Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients

Steven T DeKosky, Patrick M Kochanek, Alex B Valadka, Robert S B Clark, Sherry H-Y Chou, Alicia K Au, Christopher Horvat, Ruchira M Jha, Rebekah Mannix, Stephen R Wisniewski, Max Wintermark, Susan E Rowell, Robert D Welch, Lawrence Lewis, Stacey House, Rudolph E Tanzi, Darci R Smith, Amy Y Vittor, Nancy D Denslow, Michael D Davis, Olena Y Glushakova, Ronald L Hayes, Steven T DeKosky, Patrick M Kochanek, Alex B Valadka, Robert S B Clark, Sherry H-Y Chou, Alicia K Au, Christopher Horvat, Ruchira M Jha, Rebekah Mannix, Stephen R Wisniewski, Max Wintermark, Susan E Rowell, Robert D Welch, Lawrence Lewis, Stacey House, Rudolph E Tanzi, Darci R Smith, Amy Y Vittor, Nancy D Denslow, Michael D Davis, Olena Y Glushakova, Ronald L Hayes

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.

Keywords: CNS injury; COVID-19; GFAP, SARS-CoV-2; UCH-L1; blood biomarkers.

Conflict of interest statement

Ronald L. Hayes owns stock in, receives compensation from, and is an executive officer of Banyan Biomarkers, Inc. and as such may benefit financially as a result of the outcomes of this research or work reported in this publication. Nancy D. Denslow was a founder of the company and currently serves on the Board of Directors of Banyan Biomarkers, Inc. that has developed assays for biomarkers for traumatic brain injury. These biomarkers may be of interest to identify brain damage from COVID-19. Steven DeKosky chairs medical advisory boards for Acumen Pharmaceuticals and Cognition Therapeutics and chairs the Drug Safety Monitoring Boards for Biogen, Prevail Pharmaceuticals, and Vaccinex, Inc. He is editor of the Section on Dementia for Up-To-Date, a point of care electronic textbook, and Associate Editor of Neurotherapeutics, the journal of the American Society for Experimental Neurotherapeutics. None of them have any conflicts with the manuscript or its contents. Michael D. Davis is a Co-Founder of Airbase Breathing Company. Ruchira M. Jha is a paid consultant/on the Advisory Board for Biogen. Robert D. Welch will be doing a seminar for Abbott Labs, Inc. regarding a point-of-care test for GFAP and UCH-L1 and he previously (not since 2017) received contract research funding from Banyan Biomarkers, Inc.

Figures

FIG. 1.
FIG. 1.
Generalized schematic of a clinical research study of BBs of CNS Injury in COVID-19 patients. BBs, blood biomarkers; CNS, central nervous system; COVID-19, coronavirus disease 2019; EHR, electronic health record; FDA, U.S. Food and Drug Administration; ICU, intensive care unit; IRB, institutional review board.

References

    1. McKibbin W.J., and Fernando R. (2020). Global Macroeconomic Scenarios of the COVID-19 Pandemic (June 25, 2020). CAMA Working Paper No 62/2020. or 10.2139/ssrn.3635103 (Last accessed November6, 2020)
    1. Tenforde M.W., Kim S.S., Rose E.B., Shapiro N.I., Files D.C., Gibbs K.W., Erickson H.L., Steingrub J.S., Smithline H.A., Gong M.N., Aboodi M.S., Exline M.C., Henning D.J., Wilson J.G., Khan A., Qadir N., Brown S.M., Peltan I.D., Rice T.W., Hager D.N., Ginde A.A., Stubblefield W.B., Patel M.M., Self W.H., and Feldstein L.R.; IVY Network Investigators; CDC COVID-19 Response Team. (2020). Symptom duration and risk factors for delayed return to usual health among outpatients with COVID-19 in a multistate health care systems network—United States, March–June 2020. MMWR Morb. Mortal. Wkly. Rep. 69, 993–998
    1. Desforges M., Le Coupanec A., Dubeau P., Bourgouin A., Lajoie L., Dube M., and Talbot P.J. (2019). Human coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 12, 14
    1. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., Chang J., Hong C., Zhou Y., Wang D., Miao X., Li Y., and Hu B. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 77, 683–690
    1. Varatharaj A., Thomas N., Ellul M.A., Davies N.W.S., Pollak T.A., Tenorio E.L., Sultan M., Easton A., Breen G., Zandi M., Coles J.P., Manji H., Al-Shahi Salman R., Menon D.K., Nicholson T.R., Benjamin L.A., Carson A., Smith C., Turner M.R., Solomon T., Kneen R., Pett S.L., Galea I., Thomas R.H., and Michael B.D.; CoroNerve Study Group. (2020). Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 7, 875–882
    1. Abdel-Mannan O., Eyre M., Lobel U., Bamford A., Eltze C., Hameed B., Hemingway C., and Hacohen Y. (2020). Neurologic and radiographic findings associated with COVID-19 infection in children. JAMA Neurol. doi: 10.1001/jamaneurol.2020.2687 [Epub ahead of print]
    1. Romero-Sanchez C.M., Diaz-Maroto I., Fernandez-Diaz E., Sanchez-Larsen A., Layos-Romero A., Garcia-Garcia J., Gonzalez E., Redondo-Penas I., Perona-Moratalla A.B., Del Valle-Perez J.A., Gracia-Gil J., Rojas-Bartolome L., Feria-Vilar I., Monteagudo M., Palao M., Palazon-Garcia E., Alcahut-Rodriguez C., Sopelana-Garay D., Moreno Y., Ahmad J., and Segura T. (2020). Neurologic manifestations in hospitalized patients with COVID-19: the ALBACOVID registry. Neurology 95, e1060–e1070
    1. Kamil K., Yazid M.D., Idrus R.B.H., Das S., and Kumar J. (2019). Peripheral demyelinating diseases: from biology to translational medicine. Front. Neurol. 10, 87.
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., Hastie K.M., Parker M.D., Partridge D.G., Evans C.M., Freeman T.M., de Silva T.I., Sheffield C.-G.G., McDanal C., Perez L.G., Tang H., Moon-Walker A., Whelan S.P., LaBranche C.C., Saphire E.O., and Montefiori D.C. (2020). Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812–827.e19.
    1. Long S.W., Olsen R.J., Christensen P.A., Bernard D.W., Davis J.J., Shukla M., Nguyen M., Saavedra M.O., Yerramilli P., Pruitt L., Subedi S., Kuo H.-C., Hendrickson H., Eskandari G., Nguyen H.A.T., Long J.H., Kumaraswami M., Goike J., Boutz D., Gollihar J., McLellan J.S., Chou C.-W., Javanmardi K., Finkelstein I.J., and Musser J. (2020). Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. medRxiv 2020. 2009.2022.20199125
    1. Iwasaki A. (2020). What reinfections mean for COVID-19. Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30783-0 [Epub ahead of print]
    1. Tillett R.L., Sevinsky J.R., Hartley P.D., Kerwin H., Crawford N., Gorzalski A., Laverdure C., Verma S.C., Rossetto C.C., Jackson D., Farrell M.J., Van Hooser S., and Pandori M. (2020). Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30764-7. [Epub ahead of print]
    1. Sun H., Xiao Y., Liu J., Wang D., Li F., Wang C., Li C., Zhu J., Song J., Sun H., Jiang Z., Liu L., Zhang X., Wei K., Hou D., Pu J., Sun Y., Tong Q., Bi Y., Chang K.C., Liu S., Gao G.F., and Liu J. (2020). Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc. Natl. Acad. Sci. U. S. A. 117, 17204–17210
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Foley B., Giorgi E.E., Bhattacharya T., Parker M.D., Partridge D.G., Evans C.M., Freeman T.M., de Silva T.I., LaBranche C.C., and Montefiori D.C. (2020). Spike mutation pipeline reveals the emergence of a more transmissible form of SARS-CoV-2. bioRxiv 2020.2004.2029.069054
    1. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., Bikdeli B., Ahluwalia N., Ausiello J.C., Wan E.Y., Freedberg D.E., Kirtane A.J., Parikh S.A., Maurer M.S., Nordvig A.S., Accili D., Bathon J.M., Mohan S., Bauer K.A., Leon M.B., Krumholz H.M., Uriel N., Mehra M.R., Elkind M.S.V., Stone G.W., Schwartz A., Ho D.D., Bilezikian J.P., and Landry D.W. (2020). Extrapulmonary manifestations of COVID-19. Nat. Med. 26, 1017–1032
    1. Jasti M., Nalleballe K., Dandu V., and Onteddu S. (2020). A review of pathophysiology and neuropsychiatric manifestations of COVID-19. J. Neurol. doi: 10.1007/s00415-020-09950-w. [Epub ahead of print]
    1. Robinson C.P., and Busl K.M. (2020). Neurologic manifestations of severe respiratory viral contagions. Crit. Care Explor. 2, e0107.
    1. Sharifian-Dorche M., Huot P., Osherov M., Wen D., Saveriano A., Giacomini P.S., Antel J.P., and Mowla A. (2020). Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. J. Neurol. Sci. 417, 117085.
    1. Almqvist J., Granberg T., Tzortzakakis A., Klironomos S., Kollia E., Ohberg C., Martin R., Piehl F., Ouellette R., and Ineichen B.V. (2020). Neurological manifestations of coronavirus infections—a systematic review. Ann. Clin. Transl. Neurol. 7, 2057–2071
    1. Frontera J.A., Sabadia S., Lalchan R., Fang T., Flusty B., Millar-Vernetti P., Snyder T., Berger S., Yang D., Granger A., Morgan N., Patel P., Gutman J., Melmed K., Agarwal S., Bokhari M., Andino A., Valdes E., Omari M., Kvernland A., Lillemoe K., Chou S.H., McNett M., Helbok R., Mainali S., Fink E.L., Robertson C., Schober M., Suarez J.I., Ziai W., Menon D., Friedman D., Friedman D., Holmes M., Huang J., Thawani S., Howard J., Abou-Fayssal N., Krieger P., Lewis A., Lord A.S., Zhou T., Kahn D.E., Czeisler B.M., Torres J., Yaghi S., Ishida K., Scher E., de Havenon A., Placantonakis D., Liu M., Wisniewski T., Troxel A.B., Balcer L., and Galetta S. (2020). A prospective study of neurologic disorders in hospitalized COVID-19 patients in New York City. Neurology doi: 10.1212/WNL.0000000000010979. [Epub ahead of print]
    1. Xiong W., Mu J., Guo J., Lu L., Liu D., Luo J., Li N., Liu J., Yang D., Gao H., Zhang Y., Lin M., Shen S., Zhang H., Chen L., Wang G., Luo F., Li W., Chen S., He L., Sander J.W., and Zhou D. (2020). New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology 95, e1479–e1487
    1. Lu L., Xiong W., Liu D., Liu J., Yang D., Li N., Mu J., Guo J., Li W., Wang G., Gao H., Zhang Y., Lin M., Chen L., Shen S., Zhang H., Sander J.W., Luo J., Chen S., and Zhou D. (2020). New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: a retrospective multicenter study. Epilepsia 61, e49–e53
    1. Mahammedi A., Saba L., Vagal A., Leali M., Rossi A., Gaskill M., Sengupta S., Zhang B., Carriero A., Bachir S., Crivelli P., Pasche A., Premi E., Padovani A., and Gasparotti R. (2020). Imaging in neurological disease of hospitalized COVID-19 patients: an Italian multicenter retrospective observational study. Radiology 201933
    1. Liotta E.M., Batra A., Clark J.R., Shlobin N.A., Hoffman S.C., Orban Z.S., and Koralnik I.J. (2020). Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.51210 [Epub ahead of print]
    1. Radmanesh A., Raz E., Zan E., Derman A., and Kaminetzky M. (2020). Brain imaging use and findings in COVID-19: a single academic center experience in the epicenter of disease in the United States. AJNR Am. J. Neuroradiol. 41, 1179–1183
    1. Karadas O., Ozturk B., and Sonkaya A.R. (2020). A prospective clinical study of detailed neurological manifestations in patients with COVID-19. Neurol. Sci. 41, 1991–1995
    1. Kandemirli S.G., Dogan L., Sarikaya Z.T., Kara S., Akinci C., Kaya D., Kaya Y., Yildirim D., Tuzuner F., Yildirim M.S., Ozluk E., Gucyetmez B., Karaarslan E., Koyluoglu I., Demirel Kaya H.S., Mammadov O., Kisa Ozdemir I., Afsar N., Citci Yalcinkaya B., Rasimoglu S., Guduk D.E., Kedir Jima A., Ilksoz A., Ersoz V., Yonca Eren M., Celtik N., Arslan S., Korkmazer B., Dincer S.S., Gulek E., Dikmen I., Yazici M., Unsal S., Ljama T., Demirel I., Ayyildiz A., Kesimci I., Bolsoy Deveci S., Tutuncu M., Kizilkilic O., Telci L., Zengin R., Dincer A., Akinci I.O., and Kocer N. (2020). Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology 297, E232–E235
    1. Lu Y., Li X., Geng D., Mei N., Wu P.Y., Huang C.C., Jia T., Zhao Y., Wang D., Xiao A. and Yin B. (2020). Cerebral micro-structural changes in COVID-19 patients—an MRI-based 3-month follow-up study. EClinicalMedicine 25, 100484.
    1. Helms J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C., Collange O., Boulay C., Fafi-Kremer S., Ohana M., Anheim M., and Meziani F. (2020). Neurologic features in severe SARS-CoV-2 infection. N. Engl. J. Med. 382, 2268–2270
    1. Al Saiegh F., Ghosh R., Leibold A., Avery M.B., Schmidt R.F., Theofanis T., Mouchtouris N., Philipp L., Peiper S.C., Wang Z.X., Rincon F., Tjoumakaris S.I., Jabbour P., Rosenwasser R.H., and Gooch M.R. (2020). Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J. Neurol. Neurosurg. Psychiatry 91, 846–848
    1. Chachkhiani D., Soliman M.Y., Barua D., Isakadze M., Villemarette-Pittman N.R., Devier D.J., and Lovera J.F. (2020). Neurological complications in a predominantly African American sample of COVID-19 predict worse outcomes during hospitalization. Clin. Neurol. Neurosurg. 197, 106173.
    1. Arentz M., Yim E., Klaff L., Lokhandwala S., Riedo F.X., Chong M., and Lee M. (2020). Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington state. JAMA 323, 1612–1614
    1. Morassi M., Bagatto D., Cobelli M., D'Agostini S., Gigli G.L., Bna C., and Vogrig A. (2020). Stroke in patients with SARS-CoV-2 infection: case series. J. Neurol. 267, 2185–2192
    1. Chen W., Toprani S., Werbaneth K., and Falco-Walter J. (2020). Status epilepticus and other EEG findings in patients with COVID-19: a case series. Seizure 81, 198–200
    1. Bernard-Valnet R., Pizzarotti B., Anichini A., Demars Y., Russo E., Schmidhauser M., Cerutti-Sola J., Rossetti A.O., and Du Pasquier R. (2020). Two patients with acute meningoencephalitis concomitant with SARS-CoV-2 infection. Eur. J. Neurol. doi: 10.1111/ene.14298. [Epub ahead of print]
    1. Somani S., Pati S., Gaston T., Chitlangia A., and Agnihotri S. (2020). De novo status epilepticus in patients with COVID-19. Ann. Clin. Transl. Neurol. 7, 1240–1244
    1. Hepburn M., Mullaguri N., George P., Hantus S., Punia V., Bhimraj A., and Newey C.R. (2020). Acute symptomatic seizures in critically ill patients with COVID-19: is there an association? Neurocrit. Care. doi: 10.1007/s12028-020-01006-1 [Epub ahead of print]
    1. De Stefano P., Nencha U., De Stefano L., Megevand P., and Seeck M. (2020). Focal EEG changes indicating critical illness associated cerebral microbleeds in a Covid-19 patient. Clin. Neurophysiol. Pract. 5, 125–129
    1. Duong L., Xu P., and Liu A. (2020). Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav. Immun. 87, 33.
    1. Zanin L., Saraceno G., Panciani P.P., Renisi G., Signorini L., Migliorati K., and Fontanella M.M. (2020). SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. 162, 1491–1494
    1. Karimi N., Sharifi Razavi A., and Rouhani N. (2020). Frequent convulsive seizures in an adult patient with COVID-19: a case report. Iran. Red Crescent Med. J. 3(22)20200301
    1. McAbee G.N., Brosgol Y., Pavlakis S., Agha R., and Gaffoor M. (2020). Encephalitis associated with COVID-19 infection in an 11-year-old child. Pediatr. Neurol. 109, 94.
    1. Sohal S., and Mansur M. (2020). COVID-19 presenting with seizures. IDCases 20, e00782.
    1. Balloy G., Leclair-Visonneau L., Pereon Y., Magot A., Peyre A., Mahe P.J., and Derkinderen P. (2020). Non-lesional status epilepticus in a patient with coronavirus disease 2019. Clin. Neurophysiol. 131, 2059–2061
    1. Fasano A., Cavallieri F., Canali E., and Valzania F. (2020). First motor seizure as presenting symptom of SARS-CoV-2 infection. Neurol. Sci. 41, 1651–1653
    1. Afshar H., Yassin Z., Kalantari S., Aloosh O., Lotfi T., Moghaddasi M., Sadeghipour A., and Emamikhah M. (2020). Evolution and resolution of brain involvement associated with SARS- CoV2 infection: a close clinical - paraclinical follow up study of a case. Mult. Scler. Relat. Disord. 43, 102216.
    1. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M., Sakata H., Kondo K., Myose N., Nakao A., Takeda M., Haro H., Inoue O., Suzuki-Inoue K., Kubokawa K., Ogihara S., Sasaki T., Kinouchi H., Kojin H., Ito M., Onishi H., Shimizu T., Sasaki Y., Enomoto N., Ishihara H., Furuya S., Yamamoto T., and Shimada S. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int. J. Infect. Dis. 94, 55–58
    1. Efe I.E., Aydin O.U., Alabulut A., Celik O., and Aydin K. (2020). COVID-19-associated encephalitis mimicking glial tumor. World Neurosurg. 140, 46–48
    1. Abdi S., Ghorbani A., and Fatehi F. (2020). The association of SARS-CoV-2 infection and acute disseminated encephalomyelitis without prominent clinical pulmonary symptoms. J. Neurol. Sci. 416, 117001.
    1. Dixon L., Varley J., Gontsarova A., Mallon D., Tona F., Muir D., Luqmani A., Jenkins I.H., Nicholas R., Jones B., and Everitt A. (2020). COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol. Neuroimmunol. Neuroinflamm. 7, e789.
    1. Kremer S., Lersy F., de Seze J., Ferre J.C., Maamar A., Carsin-Nicol B., Collange O., Bonneville F., Adam G., Martin-Blondel G., Rafiq M., Geeraerts T., Delamarre L., Grand S., Krainik A., Caillard S., Marc Constans J., Metanbou S., Heintz A., Helms J., Schenck M., Lefebvre N., Boutet C., Fabre X., Forestier G., de Beaurepaire I., Bornet G., Lacalm A., Oesterle H., Bolognini F., Messie J., Hmeydia G., Benzakoun J., Oppenheim C., Bapst B., Megdiche I., Henri-Feugeas M.C., Khalil A., Gaudemer A., Jager L., Nesser P., Talla Mba Y., Hemmert C., Feuerstein P., Sebag N., Carre S., Alleg M., Lecocq C., Schmitt E., Anxionnat R., Zhu F., Comby P.O., Ricolfi F., Thouant P., Desal H., Boulouis G., Berge J., Kazemi A., Pyatigorskaya N., Lecler A., Saleme S., Edjlali-Goujon M., Kerleroux B., Zorn P.E., Mathieu M., Baloglu S., Ardellier F.D., Willaume T., Brisset J.C., Boulay C., Mutschler V., Hansmann Y., Mertes P.M., Schneider F., Fafi-Kremer S., Ohana M., Meziani F., David J.S., Meyer N., Anheim M., and Cotton F. (2020). Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology, 202222
    1. Al-Olama M., Rashid A. and Garozzo D. (2020). COVID-19-associated meningoencephalitis complicated with intracranial hemorrhage: a case report. Acta Neurochir. 162, 1495–1499
    1. Carfi A., Bernabei R., and Landi, F.; for the Gemelli Against COVID-19 Post-Acute Care Study Group. (2020). Persistent symptoms in patients after acute COVID-19. JAMA 324, 603–605
    1. Demirci Otluoglu G., Yener U., Demir M.K. and Yilmaz B. (2020). Encephalomyelitis associated with Covid-19 infection: case report. Br. J. Neurosurg. doi: 10.1016/j.ijid.2020.10.044. [Epub ahead of print]
    1. de Oliveira F.A.A., Palmeira D.C.C., and Rocha-Filho P.A.S. (2020). Headache and pleocytosis in CSF associated with COVID-19: case report. Neurol. Sci. 41, 3021–3022
    1. Boscolo-Rizzo P., Borsetto D., Fabbris C., Spinato G., Frezza D., Menegaldo A., Mularoni F., Gaudioso P., Cazzador D., Marciani S., Frasconi S., Ferraro M., Berro C., Varago C., Nicolai P., Tirelli G., Da Mosto M.C., Obholzer R., Rigoli R., Polesel J., and Hopkins C. (2020). Evolution of altered sense of smell or taste in patients with mildly symptomatic COVID-19. JAMA Otolaryngol. Head Neck Surg. 146, 729–732
    1. Mazza M.G., De Lorenzo R., Conte C., Poletti S., Vai B., Bollettini I., Melloni E.M.T., Furlan R., Ciceri F., Rovere-Querini P., COVID-19 BioB Outpatient Clinic Study group, and Benedetti F. (2020). Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav. Immun. 89, 594–600
    1. Merkler A.E., Parikh N.S., Mir S., Gupta A., Kamel H., Lin E., Lantos J., Schenck E.J., Goyal P., Bruce S.S., Kahan J., Lansdale K.N., LeMoss N.M., Murthy S.B., Stieg P.E., Fink M.E., Iadecola C., Segal A.Z., Campion T.R. Jr., Diaz I., Zhang C., and Navi B.B. (2020). Risk of ischemic stroke in patients with Covid-19 versus patients with influenza. medRxiv 2020.05.18.20105494
    1. Hernandez-Fernandez F., Valencia H.S., Barbella-Aponte R.A., Collado-Jimenez R., Ayo-Martin O., Barrena C., Molina-Nuevo J.D., Garcia-Garcia J., Lozano-Setien E., Alcahut-Rodriguez C., Martinez-Martin A., Sanchez-Lopez A., and Segura T. (2020). Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. Brain. doi: 10.1093/brain/awaa239. [Epub ahead of print]
    1. Sierra-Hidalgo F., Munoz-Rivas N., Torres Rubio P., Chao K., Villanova Martinez M., Arranz Garcia P., and Martinez-Acebes E. (2020). Large artery ischemic stroke in severe COVID-19. J. Neurol. doi: 10.1007/s00415-020-09967-1 [Epub ahead of print]
    1. Dogra S., Jain R., Cao M., Bilaloglu S., Zagzag D., Hochman S., Lewis A., Melmed K., Hochman K., Horwitz L., Galetta S., and Berger J. (2020). Hemorrhagic stroke and anticoagulation in COVID-19. J. Stroke Cerebrovasc Dis 29, 104984.
    1. Lodigiani C., Iapichino G., Carenzo L., Cecconi M., Ferrazzi P., Sebastian T., Kucher N., Studt J.D., Sacco C., Alexia B., Sandri M.T., and Barco S.; on behalf of the Humanitas COVID-19 Task Force. (2020). Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 191, 9–14
    1. Li Y., Li M., Wang M., Zhou Y., Chang J., Xian Y., Wang D., Mao L., Jin H., and Hu B. (2020). Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc. Neurol. 5, 279–284
    1. Klok F.A., Kruip M., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., and Endeman H. (2020). Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 191, 145–147
    1. Klok F.A., Kruip M., van der Meer N.J.M., Arbous M.S., Gommers D., Kant K.M., Kaptein F.H.J., van Paassen J., Stals M.A.M., Huisman M.V., and Endeman H. (2020). Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 191, 148–150
    1. Thomas W., Varley J., Johnston A., Symington E., Robinson M., Sheares K., Lavinio A., and Besser M. (2020). Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom. Thromb. Res. 191, 76–77
    1. Paterson R.W., Brown R.L., Benjamin L., Nortley R., Wiethoff S., Bharucha T., Jayaseelan D.L., Kumar G., Raftopoulos R.E., Zambreanu L., Vivekanandam V., Khoo A., Geraldes R., Chinthapalli K., Boyd E., Tuzlali H., Price G., Christofi G., Morrow J., McNamara P., McLoughlin B., Lim S.T., Mehta P.R., Levee V., Keddie S., Yong W., Trip S.A., Foulkes A.J.M., Hotton G., Miller T.D., Everitt A.D., Carswell C., Davies N.W.S., Yoong M., Attwell D., Sreedharan J., Silber E., Schott J.M., Chandratheva A., Perry R.J., Simister R., Checkley A., Longley N., Farmer S.F., Carletti F., Houlihan C., Thom M., Lunn M.P., Spillane J., Howard R., Vincent A., Werring D.J., Hoskote C., Jager H.R., Manji H., and Zandi M.S. (2020). The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain 143, 3104–3120
    1. Escalard S., Maier B., Redjem H., Delvoye F., Hebert S., Smajda S., Ciccio G., Desilles J.P., Mazighi M., Blanc R., and Piotin M. (2020). Treatment of acute ischemic stroke due to large vessel occlusion with COVID-19: experience from Paris. Stroke 51, 2540–2543
    1. John S., Kesav P., Mifsud V.A., Piechowski-Jozwiak B., Dibu J., Bayrlee A., Elkambergy H., Roser F., Elhammady M.S., Zahra K., and Hussain S.I. (2020). Characteristics of large-vessel occlusion associated with COVID-19 and ischemic stroke. AJNR Am. J. Neuroradiol. doi: 10.3174/ajnr.A6799. [Epub ahead of print]
    1. Radmanesh A., Derman A., Lui Y.W., Raz E., Loh J.P., Hagiwara M., Borja M.J., Zan E., and Fatterpekar G.M. (2020). COVID-19-associated diffuse leukoencephalopathy and microhemorrhages. Radiology 297, E223–E227
    1. Yaeger K.A., Fifi J.T., Lara-Reyna J., Rossitto C., Ladner T., Yim B., Hardigan T., Maragkos G.A., Shigematsu T., Majidi S. and Mocco J. (2020). Initial stroke thrombectomy experience in New York City during the COVID-19 pandemic. AJNR Am. J. Neuroradiol. 41, 1357–1360
    1. Oxley T.J., Mocco J., Majidi S., Kellner C.P., Shoirah H., Singh I.P., De Leacy R.A., Shigematsu T., Ladner T.R., Yaeger K.A., Skliut M., Weinberger J., Dangayach N.S., Bederson J.B., Tuhrim S., and Fifi J.T. (2020). Large-vessel stroke as a presenting feature of Covid-19 in the young. N. Engl. J. Med. 382, e60.
    1. Wang A., Mandigo G.K., Yim P.D., Meyers P.M., and Lavine S.D. (2020). Stroke and mechanical thrombectomy in patients with COVID-19: technical observations and patient characteristics. J. Neurointerv. Surg. 12, 648–653
    1. Barrios-Lopez J.M., Rego-Garcia I., Munoz Martinez C., Romero-Fabrega J.C., Rivero Rodriguez M., Ruiz Gimenez J.A., Escamilla-Sevilla F., Minguez-Castellanos A., and Fernandez Perez M.D. (2020). Ischaemic stroke and SARS-CoV-2 infection: a causal or incidental association? Neurologia (Barcelona, Spain) 35, 295–302
    1. Avula A., Nalleballe K., Narula N., Sapozhnikov S., Dandu V., Toom S., Glaser A., and Elsayegh D. (2020). COVID-19 presenting as stroke. Brain Behav. Immun. 87, 115–119
    1. Zhang Y., Xiao M., Zhang S., Xia P., Cao W., Jiang W., Chen H., Ding X., Zhao H., Zhang H., Wang C., Zhao J., Sun X., Tian R., Wu W., Wu D., Ma J., Chen Y., Zhang D., Xie J., Yan X., Zhou X., Liu Z., Wang J., Du B., Qin Y., Gao P., Qin X., Xu Y., Zhang W., Li T., Zhang F., Zhao Y., Li Y., and Zhang S. (2020). Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N. Engl. J. Med. 382, e38.
    1. Vu D., Ruggiero M., Choi W.S., Masri D., Flyer M., Shyknevsky I., and Stein E.G. (2020). Three unsuspected CT diagnoses of COVID-19. Emerg. Radiol. 27, 229–232
    1. Griffin D.O., Jensen A., Khan M., Chin J., Chin K., Parnell R., Awwad C., and Patel D. (2020). Arterial thromboembolic complications in COVID-19 in low-risk patients despite prophylaxis. Br. J. Haematol. 190, e11–e13
    1. Ghani M.U., Kumar M., Ghani U., Sonia F., and Abbas S.A. (2020). Intracranial hemorrhage complicating anticoagulant prophylactic therapy in three hospitalized COVID-19 patients. J. Neurovirol. 26, 602–604
    1. Turbin R.E., Wawrzusin P.J., Sakla N.M., Traba C.M., Wong K.G., Mirani N., Eloy J.A., and Nimchinsky E.A. (2020). Orbital cellulitis, sinusitis and intracranial abnormalities in two adolescents with COVID-19. Orbit (Amsterdam, Netherlands) 39, 305–310
    1. Franceschi A.M., Ahmed O., Giliberto L. and Castillo M. (2020). Hemorrhagic posterior reversible encephalopathy syndrome as a manifestation of COVID-19 infection. AJNR Am. J. Neuroradiol. 41, 1173–1176
    1. Zayet S., Klopfenstein T., Kovacs R., Stancescu S., and Hagenkotter B. (2020). Acute cerebral stroke with multiple infarctions and COVID-19, France, 2020. Emerg. Infect. Dis. 26, 2258–2260
    1. Gulko E., Gomes W., Ali S., Al-Mufti F., and Mehta H. (2020). Acute common carotid artery bifurcation thrombus: an emerging pattern of acute strokes in patients with COVID-19? AJNR Am. J. Neuroradiol. 41, E65–E66
    1. Heman-Ackah S.M., Su Y.S., Spadola M., Petrov D., Chen H.I., Schuster J., and Lucas T. (2020). Neurologically devastating intraparenchymal hemorrhage in COVID-19 patients on extracorporeal membrane oxygenation: a case series. Neurosurgery 87, E147–E151
    1. Carroll E., and Lewis A. (2020). Catastrophic intracranial hemorrhage in two critically ill patients with COVID-19. Neurocrit. Care. doi: 10.1007/s12028-020-00993-5. [Epub ahead of print]
    1. Gonzalez-Pinto T., Luna-Rodriguez A., Moreno-Estebanez A., Agirre-Beitia G., Rodriguez-Antiguedad A., and Ruiz-Lopez M. (2020). Emergency room neurology in times of COVID-19: malignant ischaemic stroke and SARS-CoV-2 infection. Eur. J. Neurol. doi: 10.1111/ene.14286. [Epub ahead of print]
    1. Zulfiqar A.A., Lorenzo-Villalba N., Hassler P., and Andres E. (2020). Immune thrombocytopenic purpura in a patient with Covid-19. N. Engl. J. Med. 382, e43.
    1. Goldberg M.F., Goldberg M.F., Cerejo R., and Tayal A.H. (2020). Cerebrovascular disease in COVID-19. AJNR Am. J. Neuroradiol. 41, 1170–1172
    1. Deliwala S., Abdulhamid S., Abusalih M.F., Al-Qasmi M.M., and Bachuwa G. (2020). Encephalopathy as the sentinel sign of a cortical stroke in a patient infected with coronavirus disease-19 (COVID-19). Cureus 12, e8121.
    1. Sharifi-Razavi A., Karimi N., and Rouhani N. (2020). COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect. 35, 100669.
    1. Li J., Long X., Zhu C., Hu S., Lin Z., Li J., and Xiong N. (2020). A case of COVID-19 pneumonia with cerebral hemorrhage. Thromb. Res. 193, 22–24
    1. Hemasian H., and Ansari B. (2020). First case of Covid-19 presented with cerebral venous thrombosis: a rare and dreaded case. Rev. Neurol. 176, 521–523
    1. Wee N.K., Fan E.B., Lee K.C.H., Chia Y.W., and Lim T.C.C. (2020). CT fluid-blood levels in COVID-19 intracranial hemorrhage. AJNR Am. J. Neuroradiol. 41, E76–E77
    1. Co C.O.C., Yu J.R.T., Laxamana L.C., and David-Ona D.I.A. (2020). Intravenous thrombolysis for stroke in a COVID-19 positive Filipino patient, a case report. J. Clin. Neurosci. 77, 234–236
    1. Lima C.F.C., Holanda J.L.B., Pessoa M.S.L., and Coimbra P.P.A. (2020). Acute ischemic stroke in a patient with COVID-19. Arq. Neuro-Psiquiatr. 78, 454–455
    1. Muhammad S., Petridis A., Cornelius J.F., and Hanggi D. (2020). Letter to editor: Severe brain haemorrhage and concomitant COVID-19 Infection: a neurovascular complication of COVID-19. Brain Behav. Immun. 87, 150–151
    1. Bruggemann R., Gietema H., Jallah B., Ten Cate H., Stehouwer C., and Spaetgens B. (2020). Arterial and venous thromboembolic disease in a patient with COVID-19: a case report. Thromb. Res. 191, 153–155
    1. Pinto A.A., Carroll L.S., Nar V., Varatharaj A., and Galea I. (2020). CNS inflammatory vasculopathy with antimyelin oligodendrocyte glycoprotein antibodies in COVID-19. Neurol. Neuroimmunol. Neuroinflamm. 7, e813.
    1. Garaci F., Di Giuliano F., Picchi E., Da Ros V., and Floris R. (2020). Venous cerebral thrombosis in COVID-19 patient. J. Neurol. Sci. 414, 116871.
    1. Benameur K., Agarwal A., Auld S.C., Butters M.P., Webster A.S., Ozturk T., Howell J.C., Bassit L.C., Velasquez A., Schinazi R.F., Mullins M.E., and Hu W.T. (2020). Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease, Atlanta, Georgia, USA, 2020. Emerg. Infect. Dis. 26, 2016–2021
    1. Kishfy L., Casasola M., Banankhah P., Parvez A., Jan Y.J., Shenoy A.M., Thomson C., and AbdelRazek M.A. (2020). Posterior reversible encephalopathy syndrome (PRES) as a neurological association in severe Covid-19. J. Neurol. Sci. 414, 116943.
    1. Filatov A., Sharma P., Hindi F., and Espinosa P.S. (2020). Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus 12, e7352.
    1. Poyiadji N., Shahin G., Noujaim D., Stone M., Patel S., and Griffith B. (2020). COVID-19-associated acute hemorrhagic necrotizing encephalopathy: imaging features. Radiology 296, E119–E120
    1. Espinosa P.S., Rizvi Z., Sharma P., Hindi F., and Filatov A. (2020). Neurological complications of coronavirus disease (COVID-19): encephalopathy, MRI brain and cerebrospinal fluid findings: case 2. Cureus 12, e7930.
    1. Princiotta Cariddi L., Tabaee Damavandi P., Carimati F., Banfi P., Clemenzi A., Marelli M., Giorgianni A., Vinacci G., Mauri M., and Versino M. (2020). Reversible encephalopathy syndrome (PRES) in a COVID-19 patient. J. Neurol. doi: 10.1007/s00415-020-10001-7. [Epub ahead of print]
    1. Virhammar J., Kumlien E., Fallmar D., Frithiof R., Jackmann S., Skold M.K., Kadir M., Frick J., Lindeberg J., Olivero-Reinius H., Ryttlefors M., Cunningham J.L., Wikstrom J., Grabowska A., Bondeson K., Bergquist J., Zetterberg H., and Rostami E. (2020). Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology 95, 445–449
    1. Bodro M., Compta Y., Llansó L., Esteller D., Doncel-Moriano A., Mesa A., Rodríguez A., Sarto J., Martínez-Hernandez E., Vlagea A., Egri N., Filella X., Morales-Ruiz M., Yagüe J., Soriano A., Graus F., and García, F.; “Hospital Clínic Infecto-COVID-19” and “Hospital Clínic Neuro-COVID-19” groups. (2020). Increased CSF levels of IL-1β, IL-6, and ACE in SARS-CoV-2-associated encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 7, e821.
    1. Zhou L., Zhang M., Wang J., and Gao J. (2020). Sars-Cov-2: Underestimated damage to nervous system. Travel Med. Infect. Dis. 36, 101642.
    1. Ye M., Ren Y., and Lv T. (2020). Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immun. 88, 945–946
    1. Wong P.F., Craik S., Newman P., Makan A., Srinivasan K., Crawford E., Dev D., Moudgil H., and Ahmad N. (2020). Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin. Med. (Lond.) 20, 293–294
    1. Stoyanov G.S., Lyutfi E., Dzhenkov D.L., and Petkova L. (2020). Acute necrotizing encephalitis in viral respiratory tract infection: an autopsy case report. Cureus 12, e8070.
    1. Pilotto A., Odolini S., Masciocchi S., Comelli A., Volonghi I., Gazzina S., Nocivelli S., Pezzini A., Foca E., Caruso A., Leonardi M., Pasolini M.P., Gasparotti R., Castelli F., Ashton N.J., Blennow K., Zetterberg H., and Padovani A. (2020). Steroid-responsive encephalitis in coronavirus disease 2019. Ann. Neurol. doi: 10.1002/ana.25783. [Epub ahead of print]
    1. Huang Y.H., Jiang D., and Huang J.T. (2020). SARS-CoV-2 detected in cerebrospinal fluid by PCR in a case of COVID-19 encephalitis. Brain Behav. Immun. 87, 149.
    1. Zoghi A., Ramezani M., Roozbeh M., Darazam I.A., and Sahraian M.A. (2020). A case of possible atypical demyelinating event of the central nervous system following COVID-19. Mult. Scler. Relat. Disord. 44, 102324.
    1. Dogan L., Kaya D., Sarikaya T., Zengin R., Dincer A., Akinci I.O., and Afsar N. (2020). Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: case series. Brain Behav. Immun. 87, 155–158
    1. von Weyhern C.H., Kaufmann I., Neff F., and Kremer M. (2020). Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet 395, e109.
    1. Parsons T., Banks S., Bae C., Gelber J., Alahmadi H., and Tichauer M. (2020). COVID-19-associated acute disseminated encephalomyelitis (ADEM). J. Neurol. 267, 2799–2802
    1. Reichard R.R., Kashani K.B., Boire N.A., Constantopoulos E., Guo Y., and Lucchinetti C.F. (2020). Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 140, 1–6
    1. Novi G., Rossi T., Pedemonte E., Saitta L., Rolla C., Roccatagliata L., Inglese M., and Farinini D. (2020). Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol. Neuroimmunol. Neuroinflamm. doi: 10.1212/NXI.0000000000000797. [Epub ahead of print]
    1. Moreau A., Ego A., Vandergheynst F., Taccone F.S., Sadeghi N., Montesinos I., Gaspard N., and Gorham J. (2020). Cytotoxic lesions of the corpus callosum (CLOCCs) associated with SARS-CoV-2 infection. J. Neurol. doi: 10.1007/s00415-020-10164-3. [Epub ahead of print]
    1. Solomon I.H., Normandin E., Bhattacharyya S., Mukerji S.S., Keller K., Ali A.S., Adams G., Hornick J.L., Padera R.F. Jr., and Sabeti P. (2020). Neuropathological features of Covid-19. N. Engl. J. Med. 383, 989–992
    1. Carrabba G., Tariciotti L., Guez S., Calderini E., and Locatelli M. (2020). Neurosurgery in an infant with COVID-19. Lancet 395, e76.
    1. Zhao K., Huang J., Dai D., Feng Y., Liu L., and Nie S. (2020). Acute myelitis after SARS-CoV-2 infection: a case report. medRxiv 2020.2003.2016.20035105
    1. Zachariadis A., Tulbu A., Strambo D., Dumoulin A., and Di Virgilio G. (2020). Transverse myelitis related to COVID-19 infection. J. Neurol. doi: 10.1007/s00415-020-09997-9. [Epub ahead of print]
    1. Valiuddin H., Skwirsk B., and Paz-Arabo P. (2020). Acute transverse myelitis associated with SARS-CoV-2: a case-report. Brain Behav. Immun. Health 5, 100091.
    1. Munz M., Wessendorf S., Koretsis G., Tewald F., Baegi R., Kramer S., Geissler M., and Reinhard M. (2020). Acute transverse myelitis after COVID-19 pneumonia. J. Neurol. 267, 2196–2197
    1. Zubair A.S., McAlpine L.S., Gardin T., Farhadian S., Kuruvilla D.E., and Spudich S. (2020). Neuropathogenesis and neurologic manifestations of the coronaviruses in the age of coronavirus disease 2019: a review. JAMA Neurol. 77, 1018–1027
    1. Tsai S.T., Lu M.K., San S., and Tsai C.H. (2020). The neurologic manifestations of coronavirus disease 2019 pandemic: a systemic review. Front. Neurol. 11, 498.
    1. Whittaker A., Anson M., and Harky A. (2020). Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol. Scand. 142, 14–22
    1. Montalvan V., Lee J., Bueso T., De Toledo J., and Rivas K. (2020). Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin. Neurol. Neurosurg. 194, 105921.
    1. Koralnik I.J., and Tyler K.L. (2020). COVID-19: a global threat to the nervous system. Ann. Neurol. 88, 1–11
    1. Fotuhi M., Mian A., Meysami S., and Raji C.A. (2020). Neurobiology of COVID-19. J. Alzheimers Dis. 76, 3–19
    1. Tang N., Bai H., Chen X., Gong J., Li D., and Sun Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 18, 1094–1099
    1. Tobin M.J., Laghi F., and Jubran A. (2020). Why COVID-19 silent hypoxemia is baffling to physicians. Am. J. Respir. Crit. Care Med. 202, 356–360
    1. Grossetete M., Phelps J., Arko L., Yonas H., and Rosenberg G.A. (2009). Elevation of matrix metalloproteinases 3 and 9 in cerebrospinal fluid and blood in patients with severe traumatic brain injury. Neurosurgery 65, 702–708
    1. Fitzgerald S. (2020). The spread of COVID-19: questions raised, some answered by neuroinfectious disease experts. Neurology Today (Last accessed November2, 2020)
    1. Colizzi M., Bortoletto R., Silvestri M., Mondini F., Puttini E., Cainelli C., Gaudino R., Ruggeri M., and Zoccante L. (2020). Medically unexplained symptoms in the times of COVID-19 pandemic: a case-report. Brain Behav. Immun. Health 5, 100073.
    1. Troyer E.A., Kohn J.N., and Hong S. (2020). Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav. Immun. 87, 34–39
    1. Ellul M.A., Benjamin L., Singh B., Lant S., Michael B.D., Easton A., Kneen R., Defres S., Sejvar J., and Solomon T. (2020). Neurological associations of COVID-19. Lancet Neurol. 19, 767–783
    1. Baz-Martinez M., Da Silva-Alvarez S., Rodriguez E., Guerra J., El Motiam A., Vidal A., Garcia-Caballero T., Gonzalez-Barcia M., Sanchez L., Munoz-Fontela C., Collado M., and Rivas C. (2016). Cell senescence is an antiviral defense mechanism. Sci. Rep. 6, 37007.
    1. Hascup E.R., and Hascup K.N. (2020). Does SARS-CoV-2 infection cause chronic neurological complications? Geroscience 42, 1083–1087
    1. Kinney J.W., Bemiller S.M., Murtishaw A.S., Leisgang A.M., Salazar A.M., and Lamb B.T. (2018). Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement. (N. Y.) 4, 575–590
    1. Mehta P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., and Manson J.J.; HLH Across Speciality Collaboration UK. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033–1034
    1. Kox M., Waalders N.J.B., Kooistra E.J., Gerretsen J., and Pickkers P. (2020). Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA. 324, 1565–1567
    1. Elcioglu H.K., Aslan E., Ahmad S., Alan S., Salva E., Elcioglu O.H., and Kabasakal L. (2016). Tocilizumab's effect on cognitive deficits induced by intracerebroventricular administration of streptozotocin in Alzheimer's model. Mol. Cell. Biochem. 420, 21–28
    1. Moir R.D., Lathe R., and Tanzi R.E. (2018). The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement. 14, 1602–1614
    1. Bohmwald K., Galvez N.M.S., Rios M., and Kalergis A.M. (2018). Neurologic alterations due to respiratory virus infections. Front. Cell. Neurosci. 12, 386.
    1. Ludlow M., Kortekaas J., Herden C., Hoffmann B., Tappe D., Trebst C., Griffin D.E., Brindle H.E., Solomon T., Brown A.S., van Riel D., Wolthers K.C., Pajkrt D., Wohlsein P., Martina B.E.E., Baumgartner W., Verjans G.M., and Osterhaus A. (2016). Neurotropic virus infections as the cause of immediate and delayed neuropathology. Acta Neuropathol. 131, 159–184
    1. Wu Y., Xu X., Chen Z., Duan J., Hashimoto K., Yang L., Liu C., and Yang C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav. Immun. 87, 18–22
    1. Ragin A.B., Wu Y., Gao Y., Keating S., Du H., Sammet C., Kettering C.S., and Epstein L.G. (2015). Brain alterations within the first 100 days of HIV infection. Ann. Clin. Transl. Neurol. 2, 12–21
    1. Bradshaw M.J., and Venkatesan A. (2016). Herpes simplex virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13, 493–508
    1. Gill C.M., Beckham J.D., Piquet A.L., Tyler K.L., and Pastula D.M. (2019). Five emerging neuroinvasive arboviral diseases: Cache Valley, Eastern Equine Encephalitis, Jamestown Canyon, Powassan, and Usutu. Semin. Neurol. 39, 419–427
    1. Brito Ferreira M.L., Militao de Albuquerque M.F.P., de Brito C.A.A., de Oliveira Franca R.F., Porto Moreira A.J., de Morais Machado M.I., da Paz Melo R., Medialdea-Carrera R., Dornelas Mesquita S., Lopes Santos M., Mehta R., Ramos E.S.R., Leonhard S.E., Ellul M., Rosala-Hallas A., Burnside G., Turtle L., Griffiths M.J., Jacobs B.C., Bhojak M., Willison H.J., Pena L.J., Pardo C.A., Ximenes R.A.A., Martelli C.M.T., Brown D.W.G., Cordeiro M.T., Lant S., and Solomon T. (2020). Neurological disease in adults with Zika and chikungunya virus infection in Northeast Brazil: a prospective observational study. Lancet. Neurol. 19, 826–839
    1. Zhang B.Z., Chu H., Han S., Shuai H., Deng J., Hu Y.F., Gong H.R., Lee A.C., Zou Z., Yau T., Wu W., Hung I.F., Chan J.F., Yuen K.Y., and Huang J.D. (2020). SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 30, 928–931
    1. Ramani A., Muller L., P, N.O., Gabriel E., Abida-Islam P., Muller-Schiffmann A., Mariappan A., Goureau O., Gruell H., Walker A., Andree M., Hauka S., Houwaart T., Dilthey A., Wohlgemuth K., Omran H., Klein F., Wieczorek D., Adams O., Timm J., Korth C., Schaal H., and Gopalakrishnan J. (2020). SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. e106230.
    1. Li W., Lee M.H., Henderson L., Tyagi R., Bachani M., Steiner J., Campanac E., Hoffman D.A., von Geldern G., Johnson K., Maric D., Morris H.D., Lentz M., Pak K., Mammen A., Ostrow L., Rothstein J., and Nath A. (2015). Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7, 307ra153
    1. Garcia-Montojo M., Doucet-O'Hare T., Henderson L., and Nath A. (2018). Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit. Rev. Microbiol. 44, 715–738
    1. Baig A.M., Khaleeq A., Ali U., and Syeda H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 11, 995–998
    1. Hamming I., Timens W., Bulthuis M.L., Lely A.T., Navis G., and van Goor H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631–637
    1. Lukiw W.J., Pogue A., and Hill J.M. (2020). SARS-CoV-2 infectivity and neurological targets in the brain. Cell. Mol. Neurobiol. doi: 10.1007/s10571-020-00947-7. [Epub ahead of print]
    1. Abiodun O.A., and Ola M.S. (2020). Role of brain renin angiotensin system in neurodegeneration: an update. Saudi J. Biol. Sci. 27, 905–912
    1. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., and Fowkes M. (2020). Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 92, 699–702
    1. Politi L.S., Salsano E., and Grimaldi M. (2020). Magnetic resonance imaging alteration of the brain in a patient with coronavirus disease 2019 (COVID-19) and Anosmia. JAMA Neurol. 77, 1028–1029
    1. Yeager A. (2020). Lost smell and taste hint COVID-19 can target the nervous system. The Scientist Magazine® (Last accessed November2, 2020)
    1. Butowt R., and Bilinska K. (2020). SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem. Neurosci. 11, 1200–1203
    1. Brann D.H., Tsukahara T., Weinreb C., Lipovsek M., Van den Berge K., Gong B., Chance R., Macaulay I.C., Chou H.J., Fletcher R.B., Das D., Street K., de Bezieux H.R., Choi Y.G., Risso D., Dudoit S., Purdom E., Mill J., Hachem R.A., Matsunami H., Logan D.W., Goldstein B.J., Grubb M.S., Ngai J., and Datta S.R. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci. Adv. 6, eabc5801
    1. Chen M., Shen W., Rowan N.R., Kulaga H., Hillel A., Ramanathan M. Jr., and Lane A.P. (2020). Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur. Respir. J. 56, 2001948.
    1. Li Y.C., Bai W.Z., and Hashikawa T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J. Med. Virol. 92, 552–555
    1. Turtle L. (2020). Respiratory failure alone does not suggest central nervous system invasion by SARS-CoV-2. J. Med. Virol. 92, 705–706
    1. Kanberg N., Ashton N.J., Andersson L.M., Yilmaz A., Lindh M., Nilsson S., Price R.W., Blennow K., Zetterberg H., and Gisslen M. (2020). Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95, e1754–e1759
    1. Farhadian S., Glick L.R., Vogels C.B.F., Thomas J., Chiarella J., Casanovas-Massana A., Zhou J., Odio C., Vijayakumar P., Geng B., Fournier J., Bermejo S., Fauver J.R., Alpert T., Wyllie A.L., Turcotte C., Steinle M., Paczkowski P., Dela Cruz C., Wilen C., Ko A.I., MacKay S., Grubaugh N.D., Spudich S., and Barakat L.A. (2020). Acute encephalopathy with elevated CSF inflammatory markers as the initial presentation of COVID-19. BMC Neurol. 20, 248.
    1. Rohlwink U.K., and Figaji A.A. (2014). Biomarkers of brain injury in cerebral infections. Clin. Chem. 60, 823–834
    1. Dittrich S., Sunyakumthorn P., Rattanavong S., Phetsouvanh R., Panyanivong P., Sengduangphachanh A., Phouminh P., Anantatat T., Chanthongthip A., Lee S.J., Dubot-Pérès A., Day N.P.J., Paris D.H., Newton P.N., and Turner G.D.H. (2015). Blood-brain barrier function and biomarkers of central nervous system injury in rickettsial versus other neurological infections in Laos. Am. J. Trop. Med. Hyg. 93, 232–237
    1. Zhang C.X., Zhang D.J., Wang Y.L., Han W., Shi G.C., and Zhang H.Q. (2016). Expression level of NSE, S100B and NPY in children with acute miliary phthisis and secondary tubercular meningitis. Eur. Rev. Med. Pharmacol. Sci. 20, 1474–1478
    1. Rohlwink U.K., Mauff K., Wilkinson K.A., Enslin N., Wegoye E., Wilkinson R.J., and Figaji A.A. (2017). Biomarkers of cerebral injury and inflammation in pediatric tuberculous meningitis. Clin. Infect. Dis. 65, 1298–1307
    1. Abdulle S., Mellgren A., Brew B.J., Cinque P., Hagberg L., Price R.W., Rosengren L., and Gisslen M. (2007). CSF neurofilament protein (NFL)—a marker of active HIV-related neurodegeneration. J. Neurol. 254, 1026–1032
    1. Guha D., Lorenz D.R., Misra V., Chettimada S., Morgello S., and Gabuzda D. (2019). Proteomic analysis of cerebrospinal fluid extracellular vesicles reveals synaptic injury, inflammation, and stress response markers in HIV patients with cognitive impairment. J. Neuroinflamm. 16, 254
    1. Guha D., Mukerji S.S., Chettimada S., Misra V., Lorenz D.R., Morgello S., and Gabuzda D. (2019). Cerebrospinal fluid extracellular vesicles and neurofilament light protein as biomarkers of central nervous system injury in HIV-infected patients on antiretroviral therapy. AIDS 33, 615–625
    1. Gisslen M., Price R.W., Andreasson U., Norgren N., Nilsson S., Hagberg L., Fuchs D., Spudich S., Blennow K., and Zetterberg H. (2016). Corrigendum to: “Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study” [EBioMedicine 3 (216) 135-140]. EBioMedicine 7, 287–288
    1. Gisslen M., Price R.W., Andreasson U., Norgren N., Nilsson S., Hagberg L., Fuchs D., Spudich S., Blennow K., and Zetterberg H. (2016). Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140
    1. Medana I.M., Lindert R.B., Wurster U., Hien T.T., Day N.P., Phu N.H., Mai N.T., Chuong L.V., Chau T.T., Turner G.D., Farrar J.J., and White N.J. (2005). Cerebrospinal fluid levels of markers of brain parenchymal damage in Vietnamese adults with severe malaria. Trans. R. Soc. Trop. Med. Hyg. 99, 610–617
    1. Medana I.M., Idro R., and Newton C.R. (2007). Axonal and astrocyte injury markers in the cerebrospinal fluid of Kenyan children with severe malaria. J. Neurol. Sci. 258, 93–98
    1. Armah H.B., Wilson N.O., Sarfo B.Y., Powell M.D., Bond V.C., Anderson W., Adjei A.A., Gyasi R.K., Tettey Y., Wiredu E.K., Tongren J.E., Udhayakumar V., and Stiles J.K. (2007). Cerebrospinal fluid and serum biomarkers of cerebral malaria mortality in Ghanaian children. Malar. J. 6, 147.
    1. Tahar R., Albergaria C., Zeghidour N., Ngane V.F., Basco L.K., and Roussilhon C. (2016). Plasma levels of eight different mediators and their potential as biomarkers of various clinical malaria conditions in African children. Malar. J. 15, 337.
    1. Villaverde C., Namazzi R., Shabani E., Park G.S., Datta D., Hanisch B., Opoka R.O., and John C.C. (2019). Retinopathy-positive cerebral malaria is associated with greater inflammation, blood-brain barrier breakdown, and neuronal damage than retinopathy-negative cerebral malaria. J. Pediatric Infect. Dis. Soc. doi: 10.1093/jpids/piz082. [Epub ahead of print]
    1. Datta D., Conroy A.L., Castelluccio P.F., Ssenkusu J.M., Park G.S., Opoka R.O., Bangirana P., Idro R., Saykin A.J., and John C.C. (2020). Elevated cerebrospinal fluid tau protein concentrations on admission are associated with long-term neurologic and cognitive impairment in Ugandan children with cerebral malaria. Clin. Infect. Dis. 70, 1161–1168
    1. Ameres M., Brandstetter S., Toncheva A.A., Kabesch M., Leppert D., Kuhle J., and Wellmann S. (2020). Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J. Neurol. doi: 10.1007/s00415-020-10050-y [Epub ahead of print]
    1. Senel M., Abu-Rumeileh S., Michel D., Garibashvili T., Althaus K., Kassubek J., and Otto M. (2020). Miller-Fisher syndrome after COVID-19: neurochemical markers as an early sign of nervous system involvement. European journal of neurology : the official journal of the European Federation of Neurological Societies. Eur. J. Neurol. doi: 10.1111/ene.14473. [Epub ahead of print]
    1. Jain V., Armah H.B., Tongren J.E., Ned R.M., Wilson N.O., Crawford S., Joel P.K., Singh M.P., Nagpal A.C., Dash A.P., Udhayakumar V., Singh N., and Stiles J.K. (2008). Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India. Malar. J. 7, 83.
    1. Oliveira M.F., Chaillon A., Nakazawa M., Vargas M., Letendre S.L., Strain M.C., Ellis R.J., Morris S., Little S.J., Smith D.M., and Gianella S. (2017). Early antiretroviral therapy is associated with lower HIV DNA molecular diversity and lower inflammation in cerebrospinal fluid but does not prevent the establishment of compartmentalized HIV DNA populations. PLoS Pathog. 13, e1006112.
    1. Anderson A.M., Easley K.A., Kasher N., Franklin D., Heaton R.K., Zetterberg H., Blennow K., Gisslen M., and Letendre S.L. (2018). Neurofilament light chain in blood is negatively associated with neuropsychological performance in HIV-infected adults and declines with initiation of antiretroviral therapy. J. Neurovirol. 24, 695–701
    1. Hermansson L., Yilmaz A., Price R.W., Nilsson S., McCallister S., Makadzange T., Das M., Zetterberg H., Blennow K., and Gisslen M. (2019). Plasma concentration of neurofilament light chain protein decreases after switching from tenofovir disoproxil fumarate to tenofovir alafenamide fumarate. PLoS One 14, e0226276.
    1. Glushakova O.Y., Jeromin A., Martinez J., Johnson D., Denslow N., Streeter J., Hayes R.L., and Mondello S. (2012). Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats. Toxicol. Sci. 130, 158–167
    1. Mondello S., Palmio J., Streeter J., Hayes R.L., Peltola J., and Jeromin A. (2012). Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol. 12, 85.
    1. Kochanek P.M., Berger R.P., Fink E.L., Au A.K., Bayir H., Bell M.J., Dixon C.E., and Clark R.S. (2013). The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care. Front. Neurol. 4, 40.
    1. Douglas-Escobar M.V., Heaton S.C., Bennett J., Young L.J., Glushakova O., Xu X., Barbeau D.Y., Rossignol C., Miller C., Old Crow A.M., Hayes R.L., and Weiss M.D. (2014). UCH-L1 and GFAP serum levels in neonates with hypoxic-ischemic encephalopathy: a single center pilot study. Front. Neurol. 5, 273.
    1. Callaway C.W., Donnino M.W., Fink E.L., Geocadin R.G., Golan E., Kern K.B., Leary M., Meurer W.J., Peberdy M.A., Thompson T.M., and Zimmerman J.L. (2015). Part 8: post-cardiac arrest care: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 132, 18 Suppl. 2, S465–S482
    1. Glushakova O.Y., Glushakov A.V., Miller E.R., Valadka A.B., and Hayes R.L. (2016). Biomarkers for acute diagnosis and management of stroke in neurointensive care units. Brain Circ 2, 28–47
    1. Fink E.L., Berger R.P., Clark R.S., Watson R.S., Angus D.C., Panigrahy A., Richichi R., Callaway C.W., Bell M.J., Mondello S., Hayes R.L., and Kochanek P.M. (2016). Exploratory study of serum ubiquitin carboxyl-terminal esterase L1 and glial fibrillary acidic protein for outcome prognostication after pediatric cardiac arrest. Resuscitation 101, 65–70
    1. Abo-Elwafa H.A., Ibrahim H.K., El-Nady H.M., and Abbas A.H. (2019). How to design economic predictive laboratory panel evaluating acute ischemic stroke outcome. Neurosci. Med. 10, 1–14
    1. Geocadin R.G., Callaway C.W., Fink E.L., Golan E., Greer D.M., Ko N.U., Lang E., Licht D.J., Marino B.S., McNair N.D., Peberdy M.A., Perman S.M., Sims D.B., Soar J., and Sandroni, C.; American Heart Association Emergency Cardiovascular Care Committee. (2019). Standards for studies of neurological prognostication in comatose survivors of cardiac arrest: a scientific statement from the American Heart Association. Circulation 140, e517–e542
    1. Glushakova O.Y., Glushakov A.V., Mannix R., Miller E.R., Valadka A.B., and Hayes R.L. (2018). The use of blood-based biomarkers to improve the design of clinical trials of traumatic brain injury, in: Handbook of Neuroemergency Clinical Trials. B.E. Skolnick and W.M. Alves (eds). Elsevier Academic: Amsterdam, pps. 139–166
    1. Bai L., Wang S., Sun C., Glushakova O.Y., Valadka A.B., Hayes R.L., and Glushakov A.V. (2018). The potential of brain-specific blood biomarkers for TBI patient management, diagnosis, and clinical research, in: Neurotrauma. K.K. Wang (ed). Oxford University Press: New York, pps. 189–210
    1. Fink E.L., Berger R.P., Clark R.S., Watson R.S., Angus D.C., Richichi R., Panigrahy A., Callaway C.W., Bell M.J., and Kochanek P.M. (2014). Serum biomarkers of brain injury to classify outcome after pediatric cardiac arrest. Crit. Care Med. 42, 664–674
    1. Ebner F., Moseby-Knappe M., Mattsson-Carlgren N., Lilja G., Dragancea I., Unden J., Friberg H., Erlinge D., Kjaergaard J., Hassager C., Wise M.P., Kuiper M., Stammet P., Wanscher M., Horn J., Ullen S., Cronberg T., and Nielsen N. (2020). Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation 154, 61–68
    1. Bembea M.M., Savage W., Strouse J.J., Schwartz J.M., Graham E., Thompson C.B., and Everett A. (2011). Glial fibrillary acidic protein as a brain injury biomarker in children undergoing extracorporeal membrane oxygenation. Pediatr. Crit. Care Med. 12, 572–579
    1. Bembea M.M., Rizkalla N., Freedy J., Barasch N., Vaidya D., Pronovost P.J., Everett A.D., and Mueller G. (2015). Plasma biomarkers of brain injury as diagnostic tools and outcome predictors after extracorporeal membrane oxygenation. Crit. Care Med. 43, 2202–2211
    1. Fletcher-Sandersjoo A., Lindblad C., Thelin E.P., Bartek J. Jr., Sallisalmi M., Elmi-Terander A., Svensson M., Bellander B.M., and Broman L.M. (2019). Serial S100B sampling detects intracranial lesion development in patients on extracorporeal membrane oxygenation. Front. Neurol. 10, 512.
    1. Schrage B., Rubsamen N., Becher P.M., Roedl K., Soffker G., Schwarzl M., Dreher A., Schewel J., Ghanem A., Grahn H., Lubos E., Bernhardt A., Kluge S., Reichenspurner H., Blankenberg S., Spangenberg T., and Westermann D. (2019). Neuron-specific-enolase as a predictor of the neurologic outcome after cardiopulmonary resuscitation in patients on ECMO. Resuscitation 136, 14–20
    1. Wiberg S., Kjaergaard J., Kjaergaard B., Moller B., Nornberg B., Sorensen A.M., Hassager C., and Wanscher M. (2017). The biomarkers neuron-specific enolase and S100b measured the day following admission for severe accidental hypothermia have high predictive values for poor outcome. Resuscitation 121, 49–53
    1. Oeckl P., Halbgebauer S., Anderl-Straub S., Steinacker P., Huss A.M., Neugebauer H., von Arnim C.A.F., Diehl-Schmid J., Grimmer T., Kornhuber J., Lewczuk P., Danek A., Consortium for Frontotemporal Lobar Degeneration G., Ludolph A.C., and Otto M. (2019). Glial fibrillary acidic protein in serum is increased in Alzheimer's disease and correlates with cognitive impairment. J. Alzheimers Dis. 67, 481–488
    1. Mattsson N., Cullen N.C., Andreasson U., Zetterberg H., and Blennow K. (2019). Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 76, 791–799
    1. Preische O., Schultz S.A., Apel A., Kuhle J., Kaeser S.A., Barro C., Graber S., Kuder-Buletta E., LaFougere C., Laske C., Voglein J., Levin J., Masters C.L., Martins R., Schofield P.R., Rossor M.N., Graff-Radford N.R., Salloway S., Ghetti B., Ringman J.M., Noble J.M., Chhatwal J., Goate A.M., Benzinger T.L.S., Morris J.C., Bateman R.J., Wang G., Fagan A.M., McDade E.M., Gordon B.A., and Jucker M.; Dominantly Inherited Alzheimer Network. (2019). Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer's disease. Nat. Med. 25, 277–283
    1. Meier T.B., Huber D.L., Bohorquez-Montoya L., Nitta M.E., Savitz J., Teague T.K., Bazarian J.J., Hayes R.L., Nelson L.D., and McCrea M.A. (2020). A prospective study of acute blood-based biomarkers for sport-related concussion. Ann. Neurol. 87, 907–920
    1. Asken B.M., Yang Z., Xu H., Weber A.G., Hayes R.L., Bauer R.M., DeKosky S.T., Jaffee M.S., Wang K.K.W., and Clugston J.R. (2020). Acute effects of sport-related concussion on serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, total tau, and neurofilament light measured by a multiplex assay. J. Neurotrauma 37, 1537–1545
    1. U.S. Food and Drug Administration. Evaluation of Automatic Class III Designation for Banyan Brain Trauma Indicator. Decision memorandum. (Last accessed November2, 2020)
    1. Bazarian J.J., Biberthaler P., Welch R.D., Lewis L.M., Barzo P., Bogner-Flatz V., Gunnar Brolinson P., Buki A., Chen J.Y., Christenson R.H., Hack D., Huff J.S., Johar S., Jordan J.D., Leidel B.A., Lindner T., Ludington E., Okonkwo D.O., Ornato J., Peacock W.F., Schmidt K., Tyndall J.A., Vossough A., and Jagoda A.S. (2018). Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 17, 782–789
    1. U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (01/10/2018). Biomarker letter of support. (Last accessed November2, 2020)
    1. Glushakova O.Y., Glushakov A.A., Wijesinghe D.S., Valadka A.B., Hayes R.L., and Glushakov A.V. (2017). Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ. 3, 87–108
    1. Dadas A., Washington J., Diaz-Arrastia R., and Janigro D. (2018). Biomarkers in traumatic brain injury (TBI): a review. Neuropsychiatr. Dis. Treat. 14, 2989–3000
    1. Wang K.K., Yang Z., Zhu T., Shi Y., Rubenstein R., Tyndall J.A., and Manley G.T. (2018). An update on diagnostic and prognostic biomarkers for traumatic brain injury. Exp. Rev. Mol. Diagn. 18, 165–180
    1. Marchi N., Bazarian J.J., Puvenna V., Janigro M., Ghosh C., Zhong J., Zhu T., Blackman E., Stewart D., Ellis J., Butler R., and Janigro D. (2013). Consequences of repeated blood-brain barrier disruption in football players. PLoS One 8, e56805.
    1. Plog B.A., Dashnaw M.L., Hitomi E., Peng W., Liao Y., Lou N., Deane R., and Nedergaard M. (2015). Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526
    1. Iliff J.J., and Nedergaard M. (2013). Is there a cerebral lymphatic system? Stroke 44, 6 Suppl. 1, S93–S95
    1. Plog B.A., and Nedergaard M. (2018). The glymphatic system in central nervous system health and disease: past, present, and future. Ann. Rev. Pathol. 13, 379–394
    1. Glushakova O.Y., Johnson D., and Hayes R.L. (2014). Delayed increases in microvascular pathology after experimental traumatic brain injury are associated with prolonged inflammation, blood-brain barrier disruption, and progressive white matter damage. J. Neurotrauma 31, 1180–1193
    1. Heithoff B.P., George K.K., Phares A.N., Zuidhoek I.A., Munoz-Ballester C., and Robel S. (2020). Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. bioRxiv doi: 10.1101/2020.03.16.993691 PPR: PPR118060
    1. Bailey D.M., Evans K.A., McEneny J., Young I.S., Hullin D.A., James P.E., Ogoh S., Ainslie P.N., Lucchesi C., Rockenbauer A., Culcasi M., and Pietri S. (2011). Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp. Physiol. 96, 1196–1207
    1. Roh H.T., Cho S.Y., and So W.Y. (2017). Obesity promotes oxidative stress and exacerbates blood-brain barrier disruption after high-intensity exercise. J. Sport Health Sci. 6, 225–230
    1. Koh S.X., and Lee J.K. (2014). S100B as a marker for brain damage and blood-brain barrier disruption following exercise. Sports Med. 44, 369–385
    1. Huang X.J., Glushakova O., Mondello S., Van K., Hayes R.L., and Lyeth B.G. (2015). Acute temporal profiles of serum levels of UCH-L1 and GFAP and relationships to neuronal and astroglial pathology following traumatic brain injury in rats. J. Neurotrauma 32, 1179–1189
    1. Lindblad C., Nelson D.W., Zeiler F.A., Ercole A., Ghatan P.H., von Horn H., Risling M., Svensson M., Agoston D.V., Bellander B.M., and Thelin E.P. (2020). Influence of blood-brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: a longitudinal prospective study. J. Neurotrauma 37, 1381–1391
    1. Buttner T., Weyers S., Postert T., Sprengelmeyer R., and Kuhn W. (1997). S-100 protein: serum marker of focal brain damage after ischemic territorial MCA infarction. Stroke 28, 1961–1965
    1. Elting J.W., de Jager A.E., Teelken A.W., Schaaf M.J., Maurits N.M., van der Naalt J., Sibinga C.T., Sulter G.A., and De Keyser J. (2000). Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J. Neurol. Sci. 181, 104–110
    1. Wunderlich M.T., Wallesch C.W., and Goertler M. (2004). Release of neurobiochemical markers of brain damage is related to the neurovascular status on admission and the site of arterial occlusion in acute ischemic stroke. J. Neurol. Sci. 227, 49–53
    1. Foerch C., Curdt I., Yan B., Dvorak F., Hermans M., Berkefeld J., Raabe A., Neumann-Haefelin T., Steinmetz H., and Sitzer M. (2006). Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J. Neurol. Neurosurg. PPsychiatry 77, 181–184
    1. Jauch E.C., Lindsell C., Broderick J., Fagan S.C., Tilley B.C., and Levine S.R.; NINDS rt-PA Stroke Study Group. (2006). Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 37, 2508–2513
    1. Wunderlich M.T., Lins H., Skalej M., Wallesch C.W., and Goertler M. (2006). Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin. Neurol. and Neurosurg. 108, 558–563
    1. Dvorak F., Haberer I., Sitzer M., and Foerch C. (2009). Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc. Dis. (Basel, Switzerland) 27, 37–41
    1. Unden J., Strandberg K., Malm J., Campbell E., Rosengren L., Stenflo J., Norrving B., Romner B., Lindgren A., and Andsberg G. (2009). Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J. Neurol. 256, 72–77
    1. Kaneko T., Kasaoka S., Miyauchi T., Fujita M., Oda Y., Tsuruta R., and Maekawa T. (2009). Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation 80, 790–794
    1. Rhind S.G., Crnko N.T., Baker A.J., Morrison L.J., Shek P.N., Scarpelini S., and Rizoli S.B. (2010). Prehospital resuscitation with hypertonic saline-dextran modulates inflammatory, coagulation and endothelial activation marker profiles in severe traumatic brain injured patients. J. Neuroinflamm. 7, 5
    1. Bielewicz J., Kurzepa J., Czekajska-Chehab E., Stelmasiak Z., and Bartosik-Psujek H. (2011). Does serum Tau protein predict the outcome of patients with ischemic stroke? J. Mol. Neurosci. 43, 241–245
    1. Ehrenreich H., Kastner A., Weissenborn K., Streeter J., Sperling S., Wang K.K., Worthmann H., Hayes R.L., von Ahsen N., Kastrup A., Jeromin A., and Herrmann M. (2011). Circulating damage marker profiles support a neuroprotective effect of erythropoietin in ischemic stroke patients. Mol. Med. 17, 1306–1310
    1. Mortberg E., Zetterberg H., Nordmark J., Blennow K., Catry C., Decraemer H., Vanmechelen E., and Rubertsson S. (2011). Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol. Scand. 55, 1132–1138
    1. Bharosay A., Bharosay V.V., Varma M., Saxena K., Sodani A., and Saxena R. (2012). Correlation of brain biomarker neuron specific enolase (NSE) with degree of disability and neurological worsening in cerebrovascular stroke. Indian J. Clin. Biochem. 27, 186–190
    1. Bouvier D., Fournier M., Dauphin J.B., Amat F., Ughetto S., Labbe A., and Sapin V. (2012). Serum S100B determination in the management of pediatric mild traumatic brain injury. Clin. Chem. 58, 1116–1122
    1. Foerch C., Niessner M., Back T., Bauerle M., De Marchis G.M., Ferbert A., Grehl H., Hamann G.F., Jacobs A., Kastrup A., Klimpe S., Palm F., Thomalla G., Worthmann H., and Sitzer, M.; BE FAST Study Group. (2012). Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke. Clin. Chem. 58, 237–245
    1. Gonzalez-Garcia S., Gonzalez-Quevedo A., Fernandez-Concepcion O., Pena-Sanchez M., Menendez-Sainz C., Hernandez-Diaz Z., Arteche-Prior M., Pando-Cabrera A., and Fernandez-Novales C. (2012). Short-term prognostic value of serum neuron specific enolase and S100B in acute stroke patients. Clin. Biochem. 45, 1302–1307
    1. Hu H.T., Xiao F., Yan Y.Q., Wen S.Q., and Zhang L. (2012). The prognostic value of serum tau in patients with intracerebral hemorrhage. Clin. Biochem. 45, 1320–1324
    1. Montaner J., Mendioroz M., Delgado P., Garcia-Berrocoso T., Giralt D., Merino C., Ribo M., Rosell A., Penalba A., Fernandez-Cadenas I., Romero F., Molina C., Alvarez-Sabin J., and Hernandez-Guillamon M. (2012). Differentiating ischemic from hemorrhagic stroke using plasma biomarkers: the S100B/RAGE pathway. J. Proteomics 75, 4758–4765
    1. Randall J., Mortberg E., Provuncher G.K., Fournier D.R., Duffy D.C., Rubertsson S., Blennow K., Zetterberg H., and Wilson D.H. (2013). Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation 84, 351–356
    1. Okonkwo D.O., Yue J.K., Puccio A.M., Panczykowski D.M., Inoue T., McMahon P.J., Sorani M.D., Yuh E.L., Lingsma H.F., Maas A.I., Valadka A.B., and Manley G.T.; Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) Investigators. (2013). GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J. Neurotrauma 30, 1490–1497
    1. Sanchez-Aguilar M., Tapia-Perez J.H., Sanchez-Rodriguez J.J., Vinas-Rios J.M., Martinez-Perez P., de la Cruz-Mendoza E., Sanchez-Reyna M., Torres-Corzo J.G., and Gordillo-Moscoso A. (2013). Effect of rosuvastatin on cytokines after traumatic head injury. J. Neurosurg. 118, 669–675
    1. Singh H.V., Pandey A., Shrivastava A.K., Raizada A., Singh S.K. and Singh N. (2013). Prognostic value of neuron specific enolase and IL-10 in ischemic stroke and its correlation with degree of neurological deficit. Clin. Chim. Acta 419, 136–138
    1. Zaheer S., Beg M., Rizvi I., Islam N., Ullah E., and Akhtar N. (2013). Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke. Ann. Indian Acad. Neurol. 16, 504–508
    1. Diaz-Arrastia R., Wang K.K., Papa L., Sorani M.D., Yue J.K., Puccio A.M., McMahon P.J., Inoue T., Yuh E.L., Lingsma H.F., Maas A.I., Valadka A.B., Okonkwo D.O., and Manley G.T. (2014). Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25
    1. Kim B.J., Kim Y.J., Ahn S.H., Kim N.Y., Kang D.W., Kim J.S., and Kwon S.U. (2014). The second elevation of neuron-specific enolase peak after ischemic stroke is associated with hemorrhagic transformation. J. Stroke Cerebrovasc. Dis. 23, 2437–2443
    1. Pandey A., Shrivastava A.K., and Saxena K. (2014). Neuron specific enolase and c-reactive protein levels in stroke and its subtypes: correlation with degree of disability. Neurochem. Res. 39, 1426–1432
    1. Purrucker J.C., Herrmann O., Lutsch J.K., Zorn M., Schwaninger M., Bruckner T., Auffarth G.U., and Veltkamp R. (2014). Serum protein S100β is a diagnostic biomarker for distinguishing posterior circulation stroke from vertigo of nonvascular causes. Eur. Neurol. 72, 278–284
    1. Wahlstrom M.R., Olivecrona M., Ahlm C., Bengtsson A., Koskinen L.O., Naredi S., and Hultin M. (2014). Effects of prostacyclin on the early inflammatory response in patients with traumatic brain injury-a randomised clinical study. SpringerPlus 3, 98.
    1. Alatas O.D., Gurger M., Atescelik M., Yildiz M., Demir C.F., Kalayci M., Ilhan N., Acar E., and Ekingen E. (2015). Neuron-specific enolase, S100 calcium-binding protein B, and heat shock protein 70 levels in patients with intracranial hemorrhage. Medicine 94, e2007.
    1. Can S., Akdur O., Yildirim A., Adam G., Cakir D.U., and Karaman H.I. (2015). Myelin basic protein and ischemia modified albumin levels in acute ischemic stroke cases. Pak. J. Med. Sci. 31, 1110–1114
    1. Kumar H., Lakhotia M., Pahadiya H., and Singh J. (2015). To study the correlation of serum S-100 protein level with the severity of stroke and its prognostic implication. J. Neurosci. Rural Pract. 6, 326–330
    1. Llombart V., Garcia-Berrocoso T., Bustamante A., Giralt D., Rodriguez-Luna D., Muchada M., Penalba A., Boada C., Hernandez-Guillamon M., and Montaner J. (2016). Plasmatic retinol-binding protein 4 and glial fibrillary acidic protein as biomarkers to differentiate ischemic stroke and intracerebral hemorrhage. J. Neurochem. 136, 416–424
    1. Lu K., Xu X., Cui S., Wang F., Zhang B., and Zhao Y. (2015). Serum neuron specific enolase level as a predictor of prognosis in acute ischemic stroke patients after intravenous thrombolysis. J. Neurol. Sci. 359, 202–206
    1. McMahon P.J., Panczykowski D.M., Yue J.K., Puccio A.M., Inoue T., Sorani M.D., Lingsma H.F., Maas A.I., Valadka A.B., Yuh E.L., Mukherjee P., Manley G.T., Okonkwo D.O., Casey S.S., Cheong M., Cooper S.R., Dams-O'Connor K., Gordon W.A., Hricik A.J., Lawless K., Menon D., Schnyer D.M., and Vassar M.J. (2015). Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma 32, 527–533
    1. Olivecrona Z., Bobinski L., and Koskinen L.O. (2015). Association of ICP, CPP, CT findings and S-100B and NSE in severe traumatic head injury. Prognostic value of the biomarkers. Brain Inj. 29, 446–454
    1. Stanca D.M., Marginean I.C., Soritau O., Dragos C., Marginean M., Muresanu D.F., Vester J.C., and Rafila A. (2015). GFAP and antibodies against NMDA receptor subunit NR2 as biomarkers for acute cerebrovascular diseases. J. Cell. Mol. Med. 19, 2253–2261
    1. Takala R.S., Posti J.P., Runtti H., Newcombe V.F., Outtrim J., Katila A.J., Frantzen J., Ala-Seppala H., Kyllonen A., Maanpaa H.R., Tallus J., Hossain M.I., Coles J.P., Hutchinson P., van Gils M., Menon D.K., and Tenovuo O. (2016). Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurg. 87, 8–20
    1. Welch R.D., Ayaz S.I., Lewis L.M., Unden J., Chen J.Y., Mika V.H., Saville B., Tyndall J.A., Nash M., Buki A., Barzo P., Hack D., Tortella F.C., Schmid K., Hayes R.L., Vossough A., Sweriduk S.T., and Bazarian J.J. (2016). Ability of serum glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J. Neurotrauma 33, 203–214
    1. Xiong L., Yang Y., Zhang M. and Xu W. (2015). The use of serum glial fibrillary acidic protein test as a promising tool for intracerebral hemorrhage diagnosis in Chinese patients and prediction of the short-term functional outcomes. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology 36, 2081-2087
    1. Mofid B., Soltani Z., Khaksari M., Shahrokhi N., Nakhaee N., Karamouzian S., Ahmadinejad M., Maiel M., and Khazaeli P. (2016). What are the progesterone-induced changes of the outcome and the serum markers of injury, oxidant activity and inflammation in diffuse axonal injury patients? Int. Immunopharmacol. 32, 103–110
    1. Shahrokhi N., Soltani Z., Khaksari M., Karamouzian S., Mofid B., and Asadikaram G. (2016). The serum changes of neuron-specific enolase and intercellular adhesion molecule-1 in patients with diffuse axonal injury following progesterone administration: a randomized clinical trial. Arch. Trauma Res. 5, e37005.
    1. Posti J.P., Takala R.S., Runtti H., Newcombe V.F., Outtrim J., Katila A.J., Frantzen J., Ala-Seppala H., Coles J.P., Hossain M.I., Kyllonen A., Maanpaa H.R., Tallus J., Hutchinson P.J., van Gils M., Menon D.K., and Tenovuo O. (2016). The levels of glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 during the first week after a traumatic brain injury: correlations with clinical and imaging findings. Neurosurgery 79, 456–464
    1. Bogoslovsky T., Wilson D., Chen Y., Hanlon D., Gill J., Jeromin A., Song L., Moore C., Gong Y., Kenney K., and Diaz-Arrastia R. (2017). Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid beta up to 90 days after traumatic brain injury. J. Neurotrauma 34, 66–73
    1. Stammet P., Collignon O., Hassager C., Wise M.P., Hovdenes J., Aneman A., Horn J., Devaux Y., Erlinge D., Kjaergaard J., Gasche Y., Wanscher M., Cronberg T., Friberg H., Wetterslev J., Pellis T., Kuiper M., Gilson G., and Nielsen, N.; TTM-Trial Investigators. (2015). Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33°C and 36°C. J. Am. Coll. Cardiol. 65, 2104–2114
    1. Mattsson N., Zetterberg H., Nielsen N., Blennow K., Dankiewicz J., Friberg H., Lilja G., Insel P.S., Rylander C., Stammet P., Aneman A., Hassager C., Kjaergaard J., Kuiper M., Pellis T., Wetterslev J., Wise M., and Cronberg T. (2017). Serum tau and neurological outcome in cardiac arrest. Ann. Neurol. 82, 665–675
    1. Stammet P., Dankiewicz J., Nielsen N., Fays F., Collignon O., Hassager C., Wanscher M., Unden J., Wetterslev J., Pellis T., Aneman A., Hovdenes J., Wise M.P., Gilson G., Erlinge D., Horn J., Cronberg T., Kuiper M., Kjaergaard J., Gasche Y., Devaux Y., and Friberg, H.; Target Temperature Management after Out-of-Hospital Cardiac Arrest (TTM) trial investigators. (2017). Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. Crit. Care 21, 153.
    1. Moseby-Knappe M., Mattsson N., Nielsen N., Zetterberg H., Blennow K., Dankiewicz J., Dragancea I., Friberg H., Lilja G., Insel P.S., Rylander C., Westhall E., Kjaergaard J., Wise M.P., Hassager C., Kuiper M.A., Stammet P., Wanscher M.C.J., Wetterslev J., Erlinge D., Horn J., Pellis T., and Cronberg T. (2019). Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol. 76, 64–71
    1. Mokhtari M., Nayeb-Aghaei H., Kouchek M., Miri M.M., Goharani R., Amoozandeh A., Akhavan Salamat S., and Sistanizad M. (2018). Effect of memantine on serum levels of neuron-specific enolase and on the Glasgow Coma Scale in patients with moderate traumatic brain injury. J. Clin. Pharmacol. 58, 42–47
    1. Rubenstein R., Chang B., Yue J.K., Chiu A., Winkler E.A., Puccio A.M., Diaz-Arrastia R., Yuh E.L., Mukherjee P., Valadka A.B., Gordon W.A., Okonkwo D.O., Davies P., Agarwal S., Lin F., Sarkis G., Yadikar H., Yang Z., Manley G.T., Wang K.K.W., the TRACK-TBI Investigators, Cooper S.R., Dams-O'Connor K., Borrasso A.J., Inoue T., Maas A.I.R., Menon D.K., Schnyer D.M., and Vassar M.J. (2017). Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 74, 1063–1072
    1. McFadyen C.A., Zeiler F.A., Newcombe V., Synnot A., Steyerberg E., Gruen R.L., Rosand J., Palotie A., Maas A.I.R., and Menon D.K. (2019). Apolipoprotein E4 polymorphism and outcomes from traumatic brain injury: a living systematic review and meta-analysis. Journal of neurotrauma. doi: 10.1089/neu.2018.6052. [Epub ahead of print]
    1. Pendlebury S.T., Poole D., Burgess A., Duerden J., Rothwell P.M., and Oxford Vascular S. (2020). APOE-ɛ4 genotype and dementia before and after transient ischemic attack and stroke: population-based cohort study. Stroke 51, 751–758
    1. Molad J., Hallevi H., Korczyn A.D., Kliper E., Auriel E., Bornstein N.M., and Ben Assayag E. (2019). Vascular and neurodegenerative markers for the prediction of post-stroke cognitive impairment: results from the TABASCO Study. J. Alzheimers Dis 70, 889–898
    1. Wan X., Gan C., You C., Fan T., Zhang S., Zhang H., Wang S., Shu K., Wang X., and Lei T. (2019). Association of APOE ɛ4 with progressive hemorrhagic injury in patients with traumatic intracerebral hemorrhage. J. Neurosurg. doi: 10.3171/2019.4.JNS183472. [Epub ahead of print]
    1. Ciancanelli M.J., Huang S.X., Luthra P., Garner H., Itan Y., Volpi S., Lafaille F.G., Trouillet C., Schmolke M., Albrecht R.A., Israelsson E., Lim H.K., Casadio M., Hermesh T., Lorenzo L., Leung L.W., Pedergnana V., Boisson B., Okada S., Picard C., Ringuier B., Troussier F., Chaussabel D., Abel L., Pellier I., Notarangelo L.D., Garcia-Sastre A., Basler C.F., Geissmann F., Zhang S.Y., Snoeck H.W., and Casanova J.L. (2015). Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453
    1. Khan N., Shariff N., Cobbold M., Bruton R., Ainsworth J.A., Sinclair A.J., Nayak L., and Moss P.A. (2002). Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992
    1. Sironi M., Peri A.M., Cagliani R., Forni D., Riva S., Biasin M., Clerici M. and Gori A. (2017). TLR3 mutations in adult patients with herpes simplex virus and varicella-zoster virus encephalitis. J. Infect. Dis. 215, 1430–1434
    1. Jha R.M., Koleck T.A., Puccio A.M., Okonkwo D.O., Park S.Y., Zusman B.E., Clark R.S.B., Shutter L.A., Wallisch J.S., Empey P.E., Kochanek P.M., and Conley Y.P. (2018). Regionally clustered ABCC8 polymorphisms in a prospective cohort predict cerebral oedema and outcome in severe traumatic brain injury. J. Neurol. Neurosurg. Psychiatry 89, 1152–1162
    1. Jha R.M., Desai S.M., Zusman B.E., Koleck T.A., Puccio A.M., Okonkwo D.O., Park S.Y., Shutter L.A., Kochanek P.M., and Conley Y.P. (2019). Downstream TRPM4 polymorphisms are associated with intracranial hypertension and statistically interact with ABCC8 polymorphisms in a prospective cohort of severe traumatic brain injury. J. Neurotrauma 36, 1804–1817
    1. Ellinghaus D., Degenhardt F., Bujanda L., Buti M., Albillos A., Invernizzi P., Fernandez J., Prati D., Baselli G., Asselta R., Grimsrud M.M., Milani C., Aziz F., Kassens J., May S., Wendorff M., Wienbrandt L., Uellendahl-Werth F., Zheng T., Yi X., de Pablo R., Chercoles A.G., Palom A., Garcia-Fernandez A.E., Rodriguez-Frias F., Zanella A., Bandera A., Protti A., Aghemo A., Lleo A., Biondi A., Caballero-Garralda A., Gori A., Tanck A., Carreras Nolla A., Latiano A., Fracanzani A.L., Peschuck A., Julia A., Pesenti A., Voza A., Jimenez D., Mateos B., Nafria Jimenez B., Quereda C., Paccapelo C., Gassner C., Angelini C., Cea C., Solier A., Pestana D., Muniz-Diaz E., Sandoval E., Paraboschi E.M., Navas E., Garcia Sanchez F., Ceriotti F., Martinelli-Boneschi F., Peyvandi F., Blasi F., Tellez L., Blanco-Grau A., Hemmrich-Stanisak G., Grasselli G., Costantino G., Cardamone G., Foti G., Aneli S., Kurihara H., ElAbd H., My I., Galvan-Femenia I., Martin J., Erdmann J., Ferrusquia-Acosta J., Garcia-Etxebarria K., Izquierdo-Sanchez L., Bettini L.R., Sumoy L., Terranova L., Moreira L., Santoro L., Scudeller L., Mesonero F., Roade L., Ruhlemann M.C., Schaefer M., Carrabba M., Riveiro-Barciela M., Figuera Basso M.E., Valsecchi M.G., Hernandez-Tejero M., Acosta-Herrera M., D'Angio M., Baldini M., Cazzaniga M., Schulzky M., Cecconi M., Wittig M., Ciccarelli M., Rodriguez-Gandia M., Bocciolone M., Miozzo M., Montano N., Braun N., Sacchi N., Martinez N., Ozer O., Palmieri O., Faverio P., Preatoni P., Bonfanti P., Omodei P., Tentorio P., Castro P., Rodrigues P.M., Blandino Ortiz A., de Cid R., Ferrer R., Gualtierotti R., Nieto R., Goerg S., Badalamenti S., Marsal S., Matullo G., Pelusi S., Juzenas S., Aliberti S., Monzani V., Moreno V., Wesse T., Lenz T.L., Pumarola T., Rimoldi V., Bosari S., Albrecht W., Peter W., Romero-Gomez M., D'Amato M., Duga S., Banales J.M., Hov J.R., Folseraas T., Valenti L., Franke A., and Karlsen T.H. (2020). Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med. 383, 1522–1534
    1. Shelton J.F., Shastri A.J., Ye C., Weldon C.H., Filshtein-Somnez T., Coker D., Symons A., Esparza-Gordillo J., Aslibekyan S., and Auton A. (2020). Trans-ethnic analysis reveals genetic and non-genetic associations with COVID-19 susceptibility and severity. medRxiv 2020.2009.2004.20188318
    1. Barnkob M.B., Pottegård A., Støvring H., Haunstrup T.M., Homburg K., Larsen R., Hansen M.B., Titlestad K., Aagaard B., Møller B.K., and Barington T. (2020). Reduced prevalence of SARS-CoV-2 infection in ABO blood group O. Blood Adv. 4, 4990–4993
    1. Hoiland R.L., Fergusson N.A., Mitra A.R., Griesdale D.E.G., Devine D.V., Stukas S., Cooper J., Thiara S., Foster D., Chen L.Y.C., Lee A.Y.Y., Conway E.M., Wellington C.L., and Sekhon M.S. (2020). The association of ABO blood group with indices of disease severity and multiorgan dysfunction in COVID-19. Blood Adv. 4, 4981–4989
    1. Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.-H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., Manry J., Shaw E., Haljasmägi L., Peterson P., Lorenzo L., Bizien L., Trouillet-Assant S., Dobbs K., de Jesus A.A., Belot A., Kallaste A., Catherinot E., Tandjaoui-Lambiotte Y., Le Pen J., Kerner G., Bigio B., Seeleuthner Y., Yang R., Bolze A., Spaan A.N., Delmonte O.M., Abers M.S., Aiuti A., Casari G., Lampasona V., Piemonti L., Ciceri F., Bilguvar K., Lifton R.P., Vasse M., Smadja D.M., Migaud M., Hadjadj J., Terrier B., Duffy D., Quintana-Murci L., van de Beek D., Roussel L., Vinh D.C., Tangye S.G., Haerynck F., Dalmau D., Martinez-Picado J., Brodin P., Nussenzweig M.C., Boisson-Dupuis S., Rodríguez-Gallego C., Vogt G., Mogensen T.H., Oler A.J., Gu J., Burbelo P.D., Cohen J., Biondi A., Bettini L.R., D'Angio M., Bonfanti P., Rossignol P., Mayaux J., Rieux-Laucat F., Husebye E.S., Fusco F., Ursini M.V., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Castagnoli R., Montagna D., Licari A., Marseglia G.L., Duval X., Ghosn J., Tsang J.S., Goldbach-Mansky R., Kisand K., Lionakis M.S., Puel A., Zhang S.-Y., Holland S.M., Gorochov G., Jouanguy E., Rice C.M., Cobat A., Notarangelo L.D., Abel L., Su H.C., and Casanova J.-L. (2020). Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science, 370, eabd4585
    1. Zhang Q., Bastard P., Liu Z., Le Pen J., Moncada-Velez M., Chen J., Ogishi M., Sabli I.K.D., Hodeib S., Korol C., Rosain J., Bilguvar K., Ye J., Bolze A., Bigio B., Yang R., Arias A.A., Zhou Q., Zhang Y., Onodi F., Korniotis S., Karpf L., Philippot Q., Chbihi M., Bonnet-Madin L., Dorgham K., Smith N., Schneider W.M., Razooky B.S., Hoffmann H.-H., Michailidis E., Moens L., Han J.E., Lorenzo L., Bizien L., Meade P., Neehus A.-L., Ugurbil A.C., Corneau A., Kerner G., Zhang P., Rapaport F., Seeleuthner Y., Manry J., Masson C., Schmitt Y., Schlüter A., Le Voyer T., Khan T., Li J., Fellay J., Roussel L., Shahrooei M., Alosaimi M.F., Mansouri D., Al-Saud H., Al-Mulla F., Almourfi F., Al-Muhsen S.Z., Alsohime F., Al Turki S., Hasanato R., van de Beek D., Biondi A., Bettini L.R., D'Angio M., Bonfanti P., Imberti L., Sottini A., Paghera S., Quiros-Roldan E., Rossi C., Oler A.J., Tompkins M.F., Alba C., Vandernoot I., Goffard J.-C., Smits G., Migeotte I., Haerynck F., Soler-Palacin P., Martin-Nalda A., Colobran R., Morange P.-E., Keles S., Çölkesen F., Ozcelik T., Yasar K.K., Senoglu S., Karabela, Ş.N., Gallego C.R., Novelli G., Hraiech S., Tandjaoui-Lambiotte Y., Duval X., Laouénan C., Snow A.L., Dalgard C.L., Milner J., Vinh D.C., Mogensen T.H., Marr N., Spaan A.N., Boisson B., Boisson-Dupuis S., Bustamante J., Puel A., Ciancanelli M., Meyts I., Maniatis T., Soumelis V., Amara A., Nussenzweig M., García-Sastre A., Krammer F., Pujol A., Duffy D., Lifton R., Zhang S.-Y., Gorochov G., Béziat V., Jouanguy E., Sancho-Shimizu V., Rice C.M., Abel L., Notarangelo L.D., Cobat A., Su H.C., and Casanova J.-L. (2020). Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science, 370, eabd4570
    1. Carpenter A.M., Singh I.P., Gandhi C.D., and Prestigiacomo C.J. (2016). Genetic risk factors for spontaneous intracerebral haemorrhage. Nat. Rev. Neurol. 12, 40–49
    1. Friedman G., Froom P., Sazbon L., Grinblatt I., Shochina M., Tsenter J., Babaey S., Yehuda B., and Groswasser Z. (1999). Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52, 244–248
    1. Yamazaki Y., Zhao N., Caulfield T.R., Liu C.C., and Bu G. (2019). Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat. Rev. Neurol. 15, 501–518
    1. Bell R.D., Winkler E.A., Singh I., Sagare A.P., Deane R., Wu Z., Holtzman D.M., Betsholtz C., Armulik A., Sallstrom J., Berk B.C., and Zlokovic B.V. (2012). Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature 485, 512–516
    1. Overhage J.M., Ryan P.B., Reich C.G., Hartzema A.G. and Stang P.E. (2012). Validation of a common data model for active safety surveillance research. J. Am. Med. Inform. Assoc. 19, 54–60
    1. Stang P.E., Ryan P.B., Racoosin J.A., Overhage J.M., Hartzema A.G., Reich C., Welebob E., Scarnecchia T., and Woodcock J. (2010). Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership. Ann. Intern. Med. 153, 600–606
    1. Mondello S., Jeromin A., Buki A., Bullock R., Czeiter E., Kovacs N., Barzo P., Schmid K., Tortella F., Wang K.K. and Hayes R.L. (2012). Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J. Neurotrauma 29, 1096–1104
    1. Luger S., Witsch J., Dietz A., Hamann G.F., Minnerup J., Schneider H., Sitzer M., Wartenberg K.E., Niessner M., Foerch C., Be F., II and the I.S.G. (2016). Glial fibrillary acidic protein serum levels distinguish between intracerebral hemorrhage and cerebral ischemia in the early phase of stroke. Clin. Chem. 63, 377–385
    1. Ren C., Kobeissy F., Alawieh A., Li N., Li N., Zibara K., Zoltewicz S., Guingab-Cagmat J., Larner S.F., Ding Y., Hayes R.L., Ji X., and Mondello S. (2016). Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci. Rep. 6, 24588.
    1. Misra S., Kumar A., Kumar P., Yadav A.K., Mohania D., Pandit A.K., Prasad K., and Vibha D. (2017). Blood-based protein biomarkers for stroke differentiation: a systematic review. Proteomics Clin. Appl. 11. doi: 10.1002/prca.201700007
    1. Patanavanich R., and Glantz S.A. (2020). Smoking is associated with COVID-19 progression: a meta-analysis. Nicotine Tob. Res. 22, 1653–1656
    1. Onteddu S.R., Nalleballe K., Siddamreddy S., Jasti M., Kovvuru S., Dandu V., and Roy B. (2020). COVID-19 in patients with neurological disorders. Brain Behav. Immun. Health 8, 100131.
    1. Ferini-Strambi L., and Salsone M. (2020). COVID-19 and neurological disorders: are neurodegenerative or neuroimmunological diseases more vulnerable? J. Neurol. doi: 10.1007/s00415-020-10070-8. [Epub ahead of print]
    1. Bianchetti A., Rozzini R., Guerini F., Boffelli S., Ranieri P., Minelli G., Bianchetti L., and Trabucchi M. (2020). Clinical presentation of COVID19 in dementia patients. J. Nutr. Health Aging 24, 560–562
    1. Covino M., De Matteis G., Santoro M., Sabia L., Simeoni B., Candelli M., Ojetti V., and Franceschi F. (2020). Clinical characteristics and prognostic factors in COVID-19 patients aged >/ = 80 years. Geriatr. Gerontol. Int. 20, 704–708
    1. Chen H., Li Y., Jiang B., Zhu G., Rezaii P.G., Lu G., and Wintermark M. (2019). Demographics and clinical characteristics of acute traumatic brain injury patients in the different Neuroimaging Radiological Interpretation System (NIRIS) categories. J. Neuroradiol. doi: . [Epub ahead of print]
    1. Ferguson I., Lewis L., Papa L., Wang K., Mondello S., and Hayes R. (2011). 106 neuronal biomarkers may require age-adjusted norms. Ann. Emerg. Med. 58, S213
    1. Mondello S., Papa L., Buki A., Bullock M.R., Czeiter E., Tortella F.C., Wang K.K., and Hayes R.L. (2011). Neuronal and glial markers are differently associated with computed tomography findings and outcome in patients with severe traumatic brain injury: a case control study. Crit. Care 15, R156.
    1. Kou Z., Gattu R., Kobeissy F., Welch R.D., O'Neil B.J., Woodard J.L., Ayaz S.I., Kulek A., Kas-Shamoun R., Mika V., Zuk C., Tomasello F., and Mondello S. (2013). Combining biochemical and imaging markers to improve diagnosis and characterization of mild traumatic brain injury in the acute setting: results from a pilot study. PLoS One 8, e80296.
    1. Wintermark M., Li Y., Ding V.Y., Xu Y., Jiang B., Ball R.L., Zeineh M., Gean A., and Sanelli P. (2018). Neuroimaging radiological interpretation system for acute traumatic brain injury. J. Neurotrauma 35, 2665–2672
    1. Zhang L., Yan X., Fan Q., Liu H., Liu X., Liu Z., and Zhang Z. (2020). D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J. Thromb. Haemost. 18, 1324–1329
    1. Yao Y., Cao J., Wang Q., Shi Q., Liu K., Luo Z., Chen X., Chen S., Yu K., Huang Z. and Hu B. (2020). D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: a case control study. J. Intensive Care 8, 49.
    1. Bi X., Su Z., Yan H., Du J., Wang J., Chen L., Peng M., Chen S., Shen B., and Li J. (2020). Prediction of severe illness due to COVID-19 based on an analysis of initial fibrinogen to albumin ratio and platelet count. Platelets 31, 674–679
    1. Di Micco P., Russo V., Carannante N., Imparato M., Rodolfi S., Cardillo G., and Lodigiani C. (2020). Clotting factors in COVID-19: epidemiological association and prognostic values in different clinical presentations in an Italian cohort. Journal of clinical medicine 9, 1371
    1. Aboughdir M., Kirwin T., Abdul Khader A., and Wang B. (2020). Prognostic value of cardiovascular biomarkers in COVID-19: a review. Viruses 12, 527
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., and Cao B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506
    1. Sudre C.H., Lee K., Ni Lochlainn M., Varsavsky T., Murray B., Graham M.S., Menni C., Modat M., Bowyer R.C.E., Nguyen L.H., Drew D.A., Joshi A.D., Ma W., Guo C.G., Lo C.H., Ganesh S., Buwe A., Capdevila Pujol J., Lavigne du Cadet J., Visconti A., Freydin M., El Sayed Moustafa J.S., Falchi M., Davies R., Gomez M.F., Fall T., Cardoso M.J., Wolf J., Franks P.W., Chan A.T., Spector T.D., Steves C.J., and Ourselin S. (2020). Symptom clusters in Covid19: a potential clinical prediction tool from the COVID Symptom study app. medRxiv 2020.2006.2012.20129056
    1. Maas A.I., Marmarou A., Murray G.D., Teasdale S.G., and Steyerberg E.W. (2007). Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J. Neurotrauma 24, 232–238
    1. Steyerberg E.W., Mushkudiani N., Perel P., Butcher I., Lu J., McHugh G.S., Murray G.D., Marmarou A., Roberts I., Habbema J.D., and Maas A.I. (2008). Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med. 5, e165; discussion, e165
    1. Czeiter E., Mondello S., Kovacs N., Sandor J., Gabrielli A., Schmid K., Tortella F., Wang K.K., Hayes R.L., Barzo P., Ezer E., Doczi T., and Buki A. (2012). Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma 29, 1770–1778
    1. Tasker R.C., and Menon D.K. (2016). Critical care and the brain. JAMA 315, 749–750
    1. Jenkins L.W., Moszynski K., Lyeth B.G., Lewelt W., DeWitt D.S., Allen A., Dixon C.E., Povlishock J.T., Majewski T.J., Clifton G.L., Young H.F., Becker D.P., and Hayes R.L. (1989). Increased vulnerability of the midly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res. 477, 211–224
    1. Blennow K., Brody D.L., Kochanek P.M., Levin H., McKee A., Ribbers G.M., Yaffe K., and Zetterberg H. (2016). Traumatic brain injuries. Nat. Rev. Dis. Primers 2, 16084.
    1. Wright D.K., Brady R.D., Kamnaksh A., Trezise J., Sun M., McDonald S.J., Mychasiuk R., Kolbe S.C., Law M., Johnston L.A., O'Brien T.J., Agoston D.V., and Shultz S.R. (2019). Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Sci. Rep. 9, 14626.
    1. Larsson I.M., Wallin E., Kristofferzon M.L., Niessner M., Zetterberg H., and Rubertsson S. (2014). Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation 85, 1654–1661
    1. Zhang Y.P., Zhu Y.B., Duan D.D., Fan X.M., He Y., Su J.W., and Liu Y.L. (2015). Serum UCH-L1 as a novel biomarker to predict neuronal apoptosis following deep hypothermic circulatory arrest. Int. J. Med. Sci. 12, 576–582
    1. Hayashida H., Kaneko T., Kasaoka S., Oshima C., Miyauchi T., Fujita M., Oda Y., Tsuruta R., and Maekawa T. (2010). Comparison of the predictability of neurological outcome by serum procalcitonin and glial fibrillary acidic protein in postcardiac-arrest patients. Neurocrit. Care 12, 252–257
    1. Parker A.M., Sricharoenchai T., Raparla S., Schneck K.W., Bienvenu O.J., and Needham D.M. (2015). Posttraumatic stress disorder in critical illness survivors: a metaanalysis. Crit. Care Med. 43, 1121–1129
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., and Wang F.S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. Respir. Med. 8, 420–422
    1. Sasannejad C., Ely E.W., and Lahiri S. (2019). Long-term cognitive impairment after acute respiratory distress syndrome: a review of clinical impact and pathophysiological mechanisms. Crit. Care 23, 352.
    1. Au A.K., Bell M.J., Fink E.L., Aneja R.K., Kochanek P.M., and Clark R.S.B. (2018). Brain-specific serum biomarkers predict neurological morbidity in diagnostically diverse pediatric intensive care unit patients. Neurocrit. Care 28, 26–34
    1. Koyama A., Okereke O.I., Yang T., Blacker D., Selkoe D.J., and Grodstein F. (2012). Plasma amyloid-beta as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Arch. Neurol. 69, 824–831
    1. Guo L.H., Alexopoulos P., Wagenpfeil S., Kurz A., and Perneczky, R.; Alzheimer's Disease Neuroimaging Initiative. (2013). Plasma proteomics for the identification of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 27, 337–342
    1. Frankel M., Fan L., Yeatts S.D., Jeromin A., Vos P.E., Wagner A.K., Wolf B.J., Pauls Q., Lunney M., Merck L.H., Hall C.L., Palesch Y.Y., Silbergleit R., and Wright D.W. (2019). Association of very early serum levels of S100B, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase-L1, and spectrin breakdown product with outcome in ProTECT III. J. Neurotrauma 36, 2863–2871
    1. Anderson T.N., Hwang J., Munar M., Papa L., Hinson H.E., Vaughan A., and Rowell S.E. (2020). Blood-based biomarkers for prediction of intracranial hemorrhage and outcome in patients with moderate or severe traumatic brain injury. J. Trauma Acute Care Surg. 89, 80–86
    1. Kochanek P.M., Dixon C.E., Mondello S., Wang K.K.K., Lafrenaye A., Bramlett H.M., Dietrich W.D., Hayes R.L., Shear D.A., Gilsdorf J.S., Catania M., Poloyac S.M., Empey P.E., Jackson T.C., and Povlishock J.T. (2018). Multi-center pre-clinical consortia to enhance translation of therapies and biomarkers for traumatic brain injury: operation brain trauma therapy and beyond. Front. Neurol. 9, 640.
    1. Alcamo A.M., Clark R.S.B., Au A.K., Kantawala S., Yablonsky E.J., Sindhi R., Mazariegos G.V., Aneja R.K., and Horvat C.M. (2020). Factors associated with neurobehavioral complications in pediatric abdominal organ transplant recipients identified using computable composite definitions. Pediatr. Crit. Care Med. 21, 804–810
    1. Mondello S., Sorinola A., Czeiter E., Vamos Z., Amrein K., Synnot A., Donoghue E., Sandor J., Wang K.K.W., Diaz-Arrastia R., Steyerberg E.W., Menon D.K., Maas A.I.R., and Buki A. (2018). Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J. Neurotrauma. Jul 2. doi: 10.1089/neu.2017.5182 [Epub ahead of print]
    1. Papa L., and Wang K.K.W. (2017). Raising the bar for traumatic brain injury biomarker research: methods make a difference. J. Neurotrauma 34, 2187–2189

Source: PubMed

3
Tilaa