Prostacyclin, thromboxane and glomerular filtration rate are abnormal in sickle cell pregnancy

Opeyemi Abayomi Obilade, Alani Suleimon Akanmu, Fiona Broughton Pipkin, Bosede Bukola Afolabi, Opeyemi Abayomi Obilade, Alani Suleimon Akanmu, Fiona Broughton Pipkin, Bosede Bukola Afolabi

Abstract

Background: Pregnancy increases the risk of morbidity and mortality in sickle cell disease. We previously showed pregnant women with sickle cell disease to have a relatively low plasma renin concentration in late pregnancy, associated with a lack of the expected plasma volume expansion. We hypothesized this to be due to increased systemic vascular resistance through an imbalance between the vasodilator prostacyclin and vasoconstrictor thromboxane, associated with decreased glomerular filtration rate (GFR).

Objective: To compare estimated prostacyclin, thromboxane and GFR in non-pregnant and pregnant women with hemoglobin SS (HbSS) and AA (HbAA).

Study design: Four groups of 20 normotensive, nulliparous women were studied in Lagos, Nigeria: pregnant HbSS or HbAA women at 36-40 weeks gestation; non-pregnant HbSS and HbAA controls. We measured stable metabolites of prostacyclin and thromboxane A2 by enzyme-linked immunosorbent assay; GFR using the Cockcroft-Gault equation. Data analysis was by independent (Student's) t-test or Mann-Whitney U test for comparisons between any two groups of continuous variables, univariate ANOVA for multiple groups and Pearson's correlation coefficient for degree of association between variables.

Results: HbSS women had lower serum 6-keto-PGF1α concentrations than HbAA, whether pregnant or non-pregnant (P<0.001; P<0.004 respectively). Conversely, pregnant HbSS women had higher serum TxB2 (P<0.001); non-pregnant HbSS women had non-significantly higher TxB2 concentrations. The 6-keto-PGF1α:TxB2 ratio was markedly increased (pro-vasodilatory) in HbAA pregnancy (P<0.001) but reduced in HbSS pregnancy (P = 0.037). GFRs (mL/min) were higher in non-pregnant HbSS than HbAA (P<0.008) but only marginally raised in HbSS women in late pregnancy (P = 0.019) while markedly raised in HbAA pregnancy (P<0.001).

Conclusion: The lower ratio of prostacyclin-thromboxane metabolites in HbSS pregnancy may indicate endothelial damage and an increased tendency to vasoconstriction and clotting. If confirmed by subsequent longitudinal studies, interventions to increase prostacyclin and reduce thromboxane, such as low dose aspirin, may be potentially useful in their management.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Prostacyclin-to-thromboxane ratio in pregnant and…
Fig 1. Prostacyclin-to-thromboxane ratio in pregnant and non-pregnant HbSS and HbAA women.
Fig 2. Relationship between prostacyclin and GFR.
Fig 2. Relationship between prostacyclin and GFR.
A scatter plot showing the relationship between log10 6-keto-PGF1α and estimated creatinine clearance in pregnant HbAA women (N = 20), and HbSS (N = 18) women. The computed best line of fit for both groups of women is displayed and there is a significant positive correlation in HbSS women as shown.

References

    1. Chakravorty S, Williams TN. Sickle cell disease: a neglected chronic disease of increasing global health importance. Arch Dis Child. 2015;100(1):48–53. doi: ; PubMed Central PMCID: PMC4285890.
    1. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, et al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48. doi: .
    1. Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013;3(10):a011783 doi: ; PubMed Central PMCID: PMC3784812.
    1. Boafor TK, Olayemi E, Galadanci N, Hayfron-Benjamin C, Dei-Adomakoh Y, Segbefia C, et al. Pregnancy outcomes in women with sickle-cell disease in low and high income countries: a systematic review and meta-analysis. BJOG. 2016;123(5):691–8. doi: .
    1. Oteng-Ntim E, Ayensah B, Knight M, Howard J. Pregnancy outcome in patients with sickle cell disease in the UK—a national cohort study comparing sickle cell anaemia (HbSS) with HbSC disease. Br J Haematol. 2015;169(1):129–37. doi: .
    1. Broughton-Pipkin F. Maternal Physiology In: Edmonds DK, editor. Dewhurst's Textbook of Obstetrics and Gynaecology. 8th ed UK: John Wiley and Sons, Ltd; 2012. p. 5–15.
    1. Faupel-Badger JM, Hsieh CC, Troisi R, Lagiou P, Potischman N. Plasma volume expansion in pregnancy: implications for biomarkers in population studies. Cancer Epidemiol Biomarkers Prev. 2007;16(9):1720–3. doi: .
    1. Hytten F. Blood volume changes in normal pregnancy. Clin Haematol. 1985;14(3):601–12. Epub 1985/10/01. .
    1. Salas SP, Rosso P, Espinoza R, Robert JA, Valdes G, Donoso E. Maternal plasma volume expansion and hormonal changes in women with idiopathic fetal growth retardation. Obstet Gynecol. 1993;81(6):1029–33. Epub 1993/06/01. .
    1. Salas SP, Marshall G, Gutierrez BL, Rosso P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006;47(2):203–8. doi:
    1. von Tempelhoff GF, Heilmann L, Rudig L, Pollow K, Hommel G, Koscielny J. Mean maternal second-trimester hemoglobin concentration and outcome of pregnancy: a population-based study. Clin Appl Thromb Hemost. 2008;14(1):19–28. doi: .
    1. Abudu OO, Sofola OA. Intravascular volume expansion and fetal outcome in pregnant Nigerians with hemoglobin SS and SC. J Natl Med Assoc. 1988;80(8):906–12. .
    1. Afolabi BB, Oladipo OO, Akanmu AS, Abudu OO, Sofola OA, Broughton Pipkin F. Volume regulatory hormones and plasma volume in pregnant women with sickle cell disorder. J Renin Angiotensin Aldosterone Syst. 2016;17(3). doi: .
    1. Chavarria ME, Lara-Gonzalez L, Gonzalez-Gleason A, Garcia-Paleta Y, Vital-Reyes VS, Reyes A. Prostacyclin/thromboxane early changes in pregnancies that are complicated by preeclampsia. Am J Obstet Gynecol. 2003;188(4):986–92. .
    1. Lewis DF, Canzoneri BJ, Gu Y, Zhao S, Wang Y. Maternal levels of prostacyclin, thromboxane, ICAM, and VCAM in normal and preeclamptic pregnancies. Am J Reprod Immunol. 2010;64(6):376–83. doi: ; PubMed Central PMCID: PMC3062267.
    1. Fitzgerald DJ, Entman SS, Mulloy K, FitzGerald GA. Decreased prostacyclin biosynthesis preceding the clinical manifestation of pregnancy-induced hypertension. Circulation. 1987;75(5):956–63. Epub 1987/05/01. .
    1. Brown MA, Reiter L, Rodger A, Whitworth JA. Impaired renin stimulation in pre-eclampsia. Clin Sci (Lond). 1994;86(5):575–81. .
    1. Tkachenko O, Shchekochikhin D, Schrier RW. Hormones and hemodynamics in pregnancy. Int J Endocrinol Metab. 2014;12(2):e14098 doi: ; PubMed Central PMCID: PMC4005978.
    1. Allon M, Lawson L, Eckman JR, Delaney V, Bourke E. Effects of nonsteroidal antiinflammatory drugs on renal function in sickle cell anemia. Kidney Int. 1988;34(4):500–6. Epub 1988/10/01. .
    1. Ataga KI, Orringer EP. Renal abnormalities in sickle cell disease. Am J Hematol. 2000;63(4):205–11. Epub 2000/03/08. doi: [pii]. .
    1. Lafayette RA, Hladunewich MA, Derby G, Blouch K, Druzin ML, Myers BD. Serum relaxin levels and kidney function in late pregnancy with or without preeclampsia. Clin Nephrol. 2011;75(3):226–32.
    1. Conrad KP, Stillman IE, Lindheimer MD. The Kidney in Normal Pregnancy and Preeclampsia In: Taylor RN, Roberts JM, Cunningham FG, Lindheimer MD, editors. Chesley's Hypertensive Disorders in Pregnancy. 4th ed USA: Academic Press, Elsevier; 2015. p. 335–77.
    1. Koetje PM, Spaan JJ, Kooman JP, Spaanderman ME, Peeters LL. Pregnancy reduces the accuracy of the estimated glomerular filtration rate based on Cockroft-Gault and MDRD formulas. Reprod Sci. 2011;18(5):456–62. doi: Epub 2010 Nov 15.
    1. Alper AB, Yi Y, Rahman M, Webber LS, Magee L, von Dadelszen P, et al. Performance of estimated glomerular filtration rate prediction equations in preeclamptic patients. Am J Perinatol. 2011;28(6):425–30. doi: Epub 2010 Nov 18.
    1. De Franceschi L, Cappellini MD, Olivieri O. Thrombosis and sickle cell disease. Semin Thromb Hemost. 2011;37(3):226–36. doi: .
    1. Walsh S. Prostaglandins in pregnancy. Global Library of Women's Medicine. 2011. doi:
    1. Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018–31. doi: .
    1. Schiff E, Peleg E, Goldenberg M, Rosenthal T, Ruppin E, Tamarkin M, et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high risk pregnancies. N Engl J Med. 1989;321(6):351–6. doi: .
    1. Duley L, Henderson-Smart DJ, Meher S, King JF. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database of Systematic Reviews. 2007. doi:
    1. Oteng-Ntim E, Meeks D, Seed PT, Webster L, Howard J, Doyle P, et al. Adverse maternal and perinatal outcomes in pregnant women with sickle cell disease: systematic review and meta-analysis. Blood. 2015;125(21):3316–25. doi: .
    1. Lewis PJ, Boylan P, Friedman LA, Hensby CN, Downing I. Prostacyclin in pregnancy. Br Med J. 1980;280(6231):1581–2. ; PubMed Central PMCID: PMC1601850.
    1. Nielsen CB, Bech JN, Pedersen EB. Effects of prostacyclin on renal haemodynamics, renal tubular function and vasoactive hormones in healthy humans. A placebo-controlled dose-response study. Br J Clin Pharmacol. 1997;44(5):471–6. doi: ; PubMed Central PMCID: PMC2042875.
    1. Morken NH, Travlos GS, Wilson RE, Eggesbo M, Longnecker MP. Maternal glomerular filtration rate in pregnancy and fetal size. PLoS One. 2014;9(7):e101897 doi: ; PubMed Central PMCID: PMC4087025.
    1. Vainio M, Riutta A, Koivisto AM, Maenpaa J. Prostacyclin, thromboxane A and the effect of low-dose ASA in pregnancies at high risk for hypertensive disorders. Acta Obstet Gynecol Scand. 2004;83(12):1119–23. doi: .
    1. Vainio M, Maenpaa J, Riutta A, Ylitalo P, Ala-Fossi S, Tuimala R. In the dose range of 0.5–2.0 mg/kg, acetylsalicylic acid does not affect prostacyclin production in hypertensive pregnancies. Acta Obstet Gynecol Scand. 1999;78:82–8.
    1. Fontana P, Alberts P, Sakariassen KS, Bounameaux H, Meyer JP, Santana Sorensen A. The dual thromboxane receptor antagonist and thromboxane synthase inhibitor EV-077 is a more potent inhibitor of platelet function than aspirin. J Thromb Haemost. 2011;9(10):2109–11. doi: .

Source: PubMed

3
Tilaa