Variability in newborn telomere length is explained by inheritance and intrauterine environment

Li Chen, Karen Mei Ling Tan, Min Gong, Mary F F Chong, Kok Hian Tan, Yap Seng Chong, Michael J Meaney, Peter D Gluckman, Johan G Eriksson, Neerja Karnani, Li Chen, Karen Mei Ling Tan, Min Gong, Mary F F Chong, Kok Hian Tan, Yap Seng Chong, Michael J Meaney, Peter D Gluckman, Johan G Eriksson, Neerja Karnani

Abstract

Background: Telomere length (TL) and its attrition are important indicators of physiological stress and biological aging and hence may vary among individuals of the same age. This variation is apparent even in newborns, suggesting potential effects of parental factors and the intrauterine environment on TL of the growing fetus.

Methods: Average relative TLs of newborns (cord tissue, N = 950) and mothers (buffy coat collected at 26-28 weeks of gestation, N = 892) were measured in a birth cohort. This study provides a comprehensive analysis of the effects of heritable factors, socioeconomic status, and in utero exposures linked with maternal nutrition, cardiometabolic health, and mental well-being on the newborn TL. The association between maternal TL and antenatal maternal health was also studied.

Results: Longer maternal TL (β = 0.14, P = 1.99E-05) and higher paternal age (β = 0.10, P = 3.73E-03) were positively associated with newborn TL. Genome-wide association studies on newborn and maternal TLs identified 6 genetic variants in a strong linkage disequilibrium on chromosome 3q26.2 (Tag SNP-LRRC34-rs10936600: Pmeta = 5.95E-08). Mothers with higher anxiety scores, elevated fasting blood glucose, lower plasma insulin-like growth factor-binding protein 3 and vitamin B12 levels, and active smoking status during pregnancy showed a higher risk of giving birth to offspring with shorter TL. There were sex-related differences in the factors explaining newborn TL variation. Variation in female newborn TL was best explained by maternal TL, mental health, and plasma vitamin B12 levels, while that in male newborn TL was best explained by paternal age, maternal education, and metabolic health. Mother's TL was associated with her own metabolic health and nutrient status, which may have transgenerational effects on offspring TL.

Conclusions: Our findings provide a comprehensive understanding of the heritable and environmental factors and their relative contributions to the initial setting of TL and programing of longevity in early life. This study provides valuable insights for preventing in utero telomere attrition by improving the antenatal health of mothers via targeting the modifiable factors.

Trial registration: ClinicalTrials.gov , NCT01174875. Registered on 1 July 2010.

Keywords: Inheritance; Intrauterine exposures; Newborn; Sex differences; Telomere length.

Conflict of interest statement

NK and YSC are part of an academic consortium that has received research funding from Abbott Nutrition, Nestec, EVOLVE Biosystems, DSM, and Danone. All other authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Association studies of newborn telomere length. A Histogram of newborn telomere length. B Boxplots of sex and ethnicity (univariate P values). C, D Scatter plots of gestational age, maternal age, paternal age, and maternal telomere length (P values after adjusting for sex and ethnicity). E, F Effect size plot of factors significantly associated with newborn telomere length using all, female-only, and male-only subjects (error bar, 95%CI). Related to Table 2. E Categorical/ordinal variables. F Continuous variables
Fig. 2
Fig. 2
Association studies of maternal telomere length. A Histogram of maternal telomere length. B Boxplot of ethnicity and scatter plot of maternal age (univariate P values). C, D Effect size plot of significant factors associated with maternal telomere length after adjusting for age, ethnicity, and DNA extraction method (error bar, 95%CI). Related to Additional file 1: Table S6 (main model). C Continuous variables. D Categorical/ordinal variables
Fig. 3
Fig. 3
Schematic diagram summarizing the factors contributing to newborn TL variation

References

    1. Blackburn EH. Structure and function of telomeres. Nature. 1991;350(6319):569–573. doi: 10.1038/350569a0.
    1. Sanders JL, Newman AB. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev. 2013;35(1):112–131. doi: 10.1093/epirev/mxs008.
    1. Wang Q, Zhan Y, Pedersen NL, Fang F, Hagg S. Telomere length and all-cause mortality: a meta-analysis. Ageing Res Rev. 2018;48:11–20. doi: 10.1016/j.arr.2018.09.002.
    1. Gardner M, Bann D, Wiley L, Cooper R, Hardy R, Nitsch D, Martin-Ruiz C, Shiels P, Sayer AA, Barbieri M, Bekaert S, Bischoff C, Brooks-Wilson A, Chen W, Cooper C, Christensen K, de Meyer T, Deary I, der G, Diez Roux A, Fitzpatrick A, Hajat A, Halaschek-Wiener J, Harris S, Hunt SC, Jagger C, Jeon HS, Kaplan R, Kimura M, Lansdorp P, Li C, Maeda T, Mangino M, Nawrot TS, Nilsson P, Nordfjall K, Paolisso G, Ren F, Riabowol K, Robertson T, Roos G, Staessen JA, Spector T, Tang N, Unryn B, van der Harst P, Woo J, Xing C, Yadegarfar ME, Park JY, Young N, Kuh D, von Zglinicki T, Ben-Shlomo Y, Halcyon study team Gender and telomere length: systematic review and meta-analysis. Exp Gerontol. 2014;51:15–27. doi: 10.1016/j.exger.2013.12.004.
    1. Astuti Y, Wardhana A, Watkins J, Wulaningsih W, Network PR. Cigarette smoking and telomere length: a systematic review of 84 studies and meta-analysis. Environ Res. 2017;158:480–489. doi: 10.1016/j.envres.2017.06.038.
    1. Wang J, Dong X, Cao L, Sun Y, Qiu Y, Zhang Y, Cao R, Covasa M, Zhong L. Association between telomere length and diabetes mellitus: a meta-analysis. J Int Med Res. 2016;44(6):1156–1173. doi: 10.1177/0300060516667132.
    1. Khalangot M, Krasnienkov D, Vaiserman A, Avilov I, Kovtun V, Okhrimenko N, Koliada A, Kravchenko V. Leukocyte telomere length is inversely associated with post-load but not with fasting plasma glucose levels. Exp Biol Med (Maywood) 2017;242(7):700–708. doi: 10.1177/1535370217694096.
    1. Kaplan RC, Fitzpatrick AL, Pollak MN, Gardner JP, Jenny NS, McGinn AP, Kuller LH, Strickler HD, Kimura M, Psaty BM, et al. Insulin-like growth factors and leukocyte telomere length: the cardiovascular health study. J Gerontol A Biol Sci Med Sci. 2009;64(11):1103–1106. doi: 10.1093/gerona/glp036.
    1. Broer L, Raschenberger J, Deelen J, Mangino M, Codd V, Pietilainen KH, Albrecht E, Amin N, Beekman M, de Craen AJ, et al. Association of adiponectin and leptin with relative telomere length in seven independent cohorts including 11,448 participants. Eur J Epidemiol. 2014;29(9):629–638. doi: 10.1007/s10654-014-9940-1.
    1. Richards JB, Valdes AM, Gardner JP, Kato BS, Siva A, Kimura M, Lu X, Brown MJ, Aviv A, Spector TD. Homocysteine levels and leukocyte telomere length. Atherosclerosis. 2008;200(2):271–277. doi: 10.1016/j.atherosclerosis.2007.12.035.
    1. Tellechea ML, Pirola CJ. The impact of hypertension on leukocyte telomere length: a systematic review and meta-analysis of human studies. J Hum Hypertens. 2017;31(2):99–105. doi: 10.1038/jhh.2016.45.
    1. Mwasongwe S, Gao Y, Griswold M, Wilson JG, Aviv A, Reiner AP, Raffield LM. Leukocyte telomere length and cardiovascular disease in African Americans: the Jackson Heart Study. Atherosclerosis. 2017;266:41–47. doi: 10.1016/j.atherosclerosis.2017.09.016.
    1. Vakonaki E, Tsiminikaki K, Plaitis S, Fragkiadaki P, Tsoukalas D, Katsikantami I, Vaki G, Tzatzarakis MN, Spandidos DA, Tsatsakis AM. Common mental disorders and association with telomere length. Biomed Rep. 2018;8(2):111–116. doi: 10.3892/br.2018.1040.
    1. Kang JX. Differential effects of omega-6 and omega-3 fatty acids on telomere length. Am J Clin Nutr. 2010;92(5):1276–1277. doi: 10.3945/ajcn.110.000463.
    1. Pollack AZ, Rivers K, Ahrens KA. Parity associated with telomere length among US reproductive age women. Hum Reprod. 2018;33(4):736–744. doi: 10.1093/humrep/dey024.
    1. Barha CK, Hanna CW, Salvante KG, Wilson SL, Robinson WP, Altman RM, Nepomnaschy PA. Number of children and telomere length in women: a prospective, longitudinal evaluation. PLoS One. 2016;11(1):e0146424. doi: 10.1371/journal.pone.0146424.
    1. Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimaki M, Marmot M, Blackburn E, Erusalimsky JD. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun. 2011;25(7):1292–1298. doi: 10.1016/j.bbi.2011.04.010.
    1. Codd V, Mangino M, van der Harst P, Braund PS, Kaiser M, Beveridge AJ, Rafelt S, Moore J, Nelson C, Soranzo N, et al. Common variants near TERC are associated with mean telomere length. Nat Genet. 2010;42(3):197–199. doi: 10.1038/ng.532.
    1. Shen Q, Zhang Z, Yu L, Cao L, Zhou D, Kan M, Li B, Zhang D, He L, Liu Y. Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur J Hum Genet. 2011;19(6):721–723. doi: 10.1038/ejhg.2011.4.
    1. Pooley KA, Bojesen SE, Weischer M, Nielsen SF, Thompson D, Amin Al Olama A, Michailidou K, Tyrer JP, Benlloch S, Brown J, et al. A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk. Hum Mol Genet. 2013;22(24):5056–5064. doi: 10.1093/hmg/ddt355.
    1. Codd V, Nelson CP, Albrecht E, Mangino M, Deelen J, Buxton JL, Hottenga JJ, Fischer K, Esko T, Surakka I, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422–427. doi: 10.1038/ng.2528.
    1. Prescott J, Kraft P, Chasman DI, Savage SA, Mirabello L, Berndt SI, Weissfeld JL, Han J, Hayes RB, Chanock SJ, Hunter DJ, de Vivo I. Genome-wide association study of relative telomere length. PLoS One. 2011;6(5):e19635. doi: 10.1371/journal.pone.0019635.
    1. Liu Y, Cao L, Li Z, Zhou D, Liu W, Shen Q, Wu Y, Zhang D, Hu X, Wang T, Ye J, Weng X, Zhang H, Zhang D, Zhang Z, Liu F, He L, Shi Y. A genome-wide association study identifies a locus on TERT for mean telomere length in Han Chinese. PLoS One. 2014;9(1):e85043. doi: 10.1371/journal.pone.0085043.
    1. Delgado DA, Zhang C, Chen LS, Gao J, Roy S, Shinkle J, Sabarinathan M, Argos M, Tong L, Ahmed A, Islam T, Rakibuz-Zaman M, Sarwar G, Shahriar H, Rahman M, Yunus M, Jasmine F, Kibriya MG, Ahsan H, Pierce BL. Genome-wide association study of telomere length among South Asians identifies a second RTEL1 association signal. J Med Genet. 2018;55(1):64–71. doi: 10.1136/jmedgenet-2017-104922.
    1. Factor-Litvak P, Susser E, Kezios K, McKeague I, Kark JD, Hoffman M, et al. Leukocyte telomere length in newborns: implications for the role of telomeres in human disease. Pediatrics. 2016;137(4). 10.1542/peds.2015-3927.
    1. Martens DS, Van Der Stukken C, Derom C, Thiery E, Bijnens EM, Nawrot TS. Newborn telomere length predicts later life telomere length: tracking telomere length from birth to child- and adulthood. EBioMedicine. 2021;63:103164. doi: 10.1016/j.ebiom.2020.103164.
    1. Benetos A, Verhulst S, Labat C, Lai TP, Girerd N, Toupance S, Zannad F, Rossignol P, Aviv A. Telomere length tracking in children and their parents: implications for adult onset diseases. FASEB J. 2019;33(12):14248–14253. doi: 10.1096/fj.201901275R.
    1. Entringer S, de Punder K, Buss C, Wadhwa PD. The fetal programming of telomere biology hypothesis: an update. Philos Trans R Soc Lond B Biol Sci. 2018;373(1741). 10.1098/rstb.2017.0151.
    1. Entringer S, Epel ES, Lin J, Blackburn EH, Buss C, Shahbaba B, Gillen DL, Venkataramanan R, Simhan HN, Wadhwa PD. Maternal folate concentration in early pregnancy and newborn telomere length. Ann Nutr Metab. 2015;66(4):202–208. doi: 10.1159/000381925.
    1. Kim JH, Kim GJ, Lee D, Ko JH, Lim I, Bang H, et al. Higher maternal vitamin D concentrations are associated with longer leukocyte telomeres in newborns. Matern Child Nutr. 2018;14(1). 10.1111/mcn.12475.
    1. Mirzakhani H, De Vivo I, Leeder JS, Gaedigk R, Vyhlidal CA, Weiss ST, Tantisira K. Early pregnancy intrauterine fetal exposure to maternal smoking and impact on fetal telomere length. Eur J Obstet Gynecol Reprod Biol. 2017;218:27–32. doi: 10.1016/j.ejogrb.2017.09.013.
    1. Wojcicki JM, Olveda R, Heyman MB, Elwan D, Lin J, Blackburn E, Epel E. Cord blood telomere length in Latino infants: relation with maternal education and infant sex. J Perinatol. 2016;36(3):235–241. doi: 10.1038/jp.2015.178.
    1. Tellechea M, Gianotti TF, Alvarinas J, Gonzalez CD, Sookoian S, Pirola CJ. Telomere length in the two extremes of abnormal fetal growth and the programming effect of maternal arterial hypertension. Sci Rep. 2015;5(1):7869. doi: 10.1038/srep07869.
    1. Martens DS, Plusquin M, Gyselaers W, De Vivo I, Nawrot TS. Maternal pre-pregnancy body mass index and newborn telomere length. BMC Med. 2016;14(1):148. doi: 10.1186/s12916-016-0689-0.
    1. Xu J, Ye J, Wu Y, Zhang H, Luo Q, Han C, Ye X, Wang H, He J, Huang H, Liu Y, Dong M. Reduced fetal telomere length in gestational diabetes. PLoS One. 2014;9(1):e86161. doi: 10.1371/journal.pone.0086161.
    1. Send TS, Gilles M, Codd V, Wolf I, Bardtke S, Streit F, Strohmaier J, Frank J, Schendel D, Sutterlin MW, et al. Telomere length in newborns is related to maternal stress during pregnancy. Neuropsychopharmacology. 2017;42(12):2407–2413. doi: 10.1038/npp.2017.73.
    1. Prescott J, Du M, Wong JY, Han J, De Vivo I. Paternal age at birth is associated with offspring leukocyte telomere length in the nurses’ health study. Hum Reprod. 2012;27(12):3622–3631. doi: 10.1093/humrep/des314.
    1. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G, Albrecht E, Amin N, Beekman M, de Geus EJ, et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet. 2013;21(10):1163–1168. doi: 10.1038/ejhg.2012.303.
    1. Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, Cupples A, Hunkin JL, Gardner JP, Lu X, Cao X, Sastrasinh M, Province MA, Hunt SC, Christensen K, Levy D, Spector TD, Aviv A. Offspring’s leukocyte telomere length, paternal age, and telomere elongation in sperm. PLoS Genet. 2008;4(2):e37. doi: 10.1371/journal.pgen.0040037.
    1. Nordfjall K, Larefalk A, Lindgren P, Holmberg D, Roos G. Telomere length and heredity: indications of paternal inheritance. Proc Natl Acad Sci U S A. 2005;102(45):16374–16378. doi: 10.1073/pnas.0501724102.
    1. Eisenberg DT. Inconsistent inheritance of telomere length (TL): is offspring TL more strongly correlated with maternal or paternal TL? Eur J Hum Genet. 2014;22(1):8–9. doi: 10.1038/ejhg.2013.202.
    1. Soh SE, Tint MT, Gluckman PD, Godfrey KM, Rifkin-Graboi A, Chan YH, et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol. 2013.
    1. Lin X, Teh AL, Chen L, Lim IY, Tan PF, MacIsaac JL, Morin AM, Yap F, Tan KH, Saw SM, et al. Choice of surrogate tissue influences neonatal EWAS findings. BMC Med. 2017;15(1):211. doi: 10.1186/s12916-017-0970-x.
    1. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos M, Wolkowitz O, Mellon S, Blackburn E. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: insights for epidemiology of telomere maintenance. J Immunol Methods. 2010;352(1-2):71–80. doi: 10.1016/j.jim.2009.09.012.
    1. Verhulst S, Susser E, Factor-Litvak PR, Simons M, Benetos A, Steenstrup T, Kark JD, Aviv A. Response to: Reliability and validity of telomere length measurements. Int J Epidemiol. 2016;45(4):1298–1301. doi: 10.1093/ije/dyw194.
    1. Chong YS, Cai S, Lin H, Soh SE, Lee YS, Leow MK, Chan YH, Chen L, Holbrook JD, Tan KH, Rajadurai VS, Yeo GS, Kramer MS, Saw SM, Gluckman PD, Godfrey KM, Kwek K, GUSTO study group Ethnic differences translate to inadequacy of high-risk screening for gestational diabetes mellitus in an Asian population: a cohort study. BMC Pregnancy Childbirth. 2014;14(1):345. doi: 10.1186/1471-2393-14-345.
    1. Wendland EM, Torloni MR, Falavigna M, Trujillo J, Dode MA, Campos MA, Duncan BB, Schmidt MI. Gestational diabetes and pregnancy outcomes--a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy Childbirth. 2012;12(1):23. doi: 10.1186/1471-2393-12-23.
    1. van Lee L, Tint MT, Aris IM, Quah PL, Fortier MV, Lee YS, Yap FK, Saw SM, Godfrey KM, Gluckman PD, et al. Prospective associations of maternal betaine status with offspring weight and body composition at birth: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Am J Clin Nutr. 2016;104(5):1327–1333. doi: 10.3945/ajcn.116.138818.
    1. Ong YL, Quah PL, Tint MT, Aris IM, Chen LW, van Dam RM, Heppe D, Saw SM, Godfrey KM, Gluckman PD, Chong YS, Yap F, Lee YS, Foong-Fong Chong M. The association of maternal vitamin D status with infant birth outcomes, postnatal growth and adiposity in the first 2 years of life in a multi-ethnic Asian population: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study. Br J Nutr. 2016;116(4):621–631. doi: 10.1017/S0007114516000623.
    1. Chong MF, Wong JX, Colega M, Chen LW, van Dam RM, Tan CS, Lim AL, Cai S, Broekman BF, Lee YS, Saw SM, Kwek K, Godfrey KM, Chong YS, Gluckman P, Meaney MJ, Chen H, GUSTO study group Relationships of maternal folate and vitamin B12 status during pregnancy with perinatal depression: the GUSTO study. J Psychiatr Res. 2014;55:110–116. doi: 10.1016/j.jpsychires.2014.04.006.
    1. Chong MF, Ong YL, Calder PC, Colega M, Wong JX, Tan CS, Lim AL, Fisk HL, Cai S, Pang WW, et al. Long-chain polyunsaturated fatty acid status during pregnancy and maternal mental health in pregnancy and the postpartum period: results from the GUSTO study. J Clin Psychiatry. 2015;76(7):e848–e856. doi: 10.4088/JCP.14m09191.
    1. Bernard JY, Tint MT, Aris IM, Chen LW, Quah PL, Tan KH, Yeo GS, Fortier MV, Yap F, Shek L, et al. Maternal plasma phosphatidylcholine polyunsaturated fatty acids during pregnancy and offspring growth and adiposity. Prostaglandins Leukot Essent Fatty Acids. 2017;121:21–29. doi: 10.1016/j.plefa.2017.05.006.
    1. Reese SE, Zhao S, Wu MC, Joubert BR, Parr CL, Haberg SE, Ueland PM, Nilsen RM, Midttun O, Vollset SE, et al. DNA methylation score as a biomarker in newborns for sustained maternal smoking during pregnancy. Environ Health Perspect. 2017;125(4):760–766. doi: 10.1289/EHP333.
    1. Rosero-Bixby L, Rehkopf DH, Dow WH, Lin J, Epel ES, Azofeifa J, Leal A. Correlates of longitudinal leukocyte telomere length in the Costa Rican Longevity Study of Healthy Aging (CRELES): on the importance of DNA collection and storage procedures. PLoS One. 2019;14(10):e0223766. doi: 10.1371/journal.pone.0223766.
    1. Lai JS, Pang WW, Cai S, Lee YS, Chan JKY, Shek LPC, Yap FKP, Tan KH, Godfrey KM, van Dam RM, Chong YS, Chong MFF. High folate and low vitamin B12 status during pregnancy is associated with gestational diabetes mellitus. Clin Nutr. 2018;37(3):940–947. doi: 10.1016/j.clnu.2017.03.022.
    1. Jones AM, Beggs AD, Carvajal-Carmona L, Farrington S, Tenesa A, Walker M, Howarth K, Ballereau S, Hodgson SV, Zauber A, Bertagnolli M, Midgley R, Campbell H, Kerr D, Dunlop MG, Tomlinson IPM. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut. 2012;61(2):248–254. doi: 10.1136/gut.2011.239772.
    1. Pepper MR, Black MM. B12 in fetal development. Semin Cell Dev Biol. 2011;22(6):619–623. doi: 10.1016/j.semcdb.2011.05.005.
    1. Martens DS, Janssen BG, Bijnens EM, Clemente DBP, Vineis P, Plusquin M, Nawrot TS. Association of parental socioeconomic status and newborn telomere length. JAMA Netw Open. 2020;3(5):e204057. doi: 10.1001/jamanetworkopen.2020.4057.
    1. Liu B, Chen H, Xu Y, An C, Zhong L, Wang X, Zhang Y, Chen H, Zhang J, Wang Z. Fetal growth is associated with maternal fasting plasma glucose at first prenatal visit. PLoS One. 2014;9(12):e116352. doi: 10.1371/journal.pone.0116352.
    1. Hong S, Kim MM. IGFBP-3 plays an important role in senescence as an aging marker. Environ Toxicol Pharmacol. 2018;59:138–145. doi: 10.1016/j.etap.2018.03.014.
    1. Jung RG, Motazedian P, Ramirez FD, Simard T, Di Santo P, Visintini S, Faraz MA, Labinaz A, Jung Y, Hibbert B. Association between plasminogen activator inhibitor-1 and cardiovascular events: a systematic review and meta-analysis. Thromb J. 2018;16(1):12. doi: 10.1186/s12959-018-0166-4.
    1. Barbieri M, Paolisso G, Kimura M, Gardner JP, Boccardi V, Papa M, Hjelmborg JV, Christensen K, Brimacombe M, Nawrot TS, Staessen JA, Pollak MN, Aviv A. Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev. 2009;130(11-12):771–776. doi: 10.1016/j.mad.2009.10.002.
    1. Kuhlow D, Florian S, von Figura G, Weimer S, Schulz N, Petzke KJ, Zarse K, Pfeiffer AF, Rudolph KL, Ristow M. Telomerase deficiency impairs glucose metabolism and insulin secretion. Aging (Albany NY) 2010;2(10):650–658. doi: 10.18632/aging.100200.

Source: PubMed

3
Tilaa