Relationship between endothelin and nitric oxide pathways in the onset and maintenance of hypertension in children and adolescents

Simonetta Genovesi, Marco Giussani, Antonina Orlando, Giulia Lieti, Francesca Viazzi, Gianfranco Parati, Simonetta Genovesi, Marco Giussani, Antonina Orlando, Giulia Lieti, Francesca Viazzi, Gianfranco Parati

Abstract

The mechanisms that regulate blood pressure are numerous and complex; one mechanism that plays an important role in this scenario is represented by the balance between the vasoconstrictor effect of endothelin-1 and the vasodilator effect of nitric oxide. While there is agreement on the fact that increased endothelin-1 activity and decreased nitric oxide bioavailability are present in hypertensive adults, the situation is less clear in children and adolescents. Not all studies agree on the finding of an increase in plasma endothelin-1 levels in hypertensive children and adolescents; in addition, the picture is often confused by the concomitant presence of obesity, a condition that stimulates the production of endothelin-1. Furthermore, there is recent evidence that, in younger obese and hypertensive subjects, there is an overproduction of nitric oxide, rather than a reduction. This condition may change over time, causing endothelial dysfunction due to a reduced availability of nitric oxide in hypertensive adolescents. The purpose of this review is to address the main biochemical and pathophysiological aspects of endothelin and nitric oxide involvement in hypertension and to summarize the available scientific evidence on their role in the onset and maintenance of high blood pressure in children and adolescents.

Keywords: Adolescents; Children; Endothelin-1; Hypertension; Nitric oxide; Obesity.

Conflict of interest statement

The authors declare no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Activation of endothelin and interaction with receptors. ANS, autonomic nervous system; CNS, central nervous system; ECE, endothelin-converting enzyme; ET, endothelin
Fig. 2
Fig. 2
Balance between nitric oxide-mediated vasodilatory and ET-1-mediated vasoconstrictive activity. In larger arteries (conduit arteries), NO-dependent vasodilation is predominantly sGMP mediated, while EDH factors are more active in smaller arteries (resistance arteries). cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; ECE, endothelin-converting enzyme; EDHf, endothelium-dependent hyperpolarization factors; eNOS, endothelial NO synthases; ETA/ETB, endothelin receptors; ET, endothelin; KCa, calcium-dependent potassium channels; L-arg, L-arginine; NO, nitric oxide; PGs, prostaglandins; PLA2, phospholipase A2; sGC, soluble guanylate cyclase
Fig. 3
Fig. 3
Hypotheses about NO and ET-1 changes in the onset and maintenance of hypertension from childhood to adulthood. NO, nitric oxide; ET-1, endothelin-1

References

    1. Song P, Zhang Y, Yu J, Zha M, et al. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 2019;173:1–10. doi: 10.1001/jamapediatrics.2019.3310.
    1. Brady TM, Redwine KM, Flynn JT. Screening blood pressure measurement in children: are we saving lives? Pediatr Nephrol. 2014;29:947–950. doi: 10.1007/s00467-013-2715-1.
    1. Genovesi S, Antolini L, Giussani M, Brambilla P, et al. Hypertension, prehypertension, and transient elevated blood pressure in children: association with weight excess and waist circumference. Am J Hypertens. 2010;23:756–761. doi: 10.1038/ajh.2010.50.
    1. Davenport AP, Hyndman KA, Dhaun N, Southan C, et al. Endothelin. Pharmacol Rev. 2016;95499:357–418. doi: 10.1124/pr.115.011833.
    1. Masashi Y, Tomoh M. Endothelin, a novel endothelium-derived peptide: pharmacological activities, regulation and possible roles in cardiovascular control. Biochem Pharmacol. 1989;38:1877–1883. doi: 10.1016/0006-2952(89)90484-X.
    1. Hickey KA, Rubanyi G, Paul RJ, Highsmith RF. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol Physiol. 1985;248:C550–C556. doi: 10.1152/ajpcell.1985.248.5.C550.
    1. Barton M, Yanagisawa M. Endothelin: 30 years from discovery to therapy. Hypertension. 2019;74:1232–1265. doi: 10.1161/HYPERTENSIONAHA.119.12105.
    1. Barton M, Yanagisawa M. Endothelin: 20 years from discovery to therapy. Can J Physiol Pharmacol. 2008;86:485–498. doi: 10.1139/Y08-059.
    1. Masaki T. Historical review: endothelin. Trends Pharmacol Sci. 2004;25:219–224. doi: 10.1016/j.tips.2004.02.008.
    1. Inoue A, Yanagisawa M, Kimura S, Kasuya Y, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci U S A. 1989;86:2863–2867. doi: 10.1073/pnas.86.8.2863.
    1. Kedzierski RM, Yanagisawa M. Endothelin system: the double-edged sword in health and disease. Annu Rev Pharmacol Toxicol. 2001;41:851–876. doi: 10.1146/annurev.pharmtox.41.1.851.
    1. Schweizer A, Valdenaire O, Nelböck P, Deuschle U, et al. Human endothelin-converting enzyme (ECE-1): three isoforms with distinct subcellular localizations. Biochem J. 1997;328:871–877. doi: 10.1042/bj3280871.
    1. Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of a cDNA encoding an endothelin receptor. Nature. 1990;348:730–732. doi: 10.1038/348730a0.
    1. Sakurai T, Yanagisawa M, Takuwat Y, Ohkubo H, et al. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature. 1990;348:732–735. doi: 10.1038/348732a0.
    1. Kurihara Y, Kurihara H, Suzukf H, Kodama T, et al. Elevated blood pressure and craniofacial endothelin-l. Nature. 1994;368:703–710. doi: 10.1038/368703a0.
    1. Puffenberger EG, Hosoda K, Washington SS, Nakao K, et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung’s disease. Cell. 1994;79:1257–1266. doi: 10.1016/0092-8674(94)90016-7.
    1. Russell FD, Davenport AP. Secretory pathways in endothelin synthesis. Br J Pharmacol. 1999;126:391–398. doi: 10.1038/sj.bjp.0702315.
    1. Wang Y, Chen S, Du J. Bosentan for treatment of pediatric idiopathic pulmonary arterial hypertension: state-of-the-art. Front Pediatr. 2019;7:302. doi: 10.3389/fped.2019.00302.
    1. Spinella F, Caprara V, Cianfrocca R, Rosanò L, et al. The interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor. Carcinogenesis. 2014;35:840–848. doi: 10.1093/carcin/bgu018.
    1. Stow LR, Jacobs ME, Wingo CS, Cain BD. Endothelin-1 gene regulation. FASEB J. 2011;25:16–28. doi: 10.1096/fj.10-161612.
    1. Barton M. Aging and endothelin: determinants of disease. Life Sci. 2014;118:97–109. doi: 10.1016/j.lfs.2014.09.009.
    1. Musa Ahmed AR. Polymorphism in endothelin-1 gene: an overview. Curr Clin Pharmacol. 2016;11:191–210. doi: 10.2174/1574884711666160701000900.
    1. Gupta RM, Hadaya J, Trehan A, Zekavat SM, et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 2017;170:522–533.e15. doi: 10.1016/j.cell.2017.06.049.
    1. Ling L, Maguire JJ, Davenport AP. Endothelin-2, the forgotten isoform: emerging role in the cardiovascular system, ovarian development, immunology and cancer. Br J Pharmacol. 2013;168:283–295. doi: 10.1111/j.1476-5381.2011.01786.x.
    1. Takasuka T, Sakurai T, Goto K, Furuichi Y, et al. Human endothelin receptor ET(B). Amino acid sequence requirements for super stable complex formation with its ligand. J Biol Chem. 1994;269:7509–7513. doi: 10.1016/s0021-9258(17)37315-5.
    1. Robbins RA, Grisham MB. Nitric oxide. Int J Biochem Cell Biol. 1997;29:857–860. doi: 10.1016/S1357-2725(96)00167-7.
    1. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33:829–837. doi: 10.1093/eurheartj/ehr304.
    1. Zhou L, Zhu DY. Neuronal nitric oxide synthase: structure, subcellular localization, regulation, and clinical implications. Nitric Oxide. 2009;20:223–230. doi: 10.1016/j.niox.2009.03.001.
    1. Förstermann U, Closs EI, Pollock JS, Nakane M, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994;23:1121–1131. doi: 10.1161/01.HYP.23.6.1121.
    1. Hemmens B, Mayer B. Enzymology of nitric oxide synthases. Methods Mol Biol. 1998;100:1–32. doi: 10.1385/1-59259-749-1:1.
    1. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, et al. A role for nitroxyl (HNO) as an endothelium-derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol. 2009;157:540–550. doi: 10.1111/j.1476-5381.2009.00150.x.
    1. Nishiyama SK, Zhao J, Wray DW, Richardson RS. Vascular function and endothelin-1: tipping the balance between vasodilation and vasoconstriction. J Appl Physiol. 1985;122:354–360. doi: 10.1152/japplphysiol.00772.2016.
    1. Motte S, McEntee K, Naeije R. Endothelin receptor antagonists. Pharmacol Ther. 2006;110:386–414. doi: 10.1016/j.pharmthera.2005.08.012.
    1. Weber MA, Black H, Bakris G, Krum H, et al. A selective endothelin-receptor antagonist to reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-blind, placebo-controlled trial. Lancet. 2009;374:1423–1431. doi: 10.1016/S0140-6736(09)61500-2.
    1. Meyers KE, Sethna C. Endothelin antagonists in hypertension and kidney disease. Pediatr Nephrol. 2013;28:711–720. doi: 10.1007/s00467-012-2316-4.
    1. Benigni A, Buelli S, Kohan DE. Endothelin-targeted new treatments for proteinuric and inflammatory glomerular diseases: focus on the added value to anti-renin-angiotensin system inhibition. Pediatr Nephrol. 2021;36:763–775. doi: 10.1007/s00467-020-04518-2.
    1. Moshage H, Kok B, Huizenga JR, Jansen PLM. Nitrite and nitrate determination in plasma: a critical evaluation. Clin Chem. 1995;41:892–896. doi: 10.1093/clinchem/41.6.892.
    1. Flammer AJ, Anderson T, Celermajer DS, Creager MA, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–767. doi: 10.1161/CIRCULATIONAHA.112.093245.
    1. Doshi SN, Naka KK, Payne N, Jones CJ, et al. Flow-mediated dilatation following wrist and upper arm occlusion in humans: the contribution of nitric oxide. Clin Sci (Lond) 2001;101:629–635. doi: 10.1042/CS20010033.
    1. Deanfield J, Donald A, Ferri C, Giannattasio C, et al. Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: a statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23:7–17. doi: 10.1097/00004872-200501000-00004.
    1. Yuan W, Cheng G, Li B, Li Y, et al. Endothelin-receptor antagonist can reduce blood pressure in patients with hypertension: a meta-analysis. Blood Press. 2017;26:139–149. doi: 10.1080/08037051.2016.1208730.
    1. Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, Kiowski W, Lüscher TF, Mancia G, Natali A, Oliver JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Spieker LE, Taddei S, Webb DJ, Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension Endothelial function and dysfunction. Part II: Association with cardiovascular risk factors and diseases. A statement by the Working Group on Endothelins and Endothelial Factors of the European Society of Hypertension. J Hypertens. 2005;23:233–246. doi: 10.1097/00004872-200502000-00001.
    1. Hermann M, Flammer A, Lüscher TF. Nitric oxide in hypertension. J Clin Hypertens (Greenwich) 2006;8:17–29. doi: 10.1111/j.1524-6175.2006.06032.x.
    1. Selvaraju V, Ayine P, Fadamiro M, Babu JR, et al. Urinary biomarkers of inflammation and oxidative stress are elevated in obese children and correlate with a marker of endothelial dysfunction. Oxidative Med Cell Longev. 2019;2019:9604740. doi: 10.1155/2019/9604740.
    1. Ferri C, Pittoni V, Piccoli A, Laurenti O, et al. Insulin stimulates endothelin-1 secretion from human endothelial cells and modulates its circulating levels in vivo. J Clin Endocrinol Metab. 1995;80:829–835. doi: 10.1210/jcem.80.3.7883838.
    1. Głowińska B, Urban M, Hryniewicz A, Peczyńska J, et al. Endothelin-1 plasma concentration in children and adolescents with atherogenic risk factors. Kardiol Pol. 2004;61:329–338.
    1. Katona É, Settakis G, Varga Z, Paragh G, et al. Target-organ damage in adolescent hypertension. Analysis of potential influencing factors, especially nitric oxide and endothelin-1. J Neurol Sci. 2006;247:138–143. doi: 10.1016/j.jns.2006.04.007.
    1. Aflyatumova GN, Nigmatullina RR, Sadykova DI, Chibireva MD, Fugetto F, Serra R. Endothelin-1, nitric oxide, serotonin and high blood pressure in male adolescents. Vasc Health Risk Manag. 2018;14:213–223. doi: 10.2147/VHRM.S170317.
    1. Banaszak B, Świętochowska E, Banaszak P, Chibireva MD, et al. Endothelin-1 (ET-1), N-terminal fragment of pro-atrial natriuretic peptide (NTpro-ANP), and tumour necrosis factor alpha (TNF-α) in children with primary hypertension and hypertension of renal origin. Endokrynol Pol. 2019;70:37–42. doi: 10.5603/EP.a2018.0079.
    1. Orlando A, Viazzi F, Giussani M, Nava E, et al. Endothelin-1/nitric oxide balance and HOMA index in children with excess weight and hypertension: a pathophysiological model of hypertension. Hypertens Res. 2019;42:1192–1199. doi: 10.1038/s41440-019-0253-3.
    1. Charakida M, Jones A, Falaschetti E, Khan T, et al. Childhood obesity and vascular phenotypes: a population study. J Am Coll Cardiol. 2012;60:2643–2650. doi: 10.1016/j.jacc.2012.08.1017.
    1. Correia-Costa L, Sousa T, Morato M, Cosme D, et al. Oxidative stress and nitric oxide are increased in obese children and correlate with cardiometabolic risk and renal function. Br J Nutr. 2016;116:805–815. doi: 10.1017/S0007114516002804.
    1. Chung KH, Chiou HY, Chang JS, Chen YH. Associations of nitric oxide with obesity and psychological traits among children and adolescents in Taiwan. Pediatr Obes. 2019;15:e12593. doi: 10.1111/ijpo.12593.
    1. Gruber HJ, Mayer C, Mangge H, Fauler G, et al. Obesity reduces the bioavailability of nitric oxide in juveniles. Int J Obes. 2008;32:826–831. doi: 10.1038/sj.ijo.0803795.
    1. Strambi M, Messa G, Berni S, Capitani S, et al. Basal and post-ischemic vascular compliance in children/ adolescents born small for gestational age. Pediatr Nephrol. 2012;27:1541–1546. doi: 10.1007/s00467-012-2168-y.
    1. Juonala M, Viikari J, Rönnemaa T, Helenius H, et al. Elevated blood pressure in adolescent boys predicts endothelial dysfunction the cardiovascular risk in Young Finns Study. Hypertension. 2006;48:424–430. doi: 10.1161/01.HYP.0000237666.78217.47.

Source: PubMed

3
Tilaa