Non-Invasive Measurement of Skin Microvascular Response during Pharmacological and Physiological Provocations

Fredrik Iredahl, Andreas Löfberg, Folke Sjöberg, Simon Farnebo, Erik Tesselaar, Fredrik Iredahl, Andreas Löfberg, Folke Sjöberg, Simon Farnebo, Erik Tesselaar

Abstract

Introduction: Microvascular changes in the skin due to pharmacological and physiological provocations can be used as a marker for vascular function. While laser Doppler flowmetry (LDF) has been used extensively for measurement of skin microvascular responses, Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi) are novel imaging techniques. TiVi measures red blood cell concentration, while LDF and LSCI measure perfusion. Therefore, the aim of this study was to compare responses to provocations in the skin using these different techniques.

Method: Changes in skin microcirculation were measured in healthy subjects during (1) iontophoresis of sodium nitroprusside (SNP) and noradrenaline (NA), (2) local heating and (3) post-occlusive reactive hyperemia (PORH) using LDF, LSCI and TiVi.

Results: Iontophoresis of SNP increased perfusion (LSCI: baseline 40.9±6.2 PU; 10-min 100±25 PU; p<0.001) and RBC concentration (TiVi: baseline 119±18; 10-min 150±41 AU; p = 0.011). No change in perfusion (LSCI) was observed after iontophoresis of NA (baseline 38.0±4.4 PU; 10-min 38.9±5.0 PU; p = 0.64), while RBC concentration decreased (TiVi: baseline 59.6±11.8 AU; 10-min 54.4±13.3 AU; p = 0.021). Local heating increased perfusion (LDF: baseline 8.8±3.6 PU; max 112±55 PU; p<0.001, LSCI: baseline 50.8±8.0 PU; max 151±22 PU; p<0.001) and RBC concentration (TiVi: baseline 49.2±32.9 AU; max 99.3±28.3 AU; p<0.001). After 5 minutes of forearm occlusion with prior exsanguination, a decrease was seen in perfusion (LDF: p = 0.027; LSCI: p<0.001) and in RBC concentration (p = 0.045). Only LSCI showed a significant decrease in perfusion after 5 minutes of occlusion without prior exsanguination (p<0.001). Coefficients of variation were lower for LSCI and TiVi compared to LDF for most responses.

Conclusion: LSCI is more sensitive than TiVi for measuring microvascular changes during SNP-induced vasodilatation and forearm occlusion. TiVi is more sensitive to noradrenaline-induced vasoconstriction. LSCI and TiVi show lower inter-subject variability than LDF. These findings are important to consider when choosing measurement techniques for studying skin microvascular responses.

Conflict of interest statement

Competing Interests: FS has a role in the commercialization of the polarisation spectroscopy instrumentation. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Schematic diagram of the experimental…
Fig 1. Schematic diagram of the experimental setup.
The different skin sites used for measurement of microvascular responses to pharmacological and physiological provocations (see Table 2).
Fig 2. Iontophoresis of sodium nitroprusside and…
Fig 2. Iontophoresis of sodium nitroprusside and noradrenaline.
Skin microvascular response during iontophoresis of sodium nitroprusside (SNP) and noradrenaline (NA) as measured using laser Doppler flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi). *** indicates significant change from baseline (p

Fig 3. Local heating.

Skin microvascular responses…

Fig 3. Local heating.

Skin microvascular responses to 40 minutes of local heating as measured…

Fig 3. Local heating.
Skin microvascular responses to 40 minutes of local heating as measured using laser Doppler flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi). *** indicates significant change from baseline (p

Fig 4. Post-occlusive reactive hyperemia.

Skin microvascular…

Fig 4. Post-occlusive reactive hyperemia.

Skin microvascular responses to (I) occlusion with prior exsanguination, (II)…

Fig 4. Post-occlusive reactive hyperemia.
Skin microvascular responses to (I) occlusion with prior exsanguination, (II) PORH, (III) occlusion without prior exsanguination, (IV) PORH as measured using laser Doppler flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi). * indicates significant change from baseline, p
Similar articles
Cited by
References
    1. Tesselaar E, Sjoberg F. Transdermal iontophoresis as an in-vivo technique for studying microvascular physiology. Microvascular research. 2011;81(1):88–96. Epub 2010/11/13. 10.1016/j.mvr.2010.11.002 . - DOI - PubMed
    1. Droog EJ, Henricson J, Nilsson GE, Sjoberg F. A protocol for iontophoresis of acetylcholine and sodium nitroprusside that minimises nonspecific vasodilatory effects. Microvascular research. 2004;67(2):197–202. Epub 2004/03/17. 10.1016/j.mvr.2003.12.003 . - DOI - PubMed
    1. Iredahl F, Tesselaar E, Sarker S, Farnebo S, Sjoberg F. The Microvascular Response to Transdermal Iontophoresis of Insulin is Mediated by Nitric Oxide. Microcirculation (New York, NY: 1994). 2013;20(8):717–23. Epub 2013/06/08. 10.1111/micc.12071 . - DOI - PubMed
    1. Rossi M, Maurizio S, Carpi A. Skin blood flowmotion response to insulin iontophoresis in normal subjects. Microvascular research. 2005;70(1–2):17–22. Epub 2005/07/05. 10.1016/j.mvr.2005.05.001 . - DOI - PubMed
    1. de Jongh RT, Serne EH, RG IJ, Jorstad HT, Stehouwer CD. Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvascular research. 2008;75(2):256–62. Epub 2007/10/09. 10.1016/j.mvr.2007.08.001 . - DOI - PubMed
Show all 44 references
Publication types
MeSH terms
Grant support
The authors received no specific funding for this work.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Fig 3. Local heating.
Fig 3. Local heating.
Skin microvascular responses to 40 minutes of local heating as measured using laser Doppler flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi). *** indicates significant change from baseline (p

Fig 4. Post-occlusive reactive hyperemia.

Skin microvascular…

Fig 4. Post-occlusive reactive hyperemia.

Skin microvascular responses to (I) occlusion with prior exsanguination, (II)…

Fig 4. Post-occlusive reactive hyperemia.
Skin microvascular responses to (I) occlusion with prior exsanguination, (II) PORH, (III) occlusion without prior exsanguination, (IV) PORH as measured using laser Doppler flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi). * indicates significant change from baseline, p
Similar articles
Cited by
References
    1. Tesselaar E, Sjoberg F. Transdermal iontophoresis as an in-vivo technique for studying microvascular physiology. Microvascular research. 2011;81(1):88–96. Epub 2010/11/13. 10.1016/j.mvr.2010.11.002 . - DOI - PubMed
    1. Droog EJ, Henricson J, Nilsson GE, Sjoberg F. A protocol for iontophoresis of acetylcholine and sodium nitroprusside that minimises nonspecific vasodilatory effects. Microvascular research. 2004;67(2):197–202. Epub 2004/03/17. 10.1016/j.mvr.2003.12.003 . - DOI - PubMed
    1. Iredahl F, Tesselaar E, Sarker S, Farnebo S, Sjoberg F. The Microvascular Response to Transdermal Iontophoresis of Insulin is Mediated by Nitric Oxide. Microcirculation (New York, NY: 1994). 2013;20(8):717–23. Epub 2013/06/08. 10.1111/micc.12071 . - DOI - PubMed
    1. Rossi M, Maurizio S, Carpi A. Skin blood flowmotion response to insulin iontophoresis in normal subjects. Microvascular research. 2005;70(1–2):17–22. Epub 2005/07/05. 10.1016/j.mvr.2005.05.001 . - DOI - PubMed
    1. de Jongh RT, Serne EH, RG IJ, Jorstad HT, Stehouwer CD. Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvascular research. 2008;75(2):256–62. Epub 2007/10/09. 10.1016/j.mvr.2007.08.001 . - DOI - PubMed
Show all 44 references
Publication types
MeSH terms
Grant support
The authors received no specific funding for this work.
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Fig 4. Post-occlusive reactive hyperemia.
Fig 4. Post-occlusive reactive hyperemia.
Skin microvascular responses to (I) occlusion with prior exsanguination, (II) PORH, (III) occlusion without prior exsanguination, (IV) PORH as measured using laser Doppler flowmetry (LDF), Laser Speckle Contrast Imaging (LSCI) and Tissue Viability Imaging (TiVi). * indicates significant change from baseline, p

References

    1. Tesselaar E, Sjoberg F. Transdermal iontophoresis as an in-vivo technique for studying microvascular physiology. Microvascular research. 2011;81(1):88–96. Epub 2010/11/13. 10.1016/j.mvr.2010.11.002 .
    1. Droog EJ, Henricson J, Nilsson GE, Sjoberg F. A protocol for iontophoresis of acetylcholine and sodium nitroprusside that minimises nonspecific vasodilatory effects. Microvascular research. 2004;67(2):197–202. Epub 2004/03/17. 10.1016/j.mvr.2003.12.003 .
    1. Iredahl F, Tesselaar E, Sarker S, Farnebo S, Sjoberg F. The Microvascular Response to Transdermal Iontophoresis of Insulin is Mediated by Nitric Oxide. Microcirculation (New York, NY: 1994). 2013;20(8):717–23. Epub 2013/06/08. 10.1111/micc.12071 .
    1. Rossi M, Maurizio S, Carpi A. Skin blood flowmotion response to insulin iontophoresis in normal subjects. Microvascular research. 2005;70(1–2):17–22. Epub 2005/07/05. 10.1016/j.mvr.2005.05.001 .
    1. de Jongh RT, Serne EH, RG IJ, Jorstad HT, Stehouwer CD. Impaired local microvascular vasodilatory effects of insulin and reduced skin microvascular vasomotion in obese women. Microvascular research. 2008;75(2):256–62. Epub 2007/10/09. 10.1016/j.mvr.2007.08.001 .
    1. Henricson J, Tesselaar E, Baiat Y, Nilsson G, Sjoberg F. Local heating as a predilatation method for measurement of vasoconstrictor responses with laser-Doppler flowmetry. Microcirculation (New York, NY: 1994). 2011;18(3):214–20. Epub 2011/01/05. 10.1111/j.1549-8719.2010.00079.x .
    1. Roustit M, Blaise S, Arnaud C, Hellmann M, Millet C, Godin-Ribuot D, et al. Iontophoresis of endothelin receptor antagonists in rats and men. PloS one. 2012;7(7):e40792 Epub 2012/07/19. 10.1371/journal.pone.0040792 ; PubMed Central PMCID: PMCPmc3396598.
    1. Henricson J, Tesselaar E, Persson K, Nilsson G, Sjoberg F. Assessment of microvascular function by study of the dose-response effects of iontophoretically applied drugs (acetylcholine and sodium nitroprusside)—methods and comparison with in vitro studies. Microvascular research. 2007;73(2):143–9. Epub 2006/12/13. 10.1016/j.mvr.2006.10.004 .
    1. Drummond PD. Prior iontophoresis of saline enhances vasoconstriction to phenylephrine and clonidine in the skin of the human forearm. British journal of clinical pharmacology. 2002;54(1):45–50. Epub 2002/07/09. ; PubMed Central PMCID: PMCPmc1874388.
    1. Rousseau A, Tesselaar E, Henricson J, Sjoberg F. Prostaglandins and radical oxygen species are involved in microvascular effects of hyperoxia. Journal of vascular research. 2010;47(5):441–50. Epub 2010/02/11. 10.1159/000282667 .
    1. Angus JA, Wright CE. Techniques to study the pharmacodynamics of isolated large and small blood vessels. Journal of pharmacological and toxicological methods. 2000;44(2):395–407. Epub 2001/04/28. .
    1. Farnebo S, Thorfinn J, Henricson J, Tesselaar E. Hyperaemic changes in forearm skin perfusion and RBC concentration after increasing occlusion times. Microvascular research. 2010;80(3):412–6. Epub 2010/07/28. 10.1016/j.mvr.2010.07.008 .
    1. Toth A, Pal M, Intaglietta M, Johnson PC. Contribution of anaerobic metabolism to reactive hyperemia in skeletal muscle. American journal of physiology Heart and circulatory physiology. 2007;292(6):H2643–53. Epub 2007/02/20. 10.1152/ajpheart.00207.2006 .
    1. Cordovil I, Huguenin G, Rosa G, Bello A, Kohler O, de Moraes R, et al. Evaluation of systemic microvascular endothelial function using laser speckle contrast imaging. Microvascular research. 2012;83(3):376–9. Epub 2012/02/14. 10.1016/j.mvr.2012.01.004 .
    1. Kellogg DL Jr. In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. Journal of applied physiology (Bethesda, Md: 1985). 2006;100(5):1709–18. Epub 2006/04/15. 10.1152/japplphysiol.01071.2005 .
    1. Cracowski JL, Roustit M. Local thermal hyperemia as a tool to investigate human skin microcirculation. Microcirculation (New York, NY: 1994). 17 England2010. p. 79–80.
    1. Khan F, Elhadd TA, Greene SA, Belch JJ. Impaired skin microvascular function in children, adolescents, and young adults with type 1 diabetes. Diabetes care. 2000;23(2):215–20. Epub 2000/06/27. .
    1. Ijzerman R, de Jongh RT, Beijk MA, van Weissenbruch MM, Delemarre-van de Waal HA, Serne EH, et al. Individuals at increased coronary heart disease risk are characterized by an impaired microvascular function in skin. European journal of clinical investigation. 2003;33(7):536–42. Epub 2003/06/20. .
    1. Khan F, Patterson D, Belch JJ, Hirata K, Lang CC. Relationship between peripheral and coronary function using laser Doppler imaging and transthoracic echocardiography. Clinical science (London, England: 1979). 2008;115(9):295–300. Epub 2008/03/15. 10.1042/cs20070431 .
    1. Holowatz LA, Thompson-Torgerson CS, Kenney WL. The human cutaneous circulation as a model of generalized microvascular function. Journal of applied physiology (Bethesda, Md: 1985). 2008;105(1):370–2. Epub 2007/10/13. 10.1152/japplphysiol.00858.2007 .
    1. Mahe G, Humeau-Heurtier A, Durand S, Leftheriotis G, Abraham P. Assessment of skin microvascular function and dysfunction with laser speckle contrast imaging. Circulation Cardiovascular imaging. 2012;5(1):155–63. Epub 2012/01/19. 10.1161/circimaging.111.970418 .
    1. Briers D, Duncan DD, Hirst E, Kirkpatrick SJ, Larsson M, Steenbergen W, et al. Laser speckle contrast imaging: theoretical and practical limitations. Journal of biomedical optics. 2013;18(6):066018 Epub 2013/06/29. 10.1117/1.jbo.18.6.066018 .
    1. O'Doherty J, Henricson J, Anderson C, Leahy MJ, Nilsson GE, Sjoberg F. Sub-epidermal imaging using polarized light spectroscopy for assessment of skin microcirculation. Skin research and technology: official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging (ISSI). 2007;13(4):472–84. Epub 2007/10/03. 10.1111/j.1600-0846.2007.00253.x .
    1. O'Doherty J, McNamara P, Clancy NT, Enfield JG, Leahy MJ. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration. Journal of biomedical optics. 2009;14(3):034025 Epub 2009/07/02. 10.1117/1.3149863 .
    1. Stefanovska A, Bracic M, Kvernmo HD. Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique. IEEE transactions on bio-medical engineering. 1999;46(10):1230–9. Epub 1999/10/08. .
    1. Kvandal P, Landsverk SA, Bernjak A, Stefanovska A, Kvernmo HD, Kirkeboen KA. Low-frequency oscillations of the laser Doppler perfusion signal in human skin. Microvascular research. 2006;72(3):120–7. Epub 2006/07/21. 10.1016/j.mvr.2006.05.006 .
    1. Brown H, Moppett IK, Mahajan RP. Transient hyperaemic response to assess vascular reactivity of skin: effect of locally iontophoresed acetylcholine, bradykinin, epinephrine and phenylephrine. British journal of anaesthesia. 2003;90(4):446–51. Epub 2003/03/20. .
    1. Lipnicki DM, Drummond PD. Facilitating laser Doppler measurements of cutaneous adrenergic vasoconstriction: a comparison of methods. Clinical autonomic research: official journal of the Clinical Autonomic Research Society. 2001;11(2):93–8. Epub 2001/09/26. .
    1. Fredriksson I, Larsson M, Stromberg T. Measurement depth and volume in laser Doppler flowmetry. Microvascular research. 2009;78(1):4–13. Epub 2009/03/17. 10.1016/j.mvr.2009.02.008 .
    1. Farnebo S, Zettersten EK, Samuelsson A, Tesselaar E, Sjoberg F. Assessment of blood flow changes in human skin by microdialysis urea clearance. Microcirculation (New York, NY: 1994). 2011;18(3):198–204. Epub 2010/12/21. 10.1111/j.1549-8719.2010.00077.x .
    1. Petersen LJ, Zacho HD, Lyngholm AM, Arendt-Nielsen L. Tissue viability imaging for assessment of pharmacologically induced vasodilation and vasoconstriction in human skin. Microvascular research. 2010;80(3):499–504. Epub 2010/08/10. 10.1016/j.mvr.2010.07.011 .
    1. Ekenvall L, Lindblad LE, Norbeck O, Etzell BM. alpha-Adrenoceptors and cold-induced vasoconstriction in human finger skin. The American journal of physiology. 1988;255(5 Pt 2):H1000–3. Epub 1988/11/01. .
    1. Roustit M, Millet C, Blaise S, Dufournet B, Cracowski JL. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvascular research. 2010;80(3):505–11. Epub 2010/06/15. 10.1016/j.mvr.2010.05.012 .
    1. Tesselaar E, Bergkvist M, Sjoberg F, Farnebo S. Polarized light spectroscopy for measurement of the microvascular response to local heating at multiple skin sites. Microcirculation (New York, NY: 1994). 2012;19(8):705–13. Epub 2012/06/22. 10.1111/j.1549-8719.2012.00203.x .
    1. Minson CT, Berry LT, Joyner MJ. Nitric oxide and neurally mediated regulation of skin blood flow during local heating. Journal of applied physiology (Bethesda, Md: 1985). 2001;91(4):1619–26. Epub 2001/09/25. .
    1. Kellogg DL Jr., Zhao JL, Wu Y. Endothelial nitric oxide synthase control mechanisms in the cutaneous vasculature of humans in vivo. American journal of physiology Heart and circulatory physiology. 2008;295(1):H123–9. Epub 2008/05/13. 10.1152/ajpheart.00082.2008 ; PubMed Central PMCID: PMCPmc2494770.
    1. Hodges GJ, Kosiba WA, Zhao K, Johnson JM. The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans. Journal of applied physiology (Bethesda, Md: 1985). 2008;105(1):233–40. Epub 2008/05/17. 10.1152/japplphysiol.90412.2008 ; PubMed Central PMCID: PMCPmc2494831.
    1. Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation (New York, NY: 1994). 2012;19(1):47–64. Epub 2011/09/03. 10.1111/j.1549-8719.2011.00129.x .
    1. Lorenzo S, Minson CT. Human cutaneous reactive hyperaemia: role of BKCa channels and sensory nerves. The Journal of physiology. 2007;585(Pt 1):295–303. Epub 2007/09/29. 10.1113/jphysiol.2007.143867 ; PubMed Central PMCID: PMCPmc2375471.
    1. Tee GB, Rasool AH, Halim AS, Rahman AR. Dependence of human forearm skin postocclusive reactive hyperemia on occlusion time. Journal of pharmacological and toxicological methods. 2004;50(1):73–8. Epub 2004/07/06. 10.1016/j.vascn.2004.02.002 .
    1. Vuilleumier P, Decosterd D, Maillard M, Burnier M, Hayoz D. Postischemic forearm skin reactive hyperemia is related to cardovascular risk factors in a healthy female population. Journal of hypertension. 2002;20(9):1753–7. Epub 2002/08/27. .
    1. Tenland T, Salerud EG, Nilsson GE, Oberg PA. Spatial and temporal variations in human skin blood flow. International journal of microcirculation, clinical and experimental / sponsored by the European Society for Microcirculation. 1983;2(2):81–90. Epub 1983/01/01. .
    1. Puissant C, Abraham P, Durand S, Humeau-Heurtier A, Faure S, Leftheriotis G, et al. Reproducibility of non-invasive assessment of skin endothelial function using laser Doppler flowmetry and laser speckle contrast imaging. PloS one. 2013;8(4):e61320 Epub 2013/04/27. 10.1371/journal.pone.0061320 ; PubMed Central PMCID: PMCPmc3631172.
    1. Newton DJ, Khan F, Belch JJ. Assessment of microvascular endothelial function in human skin. Clinical science (London, England: 1979). 2001;101(6):567–72. Epub 2001/11/29. .

Source: PubMed

3
Tilaa