Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes

Kristina I Rother, Lisa M Spain, Robert A Wesley, Benigno J Digon 3rd, Alain Baron, Kim Chen, Patric Nelson, H-Michael Dosch, Jerry P Palmer, Barbara Brooks-Worrell, Michael Ring, David M Harlan, Kristina I Rother, Lisa M Spain, Robert A Wesley, Benigno J Digon 3rd, Alain Baron, Kim Chen, Patric Nelson, H-Michael Dosch, Jerry P Palmer, Barbara Brooks-Worrell, Michael Ring, David M Harlan

Abstract

Objective: In patients with long-standing type 1 diabetes, we investigated whether improved beta-cell function can be achieved by combining intensive insulin therapy with agents that may 1) promote beta-cell growth and/or limit beta-cell apoptosis and 2) weaken the anti-beta-cell autoimmunity.

Research design and methods: For this study, 20 individuals (mean age 39.5 +/- 11.1 years) with long-standing type 1 diabetes (21.3 +/- 10.7 years) were enrolled in this prospective open-label crossover trial. After achieving optimal blood glucose control, 16 subjects were randomized to exenatide with or without daclizumab. Endogenous insulin production was determined by repeatedly measuring serum C-peptide.

Results: In 85% of individuals with long-standing type 1 diabetes who were screened for participation in this trial, C-peptide levels >or=0.05 ng/ml (0.02 nmol/l) were found. Residual beta-cells responded to physiological (mixed-meal) and pharmacological (arginine) stimuli. During exenatide treatment, patients lost 4.1 +/- 2.9 kg body wt and insulin requirements declined significantly (total daily dose on exenatide 0.48 +/- 0.11 vs. 0.55 +/- 0.13 units x kg(-1) x day(-1) without exenatide; P = 0.0062). No signs of further activation of the underlying autoimmune disease were observed. Exenatide delayed gastric emptying, suppressed endogenous incretin levels, but did not increase C-peptide secretion.

Conclusions: In long-standing type 1 diabetes, which remains an active autoimmune disease even decades after its onset, surviving beta-cells secrete insulin in a physiologically regulated manner. However, the combination of intensified insulin therapy, exenatide, and daclizumab did not induce improved function of these remaining beta-cells.

Trial registration: ClinicalTrials.gov NCT00064714.

Figures

Figure 1
Figure 1
Study design (A) and timeline for testing procedures (B): 20 patients entered the optimization period, 16 were randomized, and 14 completed the entire trial. B: A, arginine stimulation test; M, mixed-meal test; T, T-cell proliferation test.
Figure 2
Figure 2
Results of C-peptide responses to arginine stimulation (A and B) and changes of insulin doses and weight according to treatment assignment (C). C-peptide results are shown at screening (basal versus stimulated C-peptide, P < 0.0001) and during run-in period (tests were conducted in months 2, 3, and 4 of run-in period [basal versus stimulated C-peptide, P = 0.0078]) (A) after 6 months of exenatide therapy versus not having received exenatide (irrespective of assignment to daclizumab) (B) with reference to mean results of run-in period. Data are means ± SEM. To convert C-peptide from conventional (ng/ml) to Si units (nmol/l), multiply by factor 0.333.
Figure 3
Figure 3
Results of mixed-meal testing, conducted according to study timeline (Fig. 1B). Exenatide administered before a mixed meal delayed gastric emptying (A; P = 0.041) and glucose absorption (B; P = 0.052), did not change glucagon levels (C; P = 0.414), and suppressed GLP-1 (D; P = 0.024). P values reflect differences of areas under the curve comparing patients' results on and off exenatide; data are means ± SEM. To convert glucose from conventional (mg/dl) to Si units (nmol/l), multiply by factor 0.0555.

References

    1. Hirshberg B, Rother KI, Digon BJ, 3rd, Lee J, Gaglia JL, Hines K, Read EJ, Chang R, Wood BJ, Harlan DM: Benefits and risks of solitary islet transplantation for type 1 diabetes using steroid-sparing immunosuppression: the National Institutes of Health experience. Diabetes Care 2003; 26: 3288– 3295
    1. Dor Y, Brown J, Martinez OI, Melton DA: Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004; 429: 41– 46
    1. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA: Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 2007; 12: 817– 826
    1. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature 2008; 455: 627– 632
    1. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, Rother K, Diamond B, Harlan DM, Bluestone JA: A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005; 54: 1763– 1769
    1. Ludvigsson J, Faresjö M, Hjorth M, Axelsson S, Chéramy M, Pihl M, Vaarala O, Forsander G, Ivarsson S, Johansson C, Lindh A, Nilsson NO, Aman J, Ortqvist E, Zerhouni P, Casas R: GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med 2008; 359: 1909– 1920
    1. Xu G, Stoffers DA, Habener JF, Bonner-Weir S: Exendin-4 stimulates both β-cell replication and neogenesis, resulting in increased β-cell mass and improved glucose tolerance in diabetic rats. Diabetes 1999; 48: 2270– 2276
    1. Xue S, Wasserfall CH, Parker M, Brusko TM, McGrail S, McGrail K, Moore M, Campbell-Thompson M, Schatz DA, Atkinson MA, Haller MJ: Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Ann N Y Acad Sci 2008; 1150: 152– 156
    1. Dy EC, Harlan DM, Rother KI: Assessment of islet function following islet and pancreas transplantation. Curr Diab Rep 2006; 6: 316– 322
    1. Nussenblatt RB, Peterson JS, Foster CS, Rao NA, See RF, Letko E, Buggage RR: Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional case series. Ophthalmology 2005; 112: 764– 770
    1. Bielekova B, Richert N, Howard T, Blevins G, Markovic-Plese S, McCartin J, Frank JA, Würfel J, Ohayon J, Waldmann TA, McFarland HF, Martin R: Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci U S A 2004; 101: 8705– 8708
    1. Seyfert-Margolis V, Gisler TD, Asare AL, Wang RS, Dosch HM, Brooks-Worrell B, Eisenbarth GS, Palmer JP, Greenbaum CJ, Gitelman SE, Nepom GT, Bluestone JA, Herold KC: Analysis of T-cell assays to measure autoimmune responses in subjects with type 1 diabetes: results of a blinded controlled study. Diabetes 2006; 55: 2588– 2594
    1. Senn S: Cross-over trials in Statistics in Medicine: the first '25′ years. Stat Med 2006; 25: 3430– 3442
    1. Liu EH, Digon BJ, 3rd, Hirshberg B, Chang R, Wood BJ, Neeman Z, Kam A, Wesley RA, Polly SM, Hofmann RM, Rother KI, Harlan DM: Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft. Diabetologia 2009; 52: 1369– 1380
    1. Kuroda A, Yamasaki Y, Imagawa A: Beta-cell regeneration in a patient with type 1 diabetes mellitus who was receiving immunosuppressive therapy. Ann Intern Med 2003; 139: W81.
    1. Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC: Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 2005; 48: 2221– 2228
    1. Sutherland DE, Sibley R, Xu XZ, Michael A, Srikanta AM, Taub F, Najarian J, Goetz FC: Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. Trans Assoc Am Physicians 1984; 97: 80– 87
    1. Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, Hering BJ, Hafler DA: Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 2005; 435: 224– 228
    1. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, Rizza RA, Butler PC: β-Cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes 2008; 57: 1584– 1594
    1. von Herrath M, Sanda S, Herold K: Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 2007; 7: 988– 994
    1. Alonso LC, Yokoe T, Zhang P, Scott DK, Kim SK, O'Donnell CP, Garcia-Ocaña A: Glucose infusion in mice: a new model to induce β-cell replication. Diabetes 2007; 56: 1792– 1801
    1. Crutchlow MF, Yu M, Bae YS, Deng S, Stoffers DA: Exendin-4 does not promote Beta-cell proliferation or survival during the early post-islet transplant period in mice. Transplant Proc 2008; 40: 1650– 1657
    1. Sherry NA, Chen W, Kushner JA, Glandt M, Tang Q, Tsai S, Santamaria P, Bluestone JA, Brillantes AM, Herold KC: Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells. Endocrinology 2007; 148: 5136– 5144
    1. Dupré J, Behme MT, McDonald TJ: Exendin-4 normalized postcibal glycemic excursions in type 1 diabetes. J Clin Endocrinol Metab 2004; 89: 3469– 3473
    1. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, Mychaleckyj JC, Todd JA, Bonella P, Fear AL, Lavant E, Louey A, Moonsamy P. Type 1 Diabetes Genetics Consortium. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 2008; 57: 1084– 1092

Source: PubMed

3
Tilaa