Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity

James B Adams, Tapan Audhya, Sharon McDonough-Means, Robert A Rubin, David Quig, Elizabeth Geis, Eva Gehn, Melissa Loresto, Jessica Mitchell, Sharon Atwood, Suzanne Barnhouse, Wondra Lee, James B Adams, Tapan Audhya, Sharon McDonough-Means, Robert A Rubin, David Quig, Elizabeth Geis, Eva Gehn, Melissa Loresto, Jessica Mitchell, Sharon Atwood, Suzanne Barnhouse, Wondra Lee

Abstract

Background: The relationship between relative metabolic disturbances and developmental disorders is an emerging research focus. This study compares the nutritional and metabolic status of children with autism with that of neurotypical children and investigates the possible association of autism severity with biomarkers.

Method: Participants were children ages 5-16 years in Arizona with Autistic Spectrum Disorder (n = 55) compared with non-sibling, neurotypical controls (n = 44) of similar age, gender and geographical distribution. Neither group had taken any vitamin/mineral supplements in the two months prior to sample collection. Autism severity was assessed using the Pervasive Development Disorder Behavior Inventory (PDD-BI), Autism Treatment Evaluation Checklist (ATEC), and Severity of Autism Scale (SAS). Study measurements included: vitamins, biomarkers of vitamin status, minerals, plasma amino acids, plasma glutathione, and biomarkers of oxidative stress, methylation, sulfation and energy production.

Results: Biomarkers of children with autism compared to those of controls using a t-test or Wilcoxon test found the following statistically significant differences (p < 0.001): Low levels of biotin, plasma glutathione, RBC SAM, plasma uridine, plasma ATP, RBC NADH, RBC NADPH, plasma sulfate (free and total), and plasma tryptophan; also high levels of oxidative stress markers and plasma glutamate. Levels of biomarkers for the neurotypical controls were in good agreement with accessed published reference ranges. In the Autism group, mean levels of vitamins, minerals, and most amino acids commonly measured in clinical care were within published reference ranges.A stepwise, multiple linear regression analysis demonstrated significant associations between several groups of biomarkers with all three autism severity scales, including vitamins (adjusted R2 of 0.25-0.57), minerals (adj. R2 of 0.22-0.38), and plasma amino acids (adj. R2 of 0.22-0.39).

Conclusion: The autism group had many statistically significant differences in their nutritional and metabolic status, including biomarkers indicative of vitamin insufficiency, increased oxidative stress, reduced capacity for energy transport, sulfation and detoxification. Several of the biomarker groups were significantly associated with variations in the severity of autism. These nutritional and metabolic differences are generally in agreement with other published results and are likely amenable to nutritional supplementation. Research investigating treatment and its relationship to the co-morbidities and etiology of autism is warranted.

Figures

Figure 1
Figure 1
Vitamins and related substances which were significantly different between the autism and neurotypical groups, rescaled to the average neurotypical values. The average values and the standard deviations are shown. The number of asterisks indicates the p-value (* p < 0.05, ** p < 0.01, *** p < 0.001).
Figure 2
Figure 2
Minerals which were significantly different between the autism and neurotypical groups, rescaled to the average neurotypical values. The average values and the standard deviations are shown. The number of asterisks indicates the p-value (* p < 0.05, ** p < 0.01, *** p < 0.001).
Figure 3
Figure 3
Sulfation, methylation, glutathione, and oxidative stress biomarkers which were significantly different between the autism and neurotypical groups, rescaled to the average neurotypical values. The average values and the standard deviations are shown. The number of asterisks indicates the p-value (* p < 0.05, ** p < 0.01, *** p < 0.001).
Figure 4
Figure 4
ATP, NADH, and NAHPH were significantly different between the autism and neurotypical groups. The average values and the standard deviations are shown, rescaled to the average neurotypical value. The number of asterisks indicates the p-value (* p < 0.05, ** p < 0.01, *** p < 0.001).
Figure 5
Figure 5
Amino Acids which were significantly different between the autism and neurotypical groups, rescaled to the average neurotypical value. The average values and the standard deviations are shown. The number of asterisks indicates the p-value (* p < 0.05, ** p < 0.01, *** p < 0.001). The standard deviations for beta-amino-isobutyrate and "homocystine + homocysteine" are outside the margins of the figure.

References

    1. Breakey J. The role of diet and behavior in childhood. J Paediatr Child Health. 1997;33:190–194. doi: 10.1111/j.1440-1754.1997.tb01578.x.
    1. Van Oudheusden LJ, Scholte HR. Efficacy of carnitine in the treatment of children with attention-deficit hyperactivity disorder. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2002;67(1):33–38. doi: 10.1054/plef.2002.0378.
    1. Harding KL, Judah RD, Gant CE. Outcome-based comparison of Ritalin versus food-supplement treated children with AD/HD. Alternative Medicine Review. 2003;8(3):319–330.
    1. Nogovitsina OR, Levitina EV. Diagnostic value of examination of the magnesium homeostasis in children with attention deficit syndrome with hyperactivity. Klinicheskaia Laboratornaia Diagnostika. 2005;5:17–19.
    1. Mousain-Bosc M, Roche M, Rapin J, Bali J-P. Magnesium vit B6 intake reduces central nervous system hyperexcitability in children. J American College of Nutrition. 2004;23(5):545S–548S.
    1. Carlton RM, Ente G, Blum L, Heyman N, Davis W, Ambrosino S. Rational dosages of nutrients have a prolonged effect on learning disabilities. Alt Therapies. 2000;6(3):85–91.
    1. Schoenthaler SJ, Bier ID. The effect of vitamin-mineral supplementation on the intelligence of American schoolchildren: a randomized, double-blind placebo-controlled trial. J of Altern and Comple Med. 2000;6(1):19–29. doi: 10.1089/acm.2000.6.19.
    1. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611–7.
    1. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006;141:947–956.
    1. James SJ, Melnyk S, Fuchs G, Reid T, Jernigan S, Pavliv O, Hubanks A, Gaylor DW. Efficacy of methylcobalamin and folinic acid treatment on glutathione redox status in children with autism. Am J Clin Nutr. 2009;89(1):425–30.
    1. Paşca SP, Dronca E, Kaucsár T, Cřaciun EC, Endreffy E, Ferencz BK, Iftene F, Benga I, Cornean R, Banerjee R, Dronca M. One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders. J Cell Mol Med. 2009;13(10):4229–4238. doi: 10.1111/j.1582-4934.2008.00463.x.
    1. Chauhan A, Chauhan V, Brown WT, Cohen IL. Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin - the antioxidant proteins. Life Sci. 2004;75:2539–2549. doi: 10.1016/j.lfs.2004.04.038.
    1. Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13(3):171–81. doi: 10.1016/j.pathophys.2006.05.007.
    1. El-Ansary A, Al-Daihan S, Al-Dbass A, Al-Ayadhi L. Measurements of selected ions related to oxidative stress and energy metabolism in Saudi autistic children. Clin Biochem. 2010;43(1-2):63–70. doi: 10.1016/j.clinbiochem.2009.09.008.
    1. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem. 2009;42(10-11):1032–40. doi: 10.1016/j.clinbiochem.2009.03.011.
    1. Adams JB, Holloway CJ. Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder. Altern Complement Med. 2004;10(6):1033–9. doi: 10.1089/acm.2004.10.1033.
    1. Adams JB, George F, Audhya T. Abnormally high plasma levels of vitamin B6 in children with autism not taking supplements compared to controls not taking supplements. J Altern Complement Med. 2006;12(1):59–63. doi: 10.1089/acm.2006.12.59.
    1. Xia W, Zhou Y, Sun C, Wang J, Wu L. A preliminary study on nutritional status and intake in Chinese children with autism. Eur J Pediatr. 2010;69(10):1201–6.
    1. Meguid NA, Hashish AF, Anwar M, Sidhom G. Reduced serum levels of 25-hydroxy and 1,25-dihydroxy vitamin D in Egyptian children with autism. J Altern Complement Med. 2010;16(6):641–5. doi: 10.1089/acm.2009.0349.
    1. Krajkovicova-Kudlackova M, Valachovicova M, Mislanova C, Hudecova Z, Sudstrova M, Ostatnikova D. Plasma concentration of selected antioxidants in autistic children and adolescents. Bratisl Lek Listy. 2009;110(4):247–250.
    1. Adams JB, Holloway CE, George F, Quig D. Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol Trace Elem Res. 2006;110(3):193–209. doi: 10.1385/BTER:110:3:193.
    1. Latif A, Heinz P, Cook R. Iron Deficiency in Autism and Asperger Syndrome. Autism. 2002;6:103. doi: 10.1177/1362361302006001008.
    1. Dosman CF, Drmic IE, Brian JA, Senthilselvan A, Harford M, Smith R, Roberts SW. Ferritin as an indicator of suspected iron deficiency in children with autism spectrum disorder: prevalence of low serum ferritin concentration. Dev Med Child Neurol. 2006;48(12):1008–9. doi: 10.1017/S0012162206232225.
    1. Jory J, McGinnis W. Red-Cell Trace Minerals in Children with Autism. American Journal of Biochemistry and Biotechnology. 2008;4(2):101–104.
    1. Jackson MJ, Gerard PJ. Plasma Zinc, Copper, and Amino Acid Levels in the Blood of Autistic Children. J Autism Childhood Schizophrenia. 1978;8(2):203–208. doi: 10.1007/BF01537869.
    1. Yorbik O, Akay C, Sayal A, Cansever A, Sohmen T, Cavdar AO. Zinc Status in Autistic Children. J Trace Elements Experimental Medicine. 2004;17:101–107. doi: 10.1002/jtra.20002.
    1. Faber S, Zinn GM, Kern JC, Kingston HM. The plasma zinc/serum copper ratio as a biomarker in children with autism spectrum disorders. Biomarkers. 2009;14(3):171–180. doi: 10.1080/13547500902783747.
    1. Aldred S, Moore KM, Fitzgerald M, Waring RH. Plasma amino acid levels in children with autism and their families. J Autism Dev Disord. 2003;33(1):93–7. doi: 10.1023/A:1022238706604.
    1. Morena-Fuenmayor J, Borjas I, Arrieta A, Balera V, Socorro-Candanoza I. Plasma excitatory amino acids in autism. Investigacion Clinica. 1996;37:113–128.
    1. Rolf LH, Haarmann FY, Grotemeyer KH, Kehrer H. Serotonin and amino acid content in platelets of autistic children. Acta Psychiatr Scand. 1993;87(5):312–6. doi: 10.1111/j.1600-0447.1993.tb03378.x.
    1. Arnold GL, Hyman SL, Mooney RA, Kirby RS. Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. J Autism Dev Disord. 2003;33(4):449–54. doi: 10.1023/A:1025071014191.
    1. Lepage N, McDonald N, Dallaire L, Lambert M. Age-specific distribution of plasma amino acid concentrations in a healthy pediatric population. Clin Chem. 1997;43(12):2397–402.
    1. Miller RC, Brindle E, Holman DJ, Shofer J, Klein NA, Soules MR, O'Connor KA. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin Chem. 2004;50(5):924–32. doi: 10.1373/clinchem.2004.032292.
    1. Puchyr RF, Bass DA, Gajewski R, Calvin M, Marquardt W, Urek K, Druyan ME, Quig D. Preparation of hair for measurement of elements by inductively coupled plasma-mass spectrometry (ICP-MS) Biol Trace Elem Res. 1998;62(3):167–82. doi: 10.1007/BF02783969.
    1. Cohen IL, Schmidt-Lackner S, Romanczyk R, Sudhalter V. The PDD Behavior Inventory: a rating scale for assessing response to intervention in children with pervasive developmental disorder. J Autism Dev Disord. 2003;33(1):31–45. doi: 10.1023/A:1022226403878.
    1. Rimland B, Edelson S. Autism Treatment Evaluation Checklist: Statistical Analyses. Autism Research Institute. 2000.
    1. Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009;2009:532640.
    1. U.S Centers for Disease Control and Prevention. National Report on Biochemical Indicators of Diet and Nutrition in the U.S. Population 1999-2002. Atlanta (GA): National Center for Environmental Health; 2008.
    1. Burtis CA, Ashwood ER. Tietz Textbook of Clinical Chemistry. 3. Philadelphia: W.B. Saunders Company; 1999.
    1. Bertoli S, Cardinali S, Veggiotti P, Trentani C, Testolin G, Tagliabue A. Evaluation of nutritional status in children with refreactory epilepsy. Nutrition Journal. 2006;5:14. doi: 10.1186/1475-2891-5-14.
    1. Harden CL, Pennell PB, Koppel BS, Hovinga CA, Gidal B, Meador KJ, Hopp J, Ting TY, Hauser WA, Thurman D, Kaplan PW, Robinson JN, French JA, Wiebe S, Wilner AN, Vazquez B, Holmes L, Krumholz A, Finnell R, Shafer PO, Le Guen C. Practice Parameter Update: Management issues for women with epilepsy--focus on pregnancy (an evidence-based review): Vitamin K, folic acid, blood levels, and breastfeeding. Neurology. 2009;73(2):126–132. doi: 10.1212/WNL.0b013e3181a6b2f8.
    1. Gökçe S, Durmaz Ö, Çeltik C, Aydoğan A, Güllüoğlu M, Sökücü S. Valproic Acid--Associated Vanishing Bile Duct Syndrome. Journal of Child Neurology. 2010;25(7):909–911. doi: 10.1177/0883073809343474.
    1. Ornoy A. Valproic acid in pregnancy: How much are we endangering the embryo and fetus? Reproductive Toxicology. 2009;28:1–10. doi: 10.1016/j.reprotox.2009.02.014.
    1. Pronsky ZM, Crowe JP, Elbe D, Food Medication Interactions. 15. Birchrunville PA; 2008.
    1. Adams JB, Holloway C. Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder. J Altern Complement Med. 2004;10(6):1033–9. doi: 10.1089/acm.2004.10.1033.
    1. Adams JB, George F, Audhya T. Abnormally high plasma levels of vitamin B6 in children with autism not taking supplements compared to controls not taking supplements. J Altern Complement Med. 2006;12(1):59–63. doi: 10.1089/acm.2006.12.59.
    1. Thurnham DI. Micronutrients and immune function: some recent developments. J Clin Pathol. 1997;50:887–91. doi: 10.1136/jcp.50.11.887.
    1. Cannell JJ. Autism and vitamin D. Med Hypothesis. 2008;70(4):750–9. doi: 10.1016/j.mehy.2007.08.016.
    1. Molloy CA, Kalkwarf HJ, Manning-Courtney P, Mills JL, Hediger ML. Plasma 25(OH)D concentration in children with autism spectrum disorder. Dev Med Child Neurol. 2010;52(10):969–71. doi: 10.1111/j.1469-8749.2010.03704.x. Epub 2010 May 24.
    1. Adams M, Lucock M, Stuart J, Fardell S, Baker K, Ng X. Preliminary evidence for involvement of the folate gene polymorphism 19 bp deletion-DHFR in occurrence of autism. Neurosci Lett. 2007;422(1):24–9. doi: 10.1016/j.neulet.2007.05.025.
    1. Yap IK, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. Urinary Metabolic Phenotyping Differentiates Children with Autism from Their Unaffected Siblings and Age-Matched Controls. J Proteome Res. 2010;9(6):2996–3004. doi: 10.1021/pr901188e.
    1. McGinnis WR, Audhya T, Walsh WJ, Jackson JA, McLaren-Howard J, Lewis A, Lauda PH, Bibus DM, Jurnak F, Lietha R, Hoffer A. Discerning the Mauve Factor, Part 1. Altern Ther Health Med. 2008;14(2):40–50.
    1. Anke M, Arhnold W, Groppel B, Krause U. In: Lithium in Biology and Medicine. Schrauzer GN, Klippel, KF, editor. Weinheim: VCH Verlag; 1991. The Biological Importance of Lithium; pp. 149–167.
    1. Konstantareas MM, Homatidis S. Ear infections in autistic and normal children. J Autism Dev Disord. 1987;17:585–594. doi: 10.1007/BF01486973.
    1. Adams JB, Holloway CE, George F, Quig D. Analyses of toxic metals and essential minerals in the hair of Arizona children with autism and associated conditions, and their mothers. Biol Trace Elem Res. 2006;10(3):193–209.
    1. Adams JB, Romdalvik J, Ramanujam VMS, Legator MS. Mercury, lead, and zinc in baby teeth of children with autism vs. controls. J. Toxicology Environ. Health A. 2007;70:1046–1051. doi: 10.1080/15287390601172080.
    1. Adams JB, Romdalvik J, Levine KE, Hu L-W. Mercury in First-Cut Baby Hair of Children with Autism vs. Typically-Developing Children. Toxicological and Environmental Chemistry. 2008;90(4):739–753. doi: 10.1080/02772240701699294.
    1. Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace El. Res. 1990;25:105–113. doi: 10.1007/BF02990271.
    1. Yuskaitis CJ, Mines MA, King MK, Sweatt JD, Miller CA, Jope RS. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol. 2010;79(4):632–46. doi: 10.1016/j.bcp.2009.09.023.
    1. Serajee FJ, Nabi R, Zhong H, Mahbubul Huq AH. Association of INPP1, PIK3CG, and TSC2 gene variants with autistic disorder: implications for phosphatidylinositol signalling in autism. J Med Genet. 2003;40(11):e119. doi: 10.1136/jmg.40.11.e119.
    1. World Health Organization. Assessment of iodine deficiency disorders and monitoring their elimination: a guide for programme managers. 3. World Health Organization: Geneva (Switzerland); 2007. accessed May 2011.
    1. Waring RH, Ngong JM, Klovsra L, Green S, Sharp H. Biochemical Parameters in Autistic Children. Dev Brain Dysfunct. 1997;10:40–43.
    1. Geier DA, Kern JK, Garver CR, Adams JB, Audhya T, Geier MR. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res. 2009;34(2):386–93. doi: 10.1007/s11064-008-9782-x. Erratum in: Neurochem Res. 2009, 34(2):394.
    1. O'Reilly BA, Warning RH. Enzyme and Sulphur Oxidation Deficiencies in Autistic Children with Known Food/Chemical Sensitivities. J Orthomolecular Medicine. 1993;8(4):198–200.
    1. Alberti A, Pirrone P, Elia M, Waring RH, Romano C, Alberti A, Pirrone P, Elia M, Waring RH, Romano C. Sulphation deficit in "low-functioning" autistic children: a pilot study. Biol Psychiatry. 1999;46(3):420–4. doi: 10.1016/S0006-3223(98)00337-0.
    1. Horvath K, Perman JA. Autistic disorder and gastrointestinal disease. Curr Opin Pediatr. 2002;14:583–587. doi: 10.1097/00008480-200210000-00004.
    1. Waring RH, Klovrsa LV. Sulfur Metabolism in Autism. J Nutritional & Environmental Medicine. 2000;10:25–32. doi: 10.1080/13590840050000861.
    1. Kloor D, Lüdtke A, Stoeva S, Osswald H. Adenosine binding sites at S-adenosylhomocysteine hydrolase are controlled by the NAD+/NADH ratio of the enzyme. Biochem Pharmacol. 2003;66:2117–23. doi: 10.1016/S0006-2952(03)00581-1.
    1. Kloor D, Osswald H. S-adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol Sci. 2004;25:294–7. doi: 10.1016/j.tips.2004.04.004.
    1. Ming X, Brimacombe M, Wagner GC. Prevalence of motor impairment in autism spectrum disorders. Brain Dev. 2007;29(9):565–70. doi: 10.1016/j.braindev.2007.03.002.
    1. Belenky P, Bogan KL, Brenner C. NAD+ metabolism in health and disease. Trends Biochem Sci. 2007;32(1):12–9. doi: 10.1016/j.tibs.2006.11.006. Erratum in: Trends Biochem Sci. 2008, 33(1):1.
    1. Weissman JR, Kelley RI, Bauman ML, Cohen BH, Murray KF, Mitchell RL, Kern RL, Natowicz MR. Mitochondrial disease in autism spectrum disorder patients: a cohort analysis. PLoS One. 2008;3(11):e3815. doi: 10.1371/journal.pone.0003815.
    1. Oliveira G, Ataíde A, Marques C, Miguel TS, Coutinho AM, Mota-Vieira L, Gonçalves E, Lopes NM, Rodrigues V, Carmona da Mota H, Vicente AM. Epidemiology of autism spectrum disorder in Portugal: prevalence, clinical characterization, and medical conditions. Dev Med Child Neurol. 2007;49(10):726–33. doi: 10.1111/j.1469-8749.2007.00726.x.
    1. Oliveira G, Diogo L, Grazina M, Garcia P, Ataíde A, Marques C, Miguel T, Borges L, Vicente AM, Oliveira CR. Mitochondrial dysfunction in autism spectrum disorders: a population-based study. Dev Med Child Neurol. 2005;47(3):185–9. doi: 10.1017/S0012162205000332.
    1. Correia C, Coutinho AM, Diogo L, Grazina M, Marques C, Miguel T, Ataíde A, Almeida J, Borges L, Oliveira C, Oliveira G, Vicente AM. Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 gene. J Autism Dev Disord. 2006;36(8):1137–40. doi: 10.1007/s10803-006-0138-6.
    1. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trézéguet V, Lauquin GJ, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature. Nature. 2003;426:39–44. doi: 10.1038/nature02056.
    1. McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiarty. 1996;53(11):993–1000.
    1. Pangborn J. Proceedings of the 1984 Annual Conference of the National Society for Children and Adults with Autism. San Antonio, Texas; 1984. Detection of Metabolic Disorders in People with Autism; pp. 32–51.
    1. Mehl-Madrona L, Leung B, Kennedy C, Paul S, Kaplan BJ. Micronutrients versus standard medication management in autism: a naturalistic case-control study. J Child Adolesc Psychopharmacol. 2010;20(2):95–103. doi: 10.1089/cap.2009.0011.
    1. Selvaraj RJ, Susheela TP. Estimation of serum vitamin A by a microfluorometric procedure. Clin Chim Acta. 1970;27(1):165–70. doi: 10.1016/0009-8981(70)90391-8.
    1. Stevens RD, Hillman SL, Worthy S, Sanders D, Millington DS. Assay for free and total carnitine in human plasma using tandem mass spectrometry. Clin Chem. 2000;46(5):727–9.
    1. Pearson WN. Biochemical appraisal of nutritional status in man. Am J Clin Nutr. 1962;11:462–76.
    1. Vogeser M, Kyriatsoulis A, Huber E, Kobold U. Candidate reference method for the quantification of circulating 25-hydroxyvitamin D3 by liquid chromatography-tandem mass spectrometry. Clin Chem. 2004;50(8):1415–7. doi: 10.1373/clinchem.2004.031831.
    1. Quaife ML, Scrimshaw NS, Lowry OH. A micromethod for assay of total tocopherols in blood serum. J Biol Chem. 1949;180(3):1229–35.
    1. Van Haard PM, Engel R, Pietersma-de Bruyn AL. Quantitation of trans-vitamin K1 in small serum samples by off-line multidimensional liquid chromatography. Clin Chim Acta. 1986;157(3):221–30. doi: 10.1016/0009-8981(86)90297-4.
    1. Baker H, Frank O, Fennelly JJ, Leevy CM. A Method for Assaying Thiamine Status in Man and Animals. Am J Clin Nutr. 1964;14:197–201.
    1. Baker H, Frank O, Feingold S, Gellene RA, Leevy CM, Hutner SH. A riboflavin assay suitable for clinical use and nutritional surveys. Am J Clin Nutr. 1966;19(1):17–26.
    1. Baker H, Frank O, Pasher I, Hutner SH, Sobotka H. Nicotinic acid assay in blood and urine. Clin Chem. 1960;6:572–7.
    1. Baker H, Frank O, Pasher I, Dinnerstein A, Sobotka H. An assay for pantothenic acid in biologic fluids. Clin Chem. 1960;6:36–42.
    1. Baker H, Frank O, Ning M, Gellene RA, Hutner SH, Leevy CM. A protozoological method for detecting clinical vitamin B6 deficiency. Am J Clin Nutr. 1966;18(2):123–33.
    1. Baker H, Frank O, Matovitch VB, Pasher I, Aaronson S, Hutner SH, Sobotka H. A new assay method for biotin in blood, serum, urine, and tissues. Anal Biochem. 1962;3:31–9. doi: 10.1016/0003-2697(62)90041-6.
    1. Herbert V, Baker H, Frank O, Pasher I, Sobotka H, Wasserman LR. The measurement of folic acid activity in serum: a diagnostic aid in the differentiation of the megaloblastic anemias. Blood. 1960;15:228–35.
    1. Sobotka H, Baker H, Ziffer H. Distribution of vitamin B12 between plasma and cells. Am J Clin Nutr. 1960;8:283–4.
    1. Baker H, Frank O, Tuma DJ, Barak AJ, Sorrell MF, Hutner SH. Assay for free and total choline activity in biological fluids and tissues of rats and man with Torulopsis pintolopessi. Am J Clin Nutr. 1978;31(3):532–40.
    1. Baker H, Deangelis B, Baker ER, Hutner SH. A practical assay of lipoate in biologic fluids and liver in Health and disease. Free Radic Biol Med. 1998;25(4-5):473–9. doi: 10.1016/S0891-5849(98)00087-2.
    1. Okamoto T, Fukunaga Y, Ida Y, Kishi T. Determination of reduced and total ubiquinones in biological materials by liquid chromatography with electrochemical detection. J Chromatogr. 1988;430(1):11–9.
    1. Harmsen E, de Jong JW, Serruys PW. Hypoxanthine production by ischemic heart demonstrated by high pressure liquid chromatography of blood purine nucleosides and oxypurines. Clin Chim Acta. 1981;115(1):73–84. doi: 10.1016/0009-8981(81)90108-X.
    1. Tabor H, Wyngarden LA. Method for the Determination of Formiminoglutamic Acid in Urine. J Clin Invest. 1958;37:824–828. doi: 10.1172/JCI103670.
    1. Miller RC, Brindle E, Holman DJ, Shofer J, Klein NA, Soules MR, O'Connor KA. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin Chem. 2004;50(5):924–32. doi: 10.1373/clinchem.2004.032292.
    1. Sohler A, Holsztyimska E, Pfeiffer CC. A Rapid Screening Test for Pyroluria; Useful in Distinguishing a Schizophrenic Subpopulation. Orthomolecular Psych. 1978;3:273–279.
    1. Magera MJ, Helgeson JK, Matern D, Rinaldo P. Methylmalonic acid measured in plasma and urine by stable-isotope dilution and electrospray tandem mass spectrometry. Clin Chem. 2000;46(11):1804–10.
    1. Creeke PI, Seal AJ. Quantitation of the niacin metabolites 1-methylnicotinamide and l-methyl-2-pyridone-5-carboxamide in random spot urine samples, by ion-pairing reverse-phase HPLC with UV detection, and the implications for the use of spot urine samples in the assessment of niacin status. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;817(2):247–53. doi: 10.1016/j.jchromb.2004.12.012.
    1. Melnyk S, Pogribna M, Pogribny IP, Yi P, James SJ. Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5'-phosphate concentrations. Clin Chem. 2000;46(2):265–72.
    1. Stabler SP, Allen RH. Quantification of Serum and Urinary S-Adenosylmethionine and S-Adenosylhomocysteine by Stable-Isotope-Dilution Liquid Chromatography-Mass Spectrometry. Clinical Chemistry. 2004;50:365–372. doi: 10.1373/clinchem.2003.026252.
    1. Michelet F, Gueguen R, Leroy P, Wellman M, Nicolas A, Siest G. Blood and plasma glutathione measured in healthy subjects by HPLC: relation to sex, aging, biological variables, and life habits. Clin Chem. 1995;41(10):1509–17.
    1. Ahmed N, Thornalley PJ. Quantitative screening of protein biomarkers of early glycation, advanced glycation, oxidation and nitrosation in cellular and extracellular proteins by tandem mass spectrometry multiple reaction monitoring. Biochemical Society Transactions. 2003;31:1417–1422. doi: 10.1042/BST0311417.
    1. Gorman MW, Feigl EO, Buffington CW. Human plasma ATP concentration. Clin Chem. 2007;53(2):318–25.
    1. Klemm A, Klemm A, Steiner T, Flötgen U, Cumme GA, Horn A. Determination, purification, and characterization of alpha-NADH and alpha-NADPH. Methods Enzymol. 1997;280:171–86.
    1. Chattaraj S, Das AK. Indirect atomic absorption spectrometric determination of sulfate in human blood serum. Analyst. 1992;117(3):413–6. doi: 10.1039/an9921700413.
    1. Wyatt DT, Nelson D, Hillman RE. Age-dependent changes in thiamin concentrations in whole blood and cerebrospinal fluid in infants and children. Am J Clin Nutr. 1991;53(2):530–6.
    1. Schleicher RL, Carroll MD, Ford ES, Lacher DA. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES) Am J Clin Nutr. 2009;90(5):1252–63. doi: 10.3945/ajcn.2008.27016.

Source: PubMed

3
Tilaa