X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19

Takaki Asano, Bertrand Boisson, Fanny Onodi, Daniela Matuozzo, Marcela Moncada-Velez, Majistor Raj Luxman Maglorius Renkilaraj, Peng Zhang, Laurent Meertens, Alexandre Bolze, Marie Materna, Sarantis Korniotis, Adrian Gervais, Estelle Talouarn, Benedetta Bigio, Yoann Seeleuthner, Kaya Bilguvar, Yu Zhang, Anna-Lena Neehus, Masato Ogishi, Simon J Pelham, Tom Le Voyer, Jérémie Rosain, Quentin Philippot, Pere Soler-Palacín, Roger Colobran, Andrea Martin-Nalda, Jacques G Rivière, Yacine Tandjaoui-Lambiotte, Khalil Chaïbi, Mohammad Shahrooei, Ilad Alavi Darazam, Nasrin Alipour Olyaei, Davood Mansouri, Nevin Hatipoğlu, Figen Palabiyik, Tayfun Ozcelik, Giuseppe Novelli, Antonio Novelli, Giorgio Casari, Alessandro Aiuti, Paola Carrera, Simone Bondesan, Federica Barzaghi, Patrizia Rovere-Querini, Cristina Tresoldi, Jose Luis Franco, Julian Rojas, Luis Felipe Reyes, Ingrid G Bustos, Andres Augusto Arias, Guillaume Morelle, Kyheng Christèle, Jesús Troya, Laura Planas-Serra, Agatha Schlüter, Marta Gut, Aurora Pujol, Luis M Allende, Carlos Rodriguez-Gallego, Carlos Flores, Oscar Cabrera-Marante, Daniel E Pleguezuelo, Rebeca Pérez de Diego, Sevgi Keles, Gokhan Aytekin, Ozge Metin Akcan, Yenan T Bryceson, Peter Bergman, Petter Brodin, Daniel Smole, C I Edvard Smith, Anna-Carin Norlin, Tessa M Campbell, Laura E Covill, Lennart Hammarström, Qiang Pan-Hammarström, Hassan Abolhassani, Shrikant Mane, Nico Marr, Manar Ata, Fatima Al Ali, Taushif Khan, András N Spaan, Clifton L Dalgard, Paolo Bonfanti, Andrea Biondi, Sarah Tubiana, Charles Burdet, Robert Nussbaum, Amanda Kahn-Kirby, Andrew L Snow, COVID Human Genetic Effort, COVID-STORM Clinicians, COVID Clinicians, Imagine COVID Group, French COVID Cohort Study Group, CoV-Contact Cohort, Amsterdam UMC Covid-, Biobank, NIAID-USUHS COVID Study Group, Jacinta Bustamante, Anne Puel, Stéphanie Boisson-Dupuis, Shen-Ying Zhang, Vivien Béziat, Richard P Lifton, Paul Bastard, Luigi D Notarangelo, Laurent Abel, Helen C Su, Emmanuelle Jouanguy, Ali Amara, Vassili Soumelis, Aurélie Cobat, Qian Zhang, Jean-Laurent Casanova

Abstract

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.

Copyright © 2021, American Association for the Advancement of Science.

Figures

Fig. 1
Fig. 1
Enrichment in rare TLR7 deleterious alleles among men with critical COVID-19 pneumonia. (A) Manhattan plot showing the results of the variant enrichment test for the 190 genes of the X chromosome with at least 5 patients carrying non-synonymous variants. The gray line indicates the corresponding Bonferroni-corrected significance threshold. (B) Western blot of extracts from non-transfected HEK293T cells (mock), HEK293T cells transfected with pCMV6 empty vector (EV), the wild-type (WT) TLR7 allele, or one of the TLR7 variant alleles of interest. All extracts were probed with monoclonal antibodies specific for the leucine-rich repeats to the N terminus (N-ter) or amino-acid 1,000 to the C terminus (C-ter) within the human TLR7 protein. (C) (D) Luciferase assay on HEK293T cells transfected with the pGL4.32 luciferase reporter construct and an expression vector for Renilla luciferase together with no vector (mock), EV, WT, or TLR7 variants: (C) 21 variants found in our cohort and eight previously reported variants, (D) 109 variants found in male individuals from the gnomAD database. After 24 hours, transfected cells were left untreated or were treated by incubation with 1 μg/mL R848 for 24 hours. These data were established from two independent experiments. The y-axis represents NF-κB transcriptional activity as a percentage of the WT. The x-axis indicates the alleles used for transfection. (E) Diagram showing the correlation between allele frequency and NF-κB activity (% of WT). The 20 variants from 21 patients with critical SARS-CoV-2 from our cohort are shown in red, one variant from 2 patients with severe SARS-CoV-2 from our cohort are shown in green, the eight previously reported variants are shown in blue and the 109 variants found in the general population (allele frequency above 10−5 in men) are shown in gray. Activity of all LOF/hypomorphic alleles compared to WT allele were statistically significance (one-way ANOVA with Dunnett’s post hoc test, P < 0.01).
Fig. 2
Fig. 2
X-linked recessive TLR7 deficiency in 16 kindreds. (A) Pedigrees of the 16 kindreds containing 17 patients with life-threatening COVID-19 pneumonia (P1-17) bearing deleterious TLR7 alleles. The mutations are indicated above each pedigree. Solid black symbols indicate patients with critical COVID-19, and solid dark gray symbols indicate severe cases and solid light gray symbols indicate mild/moderate cases. The genotype is indicated under each symbol, with M corresponding to the mutation found in each kindred. ‘+’ and ‘-’ indicate the presence and absence, respectively, of antibodies against SARS-CoV-2 in the serum of the individual. Asymptomatic or paucisymptomatic family members hemizygous for the mutation are indicated by bold vertical lines. (B) Pedigree of one kindred containing two patients with severe COVID-19. (C) Schematic representation of TLR7. The upper part represents the genomic organization of the TLR7 locus, with rectangles for the various exons of the gene, and exon numbers indicated within the rectangle. The bottom part shows the primary structure of TLR7. The N-terminal portion and the leucine-rich repeat containing 26 leucine residues are located in the lumen of the endosome, and TM indicates the transmembrane domain. The Toll/interleukin-1 (IL-1) receptor (TIR) domain is cytoplasmic. The deleterious mutations reported in this study are indicated. (D) TLR7 expression in unstimulated EBV-B cells from two patients with XR TLR7 deficiency (P12 and P14), the fathers of P12 and P14, and the mother of P12, and three healthy donors (Control 1 to 3), determined by Western blotting with detection with a specific TLR7 antibody. (E) TNF production by XR TLR7-deficient EBV-B cells from two independent experiments. Cells were either left untreated or were stimulated with 5 μg/mL imiquimod (gray), or 25 ng/mL PMA and 0.25 μM ionomycin (black) for 24 hours and TNF production were measured by ELISA. (F) TNF production in XR TLR7-deficient EBV-B cells re-expressing WT TLR7 from three independent experiments. EBV-B cells from a control, P12, P14, or an UNC-93B-deficient patient, cultured in the presence of IRAK4 inhibitor (PF06650833- 5 μM) were transduced with lentiviral particles that were empty or contained the WT TLR7 or mutant TLR7 cDNA. The cells were incubated for 24 hours without IRAK4 inhibitor and were then left untreated or were stimulated with 5 μg/mL imiquimod (light gray), 1 μg/mL R848 (dark gray), or 25 ng/mL PMA and 0.25 μM ionomycin (black) for 24 hours, and TNF production were measured by ELISA. Statistical tests were performed using one-way ANOVA with Dunnett’s post hoc test (*: P < 0.05, ns: not significant).
Fig. 3
Fig. 3
Type I IFN responses to TLR7 agonist in TLR7-deficient pDCs and leukocytes. (A) Frequencies of five leukocyte subsets in whole blood, determined by CyTOF. Healthy donors (black rectangles), relatives not carrying deleterious TLR7 alleles (blue rectangles) and hemizygous TLR7 variant carriers (red rectangles) are depicted. (B) TLR7 and TLR8 expression in different leukocyte subsets, determined by flow cytometry for the healthy control (C1). The result for another healthy control (C2) is shown in Figure S5C. Gating strategy for the classification in each cell subset is shown in Data file S6. (C) IFN-α production in purified leukocyte subsets from two healthy donors (blue or yellow dot) with and without stimulation with various TLR7, 8, or 9 agonists (1 μg/mL CL264, 100 ng/mL TL8-506, 1 μg/mL R848, or 2 μM CpG-c) for 24 hours. The y-axis shows IFN-α production on a logarithmic scale. The red bar corresponds to pDCs. (D) pDCs isolated from healthy donors and TLR7-deficient patients (P8, P14) were either left untreated (medium) or were stimulated with CL264 or CpG-c, and the production of IFN-α2 and IL-6 was assessed with CBAs on the supernatant. (E) Dotplot showing pDC diversification into subsets S1, S2, and S3 from magnetically sorted blood. pDCs from a TLR7-deficient patient (P14) and a healthy relative (M.I.1) were cultured for 24 hours with medium alone or with 1 μg/mL CL264 or 2 μM CpG-c. Statistical tests were performed using unpaired two-sample t test (*: P < 0.05).
Fig. 4. Type I IFN responses to…
Fig. 4. Type I IFN responses to SARS-CoV-2 infection in TLR7-deficient pDCs.
(A) pDCs isolated from healthy relatives and TLR7-deficient patients (P8, P14) were either left untreated or were infected with SARS-CoV-2 for 24 hours. RNA profiles were then determined by RNA-seq. Genes with expression >2.0-fold higher or lower in controls after stimulation or infection are plotted as the fold-change in expression. (B) Induction of the type I and III IFN genes from (A) infected with SARS-CoV-2 for 24 hours (top) or stimulated with CpG-c (bottom). (C) pDCs isolated from healthy relatives and TLR7-deficient patients (P8, P14) were either left untreated or were infected with SARS-CoV-2 for 24 hours and the production of IFN-α2, IP-10, IL-6 and IL-8 was measured with CBAs on the supernatant. Statistical tests were performed using unpaired two-sample t test (*: P < 0.05, ****: P < 0.0001, ns: not significant).

References

    1. Casanova J. L., Su H. C.; COVID Human Genetic Effort , A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell 181, 1194–1199 (2020). 10.1016/j.cell.2020.05.016
    1. Zhang Q., Bastard P., Bolze A., Jouanguy E., Zhang S. Y., Cobat A., Notarangelo L. D., Su H. C., Abel L., Casanova J. L.; COVID Human Genetic Effort , Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Med (N Y) 1, 14–20 (2020).
    1. O’Driscoll M., Ribeiro Dos Santos G., Wang L., Cummings D. A. T., Azman A. S., Paireau J., Fontanet A., Cauchemez S., Salje H., Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145 (2021). 10.1038/s41586-020-2918-0
    1. Scully E. P., Haverfield J., Ursin R. L., Tannenbaum C., Klein S. L., Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol. 20, 442–447 (2020). 10.1038/s41577-020-0348-8
    1. Ciancanelli M. J., Huang S. X., Luthra P., Garner H., Itan Y., Volpi S., Lafaille F. G., Trouillet C., Schmolke M., Albrecht R. A., Israelsson E., Lim H. K., Casadio M., Hermesh T., Lorenzo L., Leung L. W., Pedergnana V., Boisson B., Okada S., Picard C., Ringuier B., Troussier F., Chaussabel D., Abel L., Pellier I., Notarangelo L. D., García-Sastre A., Basler C. F., Geissmann F., Zhang S. Y., Snoeck H. W., Casanova J. L., Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015). 10.1126/science.aaa1578
    1. Hernandez N., Melki I., Jing H., Habib T., Huang S. S. Y., Danielson J., Kula T., Drutman S., Belkaya S., Rattina V., Lorenzo-Diaz L., Boulai A., Rose Y., Kitabayashi N., Rodero M. P., Dumaine C., Blanche S., Lebras M. N., Leung M. C., Mathew L. S., Boisson B., Zhang S. Y., Boisson-Dupuis S., Giliani S., Chaussabel D., Notarangelo L. D., Elledge S. J., Ciancanelli M. J., Abel L., Zhang Q., Marr N., Crow Y. J., Su H. C., Casanova J. L., Life-threatening influenza pneumonitis in a child with inherited IRF9 deficiency. J. Exp. Med. 215, 2567–2585 (2018). 10.1084/jem.20180628
    1. Lim H. K., Huang S. X. L., Chen J., Kerner G., Gilliaux O., Bastard P., Dobbs K., Hernandez N., Goudin N., Hasek M. L., García Reino E. J., Lafaille F. G., Lorenzo L., Luthra P., Kochetkov T., Bigio B., Boucherit S., Rozenberg F., Vedrinne C., Keller M. D., Itan Y., García-Sastre A., Celard M., Orange J. S., Ciancanelli M. J., Meyts I., Zhang Q., Abel L., Notarangelo L. D., Snoeck H. W., Casanova J. L., Zhang S. Y., Severe influenza pneumonitis in children with inherited TLR3 deficiency. J. Exp. Med. 216, 2038–2056 (2019). 10.1084/jem.20181621
    1. Zhang Q., Bastard P., Liu Z., Le Pen J., Moncada-Velez M., Chen J., Ogishi M., Sabli I. K. D., Hodeib S., Korol C., Rosain J., Bilguvar K., Ye J., Bolze A., Bigio B., Yang R., Arias A. A., Zhou Q., Zhang Y., Onodi F., Korniotis S., Karpf L., Philippot Q., Chbihi M., Bonnet-Madin L., Dorgham K., Smith N., Schneider W. M., Razooky B. S., Hoffmann H. H., Michailidis E., Moens L., Han J. E., Lorenzo L., Bizien L., Meade P., Neehus A. L., Ugurbil A. C., Corneau A., Kerner G., Zhang P., Rapaport F., Seeleuthner Y., Manry J., Masson C., Schmitt Y., Schlüter A., Le Voyer T., Khan T., Li J., Fellay J., Roussel L., Shahrooei M., Alosaimi M. F., Mansouri D., Al-Saud H., Al-Mulla F., Almourfi F., Al-Muhsen S. Z., Alsohime F., Al Turki S., Hasanato R., van de Beek D., Biondi A., Bettini L. R., D’Angio’ M., Bonfanti P., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Oler A. J., Tompkins M. F., Alba C., Vandernoot I., Goffard J. C., Smits G., Migeotte I., Haerynck F., Soler-Palacin P., Martin-Nalda A., Colobran R., Morange P. E., Keles S., Çölkesen F., Ozcelik T., Yasar K. K., Senoglu S., Karabela S. N., Rodríguez-Gallego C., Novelli G., Hraiech S., Tandjaoui-Lambiotte Y., Duval X., Laouénan C., Snow A. L., Dalgard C. L., Milner J. D., Vinh D. C., Mogensen T. H., Marr N., Spaan A. N., Boisson B., Boisson-Dupuis S., Bustamante J., Puel A., Ciancanelli M. J., Meyts I., Maniatis T., Soumelis V., Amara A., Nussenzweig M., García-Sastre A., Krammer F., Pujol A., Duffy D., Lifton R. P., Zhang S. Y., Gorochov G., Béziat V., Jouanguy E., Sancho-Shimizu V., Rice C. M., Abel L., Notarangelo L. D., Cobat A., Su H. C., Casanova J. L.; COVID-STORM Clinicians; COVID Clinicians; Imagine COVID Group; French COVID Cohort Study Group; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort; NIAID-USUHS/TAGC COVID Immunity Group , Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020). 10.1126/science.abd4570
    1. Bastard P., Rosen L. B., Zhang Q., Michailidis E., Hoffmann H. H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., Manry J., Shaw E., Haljasmägi L., Peterson P., Lorenzo L., Bizien L., Trouillet-Assant S., Dobbs K., de Jesus A. A., Belot A., Kallaste A., Catherinot E., Tandjaoui-Lambiotte Y., Le Pen J., Kerner G., Bigio B., Seeleuthner Y., Yang R., Bolze A., Spaan A. N., Delmonte O. M., Abers M. S., Aiuti A., Casari G., Lampasona V., Piemonti L., Ciceri F., Bilguvar K., Lifton R. P., Vasse M., Smadja D. M., Migaud M., Hadjadj J., Terrier B., Duffy D., Quintana-Murci L., van de Beek D., Roussel L., Vinh D. C., Tangye S. G., Haerynck F., Dalmau D., Martinez-Picado J., Brodin P., Nussenzweig M. C., Boisson-Dupuis S., Rodríguez-Gallego C., Vogt G., Mogensen T. H., Oler A. J., Gu J., Burbelo P. D., Cohen J. I., Biondi A., Bettini L. R., D’Angio M., Bonfanti P., Rossignol P., Mayaux J., Rieux-Laucat F., Husebye E. S., Fusco F., Ursini M. V., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Castagnoli R., Montagna D., Licari A., Marseglia G. L., Duval X., Ghosn J., Tsang J. S., Goldbach-Mansky R., Kisand K., Lionakis M. S., Puel A., Zhang S. Y., Holland S. M., Gorochov G., Jouanguy E., Rice C. M., Cobat A., Notarangelo L. D., Abel L., Su H. C., Casanova J. L.; HGID Lab; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; COVID-STORM Clinicians; Imagine COVID Group; French COVID Cohort Study Group; Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human Genetic Effort , Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020). 10.1126/science.abd4585
    1. Wang E. Y., Mao T., Klein J., Dai Y., Huck J. D., Jaycox J. R., Liu F., Zhou T., Israelow B., Wong P., Coppi A., Lucas C., Silva J., Oh J. E., Song E., Perotti E. S., Zheng N. S., Fischer S., Campbell M., Fournier J. B., Wyllie A. L., Vogels C. B. F., Ott I. M., Kalinich C. C., Petrone M. E., Watkins A. E., Dela Cruz C., Farhadian S. F., Schulz W. L., Ma S., Grubaugh N. D., Ko A. I., Iwasaki A., Ring A. M.; Yale IMPACT Team , Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021). 10.1038/s41586-021-03631-y
    1. Koning R., Bastard P., Casanova J. L., Brouwer M. C., van de Beek D.; with the Amsterdam U.M.C. COVID-19 Biobank Investigators , Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 47, 704–706 (2021).
    1. Troya J., Bastard P., Planas-Serra L., Ryan P., Ruiz M., de Carranza M., Torres J., Martínez A., Abel L., Casanova J. L., Pujol A., Neutralizing Autoantibodies to Type I IFNs in >10% of Patients with Severe COVID-19 Pneumonia Hospitalized in Madrid, Spain. J. Clin. Immunol. 41, 914–922 (2021).
    1. David G., Mehdi M., Paul B., Magali P., Kahina S., Nicole F., Rémi P., Christine L., Thierry W., Jean-Laurent C., Alexandre B., Jean-Christophe R., Sophie T.-A., Antibodies against type-I Interferon: detection and association with severe clinical outcome in COVID-19 patients. medRxiv, 2021.2004.2002.21253262 (2021).
    1. M. G. P. van der Wijst, S. E. Vazquez, G. C. Hartoularos, P. Bastard, T. Grant, R. Bueno, D. S. Lee, J. R. Greenland, Y. Sun, R. Perez, A. Ogorodnikov, A. Ward, S. A. Mann, K. L. Lynch, C. Yun, D. V. Havlir, G. Chamie, C. Marquez, B. Greenhouse, M. S. Lionakis, P. J. Norris, L. J. Dumont, K. Kelly, P. Zhang, Q. Zhang, A. Gervais, T. L. Voyer, A. Whatley, Y. Si, A. Byrne, A. J. Combes, A. A. Rao, Y. S. Song, Longitudinal single-cell epitope and RNA-sequencing reveals the immunological impact of type 1 interferon autoantibodies in critical COVID-19. bioRxiv: the preprint server for biology, (2021).
    1. Vazquez S. E., Bastard P., Kelly K., Gervais A., Norris P. J., Dumont L. J., Casanova J. L., Anderson M. S., DeRisi J. L., Neutralizing Autoantibodies to Type I Interferons in COVID-19 Convalescent Donor Plasma. J. Clin. Immunol. 41, 1169–1171 (2021).
    1. Bastard P., Orlova E., Sozaeva L., Lévy R., James A., Schmitt M. M., Ochoa S., Kareva M., Rodina Y., Gervais A., Le Voyer T., Rosain J., Philippot Q., Neehus A. L., Shaw E., Migaud M., Bizien L., Ekwall O., Berg S., Beccuti G., Ghizzoni L., Thiriez G., Pavot A., Goujard C., Frémond M. L., Carter E., Rothenbuhler A., Linglart A., Mignot B., Comte A., Cheikh N., Hermine O., Breivik L., Husebye E. S., Humbert S., Rohrlich P., Coaquette A., Vuoto F., Faure K., Mahlaoui N., Kotnik P., Battelino T., Trebušak Podkrajšek K., Kisand K., Ferré E. M. N., DiMaggio T., Rosen L. B., Burbelo P. D., McIntyre M., Kann N. Y., Shcherbina A., Pavlova M., Kolodkina A., Holland S. M., Zhang S. Y., Crow Y. J., Notarangelo L. D., Su H. C., Abel L., Anderson M. S., Jouanguy E., Neven B., Puel A., Casanova J. L., Lionakis M. S., Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 218, e20210554 (2021). 10.1084/jem.20210554
    1. Bastard P., Michailidis E., Hoffmann H. H., Chbihi M., Le Voyer T., Rosain J., Philippot Q., Seeleuthner Y., Gervais A., Materna M., de Oliveira P. M. N., Maia M. L. S., Dinis Ano Bom A. P., Azamor T., Araújo da Conceição D., Goudouris E., Homma A., Slesak G., Schäfer J., Pulendran B., Miller J. D., Huits R., Yang R., Rosen L. B., Bizien L., Lorenzo L., Chrabieh M., Erazo L. V., Rozenberg F., Jeljeli M. M., Béziat V., Holland S. M., Cobat A., Notarangelo L. D., Su H. C., Ahmed R., Puel A., Zhang S. Y., Abel L., Seligman S. J., Zhang Q., MacDonald M. R., Jouanguy E., Rice C. M., Casanova J. L., Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine. J. Exp. Med. 218, e20202486 (2021). 10.1084/jem.20202486
    1. Firth D., Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993). 10.1093/biomet/80.1.27
    1. Hemmi H., Kaisho T., Takeuchi O., Sato S., Sanjo H., Hoshino K., Horiuchi T., Tomizawa H., Takeda K., Akira S., Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002). 10.1038/ni758
    1. Diebold S. S., Kaisho T., Hemmi H., Akira S., Reis e Sousa C., Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004). 10.1126/science.1093616
    1. Heil F., Hemmi H., Hochrein H., Ampenberger F., Kirschning C., Akira S., Lipford G., Wagner H., Bauer S., Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004). 10.1126/science.1093620
    1. Lund J. M., Alexopoulou L., Sato A., Karow M., Adams N. C., Gale N. W., Iwasaki A., Flavell R. A., Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. U.S.A. 101, 5598–5603 (2004). 10.1073/pnas.0400937101
    1. Beutler B., Inferences, questions and possibilities in Toll-like receptor signalling. Nature 430, 257–263 (2004). 10.1038/nature02761
    1. Colonna M., Trinchieri G., Liu Y. J., Plasmacytoid dendritic cells in immunity. Nat. Immunol. 5, 1219–1226 (2004). 10.1038/ni1141
    1. Gilliet M., Cao W., Liu Y. J., Plasmacytoid dendritic cells: Sensing nucleic acids in viral infection and autoimmune diseases. Nat. Rev. Immunol. 8, 594–606 (2008). 10.1038/nri2358
    1. Reizis B., Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity 50, 37–50 (2019). 10.1016/j.immuni.2018.12.027
    1. Bender A. T., Tzvetkov E., Pereira A., Wu Y., Kasar S., Przetak M. M., Vlach J., Niewold T. B., Jensen M. A., Okitsu S. L., TLR7 and TLR8 Differentially Activate the IRF and NF-κB Pathways in Specific Cell Types to Promote Inflammation. Immunohorizons 4, 93–107 (2020). 10.4049/immunohorizons.2000002
    1. Maeda K., Akira S., TLR7 Structure: Cut in Z-Loop. Immunity 45, 705–707 (2016). 10.1016/j.immuni.2016.10.003
    1. Aluri J., Bach A., Kaviany S., Chiquetto Paracatu L., Kitcharoensakkul M., Walkiewicz M. A., Putnam C. D., Shinawi M., Saucier N., Rizzi E. M., Harmon M. T., Keppel M. P., Ritter M., Similuk M., Kulm E., Joyce M., de Jesus A. A., Goldbach-Mansky R., Lee Y. S., Cella M., Kendall P. L., Dinauer M. C., Bednarski J. J., Bemrich-Stolz C., Canna S. W., Abraham S. M., Demczko M. M., Powell J., Jones S. M., Scurlock A. M., De Ravin S. S., Bleesing J. J., Connelly J. A., Rao V. K., Schuettpelz L. G., Cooper M. A., Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021). 10.1182/blood.2020009620
    1. Uggenti C., Lepelley A., Crow Y. J., Self-Awareness: Nucleic Acid-Driven Inflammation and the Type I Interferonopathies. Annu. Rev. Immunol. 37, 247–267 (2019). 10.1146/annurev-immunol-042718-041257
    1. Boisson B., Casanova J. L., TLR8 gain of function: A tall surprise. Blood 137, 2420–2422 (2021). 10.1182/blood.2020010463
    1. Uhlen M., Karlsson M. J., Zhong W., Tebani A., Pou C., Mikes J., Lakshmikanth T., Forsström B., Edfors F., Odeberg J., Mardinoglu A., Zhang C., von Feilitzen K., Mulder J., Sjöstedt E., Hober A., Oksvold P., Zwahlen M., Ponten F., Lindskog C., Sivertsson Å., Fagerberg L., Brodin P., A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science 366, eaax9198 (2019). 10.1126/science.aax9198
    1. Fallerini C., Daga S., Mantovani S., Benetti E., Picchiotti N., Francisci D., Paciosi F., Schiaroli E., Baldassarri M., Fava F., Palmieri M., Ludovisi S., Castelli F., Quiros-Roldan E., Vaghi M., Rusconi S., Siano M., Bandini M., Spiga O., Capitani K., Furini S., Mari F., Renieri A., Mondelli M. U., Frullanti E.; GEN-COVID Multicenter Study , Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: Findings from a nested case-control study. eLife 10, e67569 (2021). 10.7554/eLife.67569
    1. van der Made C. I., Simons A., Schuurs-Hoeijmakers J., van den Heuvel G., Mantere T., Kersten S., van Deuren R. C., Steehouwer M., van Reijmersdal S. V., Jaeger M., Hofste T., Astuti G., Corominas Galbany J., van der Schoot V., van der Hoeven H., Hagmolen Of Ten Have W., Klijn E., van den Meer C., Fiddelaers J., de Mast Q., Bleeker-Rovers C. P., Joosten L. A. B., Yntema H. G., Gilissen C., Nelen M., van der Meer J. W. M., Brunner H. G., Netea M. G., van de Veerdonk F. L., Hoischen A., Presence of Genetic Variants Among Young Men With Severe COVID-19. JAMA 324, 663–673 (2020). 10.1001/jama.2020.13719
    1. Belkadi A., Pedergnana V., Cobat A., Itan Y., Vincent Q. B., Abhyankar A., Shang L., El Baghdadi J., Bousfiha A., Alcais A., Boisson B., Casanova J. L., Abel L.; Exome/Array Consortium , Whole-exome sequencing to analyze population structure, parental inbreeding, and familial linkage. Proc. Natl. Acad. Sci. U.S.A. 113, 6713–6718 (2016). 10.1073/pnas.1606460113
    1. Shodell M., Siegal F. P., Circulating, interferon-producing plasmacytoid dendritic cells decline during human ageing. Scand. J. Immunol. 56, 518–521 (2002). 10.1046/j.1365-3083.2002.01148.x
    1. Jing Y., Shaheen E., Drake R. R., Chen N., Gravenstein S., Deng Y., Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum. Immunol. 70, 777–784 (2009). 10.1016/j.humimm.2009.07.005
    1. Splunter M. V., Perdijk O., Fick-Brinkhof H., Floris-Vollenbroek E. G., Meijer B., Brugman S., Savelkoul H. F. J., van Hoffen E., Joost van Neerven R. J., Plasmacytoid dendritic cell and myeloid dendritic cell function in ageing: A comparison between elderly and young adult women. PLOS ONE 14, e0225825 (2019). 10.1371/journal.pone.0225825
    1. Giltiay N. V., Chappell C. P., Sun X., Kolhatkar N., Teal T. H., Wiedeman A. E., Kim J., Tanaka L., Buechler M. B., Hamerman J. A., Imanishi-Kari T., Clark E. A., Elkon K. B., Overexpression of TLR7 promotes cell-intrinsic expansion and autoantibody production by transitional T1 B cells. J. Exp. Med. 210, 2773–2789 (2013). 10.1084/jem.20122798
    1. J. Lonsdale, J. Thomas, M. Salvatore, R. Phillips, E. Lo, S. Shad, R. Hasz, G. Walters, F. Garcia, N. Young, B. Foster, M. Moser, E. Karasik, B. Gillard, K. Ramsey, S. Sullivan, J. Bridge, H. Magazine, J. Syron, J. Fleming, L. Siminoff, H. Traino, M. Mosavel, L. Barker, S. Jewell, D. Rohrer, D. Maxim, D. Filkins, P. Harbach, E. Cortadillo, B. Berghuis, L. Turner, E. Hudson, K. Feenstra, L. Sobin, J. Robb, P. Branton, G. Korzeniewski, C. Shive, D. Tabor, L. Qi, K. Groch, S. Nampally, S. Buia, A. Zimmerman, A. Smith, R. Burges, K. Robinson, K. Valentino, D. Bradbury, M. Cosentino, N. Diaz-Mayoral, M. Kennedy, T. Engel, P. Williams, K. Erickson, K. Ardlie, W. Winckler, G. Getz, D. DeLuca, D. MacArthur, M. Kellis, A. Thomson, T. Young, E. Gelfand, M. Donovan, Y. Meng, G. Grant, D. Mash, Y. Marcus, M. Basile, J. Liu, J. Zhu, Z. Tu, N. J. Cox, D. L. Nicolae, E. R. Gamazon, H. K. Im, A. Konkashbaev, J. Pritchard, M. Stevens, T. Flutre, X. Wen, E. T. Dermitzakis, T. Lappalainen, R. Guigo, J. Monlong, M. Sammeth, D. Koller, A. Battle, S. Mostafavi, M. McCarthy, M. Rivas, J. Maller, I. Rusyn, A. Nobel, F. Wright, A. Shabalin, M. Feolo, N. Sharopova, A. Sturcke, J. Paschal, J. M. Anderson, E. L. Wilder, L. K. Derr, E. D. Green, J. P. Struewing, G. Temple, S. Volpi, J. T. Boyer, E. J. Thomson, M. S. Guyer, C. Ng, A. Abdallah, D. Colantuoni, T. R. Insel, S. E. Koester, A. R. Little, P. K. Bender, T. Lehner, Y. Yao, C. C. Compton, J. B. Vaught, S. Sawyer, N. C. Lockhart, J. Demchok, H. F. Moore; GTEx Consortium , The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013). 10.1038/ng.2653
    1. Travaglini K. J., Nabhan A. N., Penland L., Sinha R., Gillich A., Sit R. V., Chang S., Conley S. D., Mori Y., Seita J., Berry G. J., Shrager J. B., Metzger R. J., Kuo C. S., Neff N., Weissman I. L., Quake S. R., Krasnow M. A., A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020). 10.1038/s41586-020-2922-4
    1. Cella M., Jarrossay D., Facchetti F., Alebardi O., Nakajima H., Lanzavecchia A., Colonna M., Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999). 10.1038/11360
    1. Siegal F. P., Kadowaki N., Shodell M., Fitzgerald-Bocarsly P. A., Shah K., Ho S., Antonenko S., Liu Y. J., The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999). 10.1126/science.284.5421.1835
    1. Honda K., Taniguchi T., IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–658 (2006). 10.1038/nri1900
    1. Onodi F., Bonnet-Madin L., Meertens L., Karpf L., Poirot J., Zhang S. Y., Picard C., Puel A., Jouanguy E., Zhang Q., Le Goff J., Molina J. M., Delaugerre C., Casanova J. L., Amara A., Soumelis V., SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4. J. Exp. Med. 218, e20201387 (2021). 10.1084/jem.20201387
    1. L. Cervantes-Barragan, A. Vanderheiden, C. J. Royer, M. E. Davis-Gardner, P. Ralfs, T. Chirkova, L. J. Anderson, A. Grakoui, M. S. Suthar, Plasmacytoid dendritic cells produce type I interferon and reduce viral replication in airway epithelial cells after SARS-CoV-2 infection. bioRxiv: the preprint server for biology, 2021.2005.2012.443948 (2021).
    1. Alculumbre S. G., Saint-André V., Di Domizio J., Vargas P., Sirven P., Bost P., Maurin M., Maiuri P., Wery M., Roman M. S., Savey L., Touzot M., Terrier B., Saadoun D., Conrad C., Gilliet M., Morillon A., Soumelis V., Diversification of human plasmacytoid predendritic cells in response to a single stimulus. Nat. Immunol. 19, 63–75 (2018). 10.1038/s41590-017-0012-z
    1. Kosmicki J. A., Horowitz J. E., Banerjee N., Lanche R., Marcketta A., Maxwell E., Bai X., Sun D., Backman J. D., Sharma D., Kury F. S. P., Kang H. M., O’Dushlaine C., Yadav A., Mansfield A. J., Li A. H., Watanabe K., Gurski L., McCarthy S. E., Locke A. E., Khalid S., O’Keeffe S., Mbatchou J., Chazara O., Huang Y., Kvikstad E., O’Neill A., Nioi P., Parker M. M., Petrovski S., Runz H., Szustakowski J. D., Wang Q., Wong E., Cordova-Palomera A., Smith E. N., Szalma S., Zheng X., Esmaeeli S., Davis J. W., Lai Y.-P., Chen X., Justice A. E., Leader J. B., Mirshahi T., Carey D. J., Verma A., Sirugo G., Ritchie M. D., Rader D. J., Povysil G., Goldstein D. B., Kiryluk K., Pairo-Castineira E., Rawlik K., Pasko D., Walker S., Meynert A., Kousathanas A., Moutsianas L., Tenesa A., Caulfield M., Scott R., Wilson J. F., Baillie J. K., Butler-Laporte G., Nakanishi T., Lathrop M., Richards J. B., Jones M., Balasubramanian S., Salerno W., Shuldiner A. R., Marchini J., Overton J. D., Habegger L., Cantor M. N., Reid J. G., Baras A., Abecasis G. R., Ferreira M. A. R.; Regeneron Genetics Center; UKB Exome Sequencing Consortium , Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals. Am. J. Hum. Genet. 108, 1350–1355 (2021). 10.1016/j.ajhg.2021.05.017
    1. Yang K., Puel A., Zhang S., Eidenschenk C., Ku C. L., Casrouge A., Picard C., von Bernuth H., Senechal B., Plancoulaine S., Al-Hajjar S., Al-Ghonaium A., Maródi L., Davidson D., Speert D., Roifman C., Garty B. Z., Ozinsky A., Barrat F. J., Coffman R. L., Miller R. L., Li X., Lebon P., Rodriguez-Gallego C., Chapel H., Geissmann F., Jouanguy E., Casanova J. L., Human TLR-7-, -8-, and -9-mediated induction of IFN-alpha/beta and -lambda Is IRAK-4 dependent and redundant for protective immunity to viruses. Immunity 23, 465–478 (2005). 10.1016/j.immuni.2005.09.016
    1. Ku C. L., von Bernuth H., Picard C., Zhang S. Y., Chang H. H., Yang K., Chrabieh M., Issekutz A. C., Cunningham C. K., Gallin J., Holland S. M., Roifman C., Ehl S., Smart J., Tang M., Barrat F. J., Levy O., McDonald D., Day-Good N. K., Miller R., Takada H., Hara T., Al-Hajjar S., Al-Ghonaium A., Speert D., Sanlaville D., Li X., Geissmann F., Vivier E., Maródi L., Garty B. Z., Chapel H., Rodriguez-Gallego C., Bossuyt X., Abel L., Puel A., Casanova J. L., Selective predisposition to bacterial infections in IRAK-4-deficient children: IRAK-4-dependent TLRs are otherwise redundant in protective immunity. J. Exp. Med. 204, 2407–2422 (2007). 10.1084/jem.20070628
    1. Casanova J. L., Abel L., Quintana-Murci L., Human TLRs and IL-1Rs in host defense: Natural insights from evolutionary, epidemiological, and clinical genetics. Annu. Rev. Immunol. 29, 447–491 (2011). 10.1146/annurev-immunol-030409-101335
    1. Boisson B., The genetic basis of pneumococcal and staphylococcal infections: Inborn errors of human TLR and IL-1R immunity. Hum. Genet. 139, 981–991 (2020). 10.1007/s00439-020-02111-z
    1. Barreiro L. B., Ben-Ali M., Quach H., Laval G., Patin E., Pickrell J. K., Bouchier C., Tichit M., Neyrolles O., Gicquel B., Kidd J. R., Kidd K. K., Alcaïs A., Ragimbeau J., Pellegrini S., Abel L., Casanova J. L., Quintana-Murci L., Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLOS Genet. 5, e1000562 (2009). 10.1371/journal.pgen.1000562
    1. von Bernuth H., Picard C., Jin Z., Pankla R., Xiao H., Ku C. L., Chrabieh M., Mustapha I. B., Ghandil P., Camcioglu Y., Vasconcelos J., Sirvent N., Guedes M., Vitor A. B., Herrero-Mata M. J., Aróstegui J. I., Rodrigo C., Alsina L., Ruiz-Ortiz E., Juan M., Fortuny C., Yagüe J., Antón J., Pascal M., Chang H. H., Janniere L., Rose Y., Garty B. Z., Chapel H., Issekutz A., Maródi L., Rodriguez-Gallego C., Banchereau J., Abel L., Li X., Chaussabel D., Puel A., Casanova J. L., Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321, 691–696 (2008). 10.1126/science.1158298
    1. Picard C., Puel A., Bonnet M., Ku C. L., Bustamante J., Yang K., Soudais C., Dupuis S., Feinberg J., Fieschi C., Elbim C., Hitchcock R., Lammas D., Davies G., Al-Ghonaium A., Al-Rayes H., Al-Jumaah S., Al-Hajjar S., Al-Mohsen I. Z., Frayha H. H., Rucker R., Hawn T. R., Aderem A., Tufenkeji H., Haraguchi S., Day N. K., Good R. A., Gougerot-Pocidalo M. A., Ozinsky A., Casanova J. L., Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299, 2076–2079 (2003). 10.1126/science.1081902
    1. Casrouge A., Zhang S. Y., Eidenschenk C., Jouanguy E., Puel A., Yang K., Alcais A., Picard C., Mahfoufi N., Nicolas N., Lorenzo L., Plancoulaine S., Sénéchal B., Geissmann F., Tabeta K., Hoebe K., Du X., Miller R. L., Héron B., Mignot C., de Villemeur T. B., Lebon P., Dulac O., Rozenberg F., Beutler B., Tardieu M., Abel L., Casanova J. L., Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314, 308–312 (2006). 10.1126/science.1128346
    1. Liu Y. J., Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262 (2001). 10.1016/S0092-8674(01)00456-1
    1. Swiecki M., Colonna M., Unraveling the functions of plasmacytoid dendritic cells during viral infections, autoimmunity, and tolerance. Immunol. Rev. 234, 142–162 (2010). 10.1111/j.0105-2896.2009.00881.x
    1. Barrat F. J., Su L., A pathogenic role of plasmacytoid dendritic cells in autoimmunity and chronic viral infection. J. Exp. Med. 216, 1974–1985 (2019). 10.1084/jem.20181359
    1. Sologuren I., Martínez-Saavedra M. T., Solé-Violán J., de Borges de Oliveira E. Jr., Betancor E., Casas I., Oleaga-Quintas C., Martínez-Gallo M., Zhang S. Y., Pestano J., Colobran R., Herrera-Ramos E., Pérez C., López-Rodríguez M., Ruiz-Hernández J. J., Franco N., Ferrer J. M., Bilbao C., Andújar-Sánchez M., Álvarez Fernández M., Ciancanelli M. J., Rodríguez de Castro F., Casanova J. L., Bustamante J., Rodríguez-Gallego C., Lethal Influenza in Two Related Adults with Inherited GATA2 Deficiency. J. Clin. Immunol. 38, 513–526 (2018). 10.1007/s10875-018-0512-0
    1. Vinh D. C., Patel S. Y., Uzel G., Anderson V. L., Freeman A. F., Olivier K. N., Spalding C., Hughes S., Pittaluga S., Raffeld M., Sorbara L. R., Elloumi H. Z., Kuhns D. B., Turner M. L., Cowen E. W., Fink D., Long-Priel D., Hsu A. P., Ding L., Paulson M. L., Whitney A. R., Sampaio E. P., Frucht D. M., DeLeo F. R., Holland S. M., Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood 115, 1519–1529 (2010). 10.1182/blood-2009-03-208629
    1. Dickinson R. E., Griffin H., Bigley V., Reynard L. N., Hussain R., Haniffa M., Lakey J. H., Rahman T., Wang X. N., McGovern N., Pagan S., Cookson S., McDonald D., Chua I., Wallis J., Cant A., Wright M., Keavney B., Chinnery P. F., Loughlin J., Hambleton S., Santibanez-Koref M., Collin M., Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118, 2656–2658 (2011). 10.1182/blood-2011-06-360313
    1. Pasquet M., Bellanné-Chantelot C., Tavitian S., Prade N., Beaupain B., Larochelle O., Petit A., Rohrlich P., Ferrand C., Van Den Neste E., Poirel H. A., Lamy T., Ouachée-Chardin M., Mansat-De Mas V., Corre J., Récher C., Plat G., Bachelerie F., Donadieu J., Delabesse E., High frequency of GATA2 mutations in patients with mild chronic neutropenia evolving to MonoMac syndrome, myelodysplasia, and acute myeloid leukemia. Blood 121, 822–829 (2013). 10.1182/blood-2012-08-447367
    1. Bigley V., Cytlak U., Collin M., Human dendritic cell immunodeficiencies. Semin. Cell Dev. Biol. 86, 50–61 (2019). 10.1016/j.semcdb.2018.02.020
    1. Gao D., Ciancanelli M. J., Zhang P., Harschnitz O., Bondet V., Hasek M., Chen J., Mu X., Itan Y., Cobat A., Sancho-Shimizu V., Bigio B., Lorenzo L., Ciceri G., McAlpine J., Anguiano E., Jouanguy E., Chaussabel D., Meyts I., Diamond M. S., Abel L., Hur S., Smith G. A., Notarangelo L., Duffy D., Studer L., Casanova J. L., Zhang S. Y., TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J. Clin. Invest. 131, e134529 (2021). 10.1172/JCI134529
    1. Kadowaki N., Ho S., Antonenko S., Malefyt R. W., Kastelein R. A., Bazan F., Liu Y. J., Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–869 (2001). 10.1084/jem.194.6.863
    1. Honda K., Ohba Y., Yanai H., Negishi H., Mizutani T., Takaoka A., Taya C., Taniguchi T., Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005). 10.1038/nature03547
    1. Wang Y., Swiecki M., McCartney S. A., Colonna M., dsRNA sensors and plasmacytoid dendritic cells in host defense and autoimmunity. Immunol. Rev. 243, 74–90 (2011). 10.1111/j.1600-065X.2011.01049.x
    1. DePristo M. A., Banks E., Poplin R., Garimella K. V., Maguire J. R., Hartl C., Philippakis A. A., del Angel G., Rivas M. A., Hanna M., McKenna A., Fennell T. J., Kernytsky A. M., Sivachenko A. Y., Cibulskis K., Gabriel S. B., Altshuler D., Daly M. J., A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011). 10.1038/ng.806
    1. Li H., Durbin R., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009). 10.1093/bioinformatics/btp324
    1. McLaren W., Gil L., Hunt S. E., Riat H. S., Ritchie G. R., Thormann A., Flicek P., Cunningham F., The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016). 10.1186/s13059-016-0974-4
    1. Ewels P., Magnusson M., Lundin S., Käller M., MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016). 10.1093/bioinformatics/btw354
    1. Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T. R., STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). 10.1093/bioinformatics/bts635
    1. Liao Y., Smyth G. K., Shi W., featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). 10.1093/bioinformatics/btt656
    1. Harrow J., Frankish A., Gonzalez J. M., Tapanari E., Diekhans M., Kokocinski F., Aken B. L., Barrell D., Zadissa A., Searle S., Barnes I., Bignell A., Boychenko V., Hunt T., Kay M., Mukherjee G., Rajan J., Despacio-Reyes G., Saunders G., Steward C., Harte R., Lin M., Howald C., Tanzer A., Derrien T., Chrast J., Walters N., Balasubramanian S., Pei B., Tress M., Rodriguez J. M., Ezkurdia I., van Baren J., Brent M., Haussler D., Kellis M., Valencia A., Reymond A., Gerstein M., Guigó R., Hubbard T. J., GENCODE: The reference human genome annotation for The ENCODE Project. Genome Res. 22, 1760–1774 (2012). 10.1101/gr.135350.111
    1. Love M. I., Huber W., Anders S., Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). 10.1186/s13059-014-0550-8
    1. Robinson M. D., McCarthy D. J., Smyth G. K., edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010). 10.1093/bioinformatics/btp616
    1. Xu G. J., Kula T., Xu Q., Li M. Z., Vernon S. D., Ndung’u T., Ruxrungtham K., Sanchez J., Brander C., Chung R. T., O’Connor K. C., Walker B., Larman H. B., Elledge S. J., Comprehensive serological profiling of human populations using a synthetic human virome. Science 348, aaa0698 (2015). 10.1126/science.aaa0698
    1. Bastard P., et al. ., Autoantibodies neutralizing type I IFNs are present in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 deaths. Sci. Immunol. 6, abl4340 (2021).

Source: PubMed

3
Tilaa