety and the neurobiology of temporally uncertain threat anticipation. J. Neurosci. 2020;40:7949–7964. doi: 10.1523/JNEUROSCI.0704-20.2020.
    1. Jenks SK, Zhang S, Li CR, Hu S. Threat bias and resting state functional connectivity of the amygdala and bed nucleus stria terminalis. J. Psychiatr. Res. 2020;122:54–63. doi: 10.1016/j.jpsychires.2019.12.017.
    1. Forkmann K, et al. Pain-specific modulation of hippocampal activity and functional connectivity during visual encoding. J. Neurosci. 2013;33:2571–2581. doi: 10.1523/JNEUROSCI.2994-12.2013.
    1. Li WC, et al. Neuroprotective effect of Val variant of BDNF Val66Met polymorphism on hippocampus is modulated by the severity of menstrual pain. Neuroimage Clin. 2021;30:102576. doi: 10.1016/j.nicl.2021.102576.
    1. Mutso AA, et al. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J. Neurophysiol. 2014;111:1065–1076. doi: 10.1152/jn.00611.2013.
    1. Reicherts P, et al. Anxious anticipation and pain: The influence of instructedvsconditioned threat on pain. Soc. Cogn. Affect. Neurosci. 2017;12:544–554. doi: 10.1093/scan/nsw181.
    1. Adhikari A. Distributed circuits underlying anxiety. Front. Behav. Neurosci. 2014;8:112. doi: 10.3389/fnbeh.2014.00112.
    1. Chen AC, Etkin A. Hippocampal network connectivity and activation differentiates post-traumatic stress disorder from generalized anxiety disorder. Neuropsychopharmacology. 2013;38:1889–1898. doi: 10.1038/npp.2013.122.
    1. Ono Y, Koizumi S, Onozuka M. Chewing prevents stress-induced hippocampal LTD formation and anxiety-related behaviors: A possible role of the dopaminergic system. Biomed. Res. Int. 2015;2015:294068. doi: 10.1155/2015/294068.
    1. Herlin B, Navarro V, Dupont S. The temporal pole: From anatomy to function-A literature appraisal. J. Chem. Neuroanat. 2021;113:101925. doi: 10.1016/j.jchemneu.2021.101925.
    1. Pascual B, et al. Large-scale brain networks of the human left temporal pole: A functional connectivity MRI study. Cereb. Cortex. 2015;25:680–702. doi: 10.1093/cercor/bht260.
    1. Wong C, Gallate J. The function of the anterior temporal lobe: A review of the empirical evidence. Brain Res. 2012;1449:94–116. doi: 10.1016/j.brainres.2012.02.017.
    1. Moulton EA, et al. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine States. Cereb. Cortex. 2011;21:435–448. doi: 10.1093/cercor/bhq109.
    1. Li W, et al. Aberrant functional connectivity between the amygdala and the temporal pole in drug-free generalized anxiety disorder. Front. Hum. Neurosci. 2016;10:549. doi: 10.3389/fnhum.2016.00549.
    1. Sheline YI, et al. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. U.S.A. 2009;106:1942–1947. doi: 10.1073/pnas.0812686106.
    1. Abdallah CG, Geha P. Chronic pain and chronic stress: Two sides of the same coin? Chronic Stress. 2017 doi: 10.1177/2470547017704763.
    1. Vachon-Presseau E. Effects of stress on the corticolimbic system: Implications for chronic pain. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;87:216–223. doi: 10.1016/j.pnpbp.2017.10.014.
    1. Kohn N, et al. Neural network of cognitive emotion regulation–an ALE meta-analysis and MACM analysis. Neuroimage. 2014;87:345–355. doi: 10.1016/j.neuroimage.2013.11.001.
    1. Stark DP, House A. Anxiety in cancer patients. Br. J. Cancer. 2000;83:1261–1267. doi: 10.1054/bjoc.2000.1405.
    1. Letzen JE, Robinson ME. Negative mood influences default mode network functional connectivity in patients with chronic low back pain: Implications for functional neuroimaging biomarkers. Pain. 2017;158:48–57. doi: 10.1097/j.pain.0000000000000708.
    1. Huang SY, Hsu JL, Lin KJ, Hsiao IT. A novel individual metabolic brain network for 18F-FDG PET imaging. Front. Neurosci. 2020;14:344. doi: 10.3389/fnins.2020.00344.

Source: PubMed

3
Tilaa