Importance of Beta Cell Function for the Treatment of Type 2 Diabetes

Yoshifumi Saisho, Yoshifumi Saisho

Abstract

Type 2 diabetes (T2DM) is characterized by insulin resistance and beta cell dysfunction. Recent evidence has emerged that beta cell dysfunction is a common pathogenetic feature of both type 1 and type 2 diabetes, and T2DM never develops without beta cell dysfunction. Therefore, treatment of T2DM should aim to restore beta cell function. Although the treatment of T2DM has greatly improved over the past few decades, remaining issues in the current treatment of T2DM include (1) hypoglycemia; (2) body weight gain; (3) peripheral hyperinsulinemia and (4) postprandial hyperglycemia, which are all associated with inappropriate insulin supplementation, again underpinning the important role of endogenous and physiological insulin secretion in the management of T2DM. This review summarizes the current knowledge on beta cell function in T2DM and discusses the treatment strategy for T2DM in relation to beta cell dysfunction.

Keywords: beta cell; insulin secretion; therapy; type 2 diabetes.

Figures

Figure 1
Figure 1
Correlation between baseline postprandial C-peptide index (PCPRI) and HbA1c (A) and glycated albumin (GA) (B) after two years. Reproduced with permission from [20].
Figure 2
Figure 2
Correlation between postprandial C-peptide index (PCPRI) and glycated albumin (GA) to HbA1c ratio in patients with type 2 diabetes (A) and type 1 diabetes (B). In Figure 2B, the data of patients with type 1 diabetes are superimposed on the data of those with type 2 diabetes (gray circles and dotted line). Reproduced with permission from [24].
Figure 3
Figure 3
Importance of controlling postprandial glycemic excursion. (A) If mean plasma glucose level is lowered without controlling postprandial glycemic excursion (gray line → black line), the risk of hypoglycemia between meals and during the night increases (arrows); (B) Lowering the mean glucose level with control of postprandial glycemic excursion (gray line → black line) results in a low risk of hypoglycemia. Note that mean plasma glucose levels are similar in both cases, indicating similar HbA1c in both cases.
Figure 4
Figure 4
Proposed concept of treatment strategy for type 2 diabetes (T2DM) in relation to functional beta cell mass. An α-glucosidase inhibitor is partly approved for use in patients with impaired glucose tolerance (IGT) in Japan. Medications not approved or marketed in Japan are not included in the figure. Reproduced with permission from [101]. Since currently no single therapy or agent can cure and even manage T2DM, an effective combination of current medications in addition to lifestyle modification aiming at reduction in beta cell workload is important to preserve or recover beta cell function.
Figure 5
Figure 5
Postprandial C-peptide index (PCPRI) in subjects according to obesity and time after diagnosis (0–4, 5–10, 11–17 and ≥18 years). There were significant differences in PCPRI between lean (open bars) and obese subjects (solid bars) in the first and second quartiles of time after diagnosis, but no significant differences were observed in the third and fourth quartiles. * p < 0.05 vs. obese subjects ≤4 years after diagnosis, + p < 0.05 vs. lean subjects ≤4 years after diagnosis, # p < 0.05 vs. lean subjects. Reproduced with permission from [123].
Figure 6
Figure 6
Hypothesis of change in beta cell function and mass during development of abnormal glucose tolerance. The magnitude of the increased demand for insulin due to insulin resistance caused by excess caloric intake and physical inactivity exceeds the magnitude of beta cell mass expansion, resulting in an increase in beta cell workload. In individuals who are susceptible to type 2 diabetes (T2DM), increased beta cell workload may lead to beta cell failure and the development of T2DM. Reproduced with permission from [101].

References

    1. International Diabetes Federation (2013) IDF Diabetes Atlas. 6th ed. [(accessed on 1 March 2014)]. Available online: .
    1. Kahn S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia. 2003;46:3–19. doi: 10.1007/s00125-003-1190-9.
    1. Defronzo R.A., Eldor R., Abdul-Ghani M. Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care. 2013;36:S127–S138. doi: 10.2337/dcS13-2011.
    1. Defronzo R.A. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–795. doi: 10.2337/db09-9028.
    1. Bergman R.N., Ader M., Huecking K., van Citters G. Accurate assessment of beta-cell function: The hyperbolic correction. Diabetes. 2002;51:S212–S220. doi: 10.2337/diabetes.51.2007.S212.
    1. Butler A.E., Janson J., Bonner-Weir S., Ritzel R., Rizza R.A., Butler P.C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–110. doi: 10.2337/diabetes.52.1.102.
    1. Rahier J., Guiot Y., Goebbels R.M., Sempoux C., Henquin J.C. Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 2008;10:32–42. doi: 10.1111/j.1463-1326.2008.00969.x.
    1. Yoon K.H., Ko S.H., Cho J.H., Lee J.M., Ahn Y.B., Song K.H., Yoo S.J., Kang M.I., Cha B.Y., Lee K.Y., et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 2003;88:2300–2308. doi: 10.1210/jc.2002-020735.
    1. Sakuraba H., Mizukami H., Yagihashi N., Wada R., Hanyu C., Yagihashi S. Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia. 2002;45:85–96. doi: 10.1007/s125-002-8248-z.
    1. Atkinson M.A., Eisenbarth G.S., Michels A.W. Type 1 diabetes. Lancet. 2014;383:69–82. doi: 10.1016/S0140-6736(13)60591-7.
    1. DeFronzo R.A., Abdul-Ghani M.A. Preservation of beta-cell function: The key to diabetes prevention. J. Clin. Endocrinol. Metab. 2011;96:2354–2366. doi: 10.1210/jc.2011-0246.
    1. U.K. Prospective Diabetes Study Group U.K. prospective diabetes study 16. Overview of 6 years therapy of type II diabetes: A progressive disease. Diabetes. 1995;44:1249–1258. doi: 10.2337/diab.44.11.1249.
    1. Kahn S.E., Haffner S.M., Heise M.A., Herman W.H., Holman R.R., Jones N.P., Kravitz B.G., Lachin J.M., O’Neill M.C., Zinman B., et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 2006;355:2427–2443. doi: 10.1056/NEJMoa066224.
    1. Matthews D.R., Cull C.A., Stratton I.M., Holman R.R., Turner R.C. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. UK Prospective Diabetes Study (UKPDS) Group. Diabet. Med. 1998;15:297–303. doi: 10.1002/(SICI)1096-9136(199804)15:4<297::AID-DIA572>;2-W.
    1. Kahn S.E., Lachin J.M., Zinman B., Haffner S.M., Aftring R.P., Paul G., Kravitz B.G., Herman W.H., Viberti G., Holman R.R. Effects of rosiglitazone, glyburide, and metformin on beta-cell function and insulin sensitivity in ADOPT. Diabetes. 2011;60:1552–1560. doi: 10.2337/db10-1392.
    1. TODAY Study Group Effects of metformin, metformin plus rosiglitazone, and metformin plus lifestyle on insulin sensitivity and beta-cell function in TODAY. Diabetes Care. 2013;36:1749–1757. doi: 10.2337/dc12-2393.
    1. Saisho Y., Kou K., Tanaka K., Abe T., Kurosawa H., Shimada A., Meguro S., Kawai T., Itoh H. Postprandial serum C-peptide to plasma glucose ratio as a predictor of subsequent insulin treatment in patients with type 2 diabetes. Endocr. J. 2011;58:315–322. doi: 10.1507/endocrj.K10E-399.
    1. Saisho Y., Kou K., Tanaka K., Abe T., Shimada A., Kawai T., Itoh H. Association between beta cell function and future glycemic control in patients with type 2 diabetes. Endocr. J. 2013;60:517–523.
    1. Saisho Y., Kou K., Tanaka K., Abe T., Shimada A., Kawai T., Itoh H. Postprandial serum C-peptide to plasma glucose ratio predicts future insulin therapy in Japanese patients with type 2 diabetes. Acta Diabetol. 2013;50:987–988. doi: 10.1007/s00592-012-0441-y.
    1. Saisho Y., Tanaka K., Abe T., Kawai T., Itoh H. Lower beta cell function relates to sustained higher glycated albumin to glycated hemoglobin ratio in Japanese patients with type 2 diabetes. Endocr. J. 2014;61:149–157. doi: 10.1507/endocrj.EJ13-0376.
    1. Cha T., Tahara Y., Ikegami H., Fukuda M., Yoneda H., Yamato E., Yamamoto Y., Noma Y., Shima K., Ogihara T. Urinary C-peptide as an index of unstable glycemic control in insulin-dependent diabetes mellitus (IDDM) Diabetes Res. Clin. Pract. 1991;13:181–187. doi: 10.1016/0168-8227(91)90062-I.
    1. Nakanishi K., Kobayashi T., Inoko H., Tsuji K., Murase T., Kosaka K. Residual beta-cell function and HLA-A24 in IDDM. Markers of glycemic control and subsequent development of diabetic retinopathy. Diabetes. 1995;44:1334–1339. doi: 10.2337/diab.44.11.1334.
    1. Fukuda M., Tanaka A., Tahara Y., Ikegami H., Yamamoto Y., Kumahara Y., Shima K. Correlation between minimal secretory capacity of pancreatic beta-cells and stability of diabetic control. Diabetes. 1988;37:81–88. doi: 10.2337/diab.37.1.81.
    1. Saisho Y., Tanaka K., Abe T., Shimada A., Kawai T., Itoh H. Glycated albumin to glycated hemoglobin ratio reflects postprandial glucose excursion and relates to beta cell function in both type 1 and type 2 diabetes. Diabetol. Int. 2011;2:146–153. doi: 10.1007/s13340-011-0035-x.
    1. Tanaka C., Saisho Y., Tanaka K., Kou K., Tanaka M., Meguro S., Irie J., Jo R., Kawai T., Itoh H. Factors associated with glycemic variability in Japanese patients with diabetes. Diabetol. Int. 2014;5:36–42. doi: 10.1007/s13340-013-0129-8.
    1. Koga M., Kasayama S. Clinical impact of glycated albumin as another glycemic control marker. Endocr. J. 2010;57:751–762. doi: 10.1507/endocrj.K10E-138.
    1. Koga M., Murai J., Saito H., Kasayama S. Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care. 2010;33:270–272. doi: 10.2337/dc09-1002.
    1. Bo S., Gentile L., Castiglione A., Prandi V., Canil S., Ghigo E., Ciccone G. C-Peptide and the risk for incident complications and mortality in type 2 diabetic patients: A retrospective cohort study after a 14-year follow-up. Eur. J. Endocrinol. 2012;167:173–180.
    1. Kim B.Y., Jung C.H., Mok J.O., Kang S.K., Kim C.H. Association between serum C-peptide levels and chronic microvascular complications in Korean type 2 diabetic patients. Acta Diabetol. 2012;49:9–15. doi: 10.1007/s00592-010-0249-6.
    1. Seshasai S.R., Kaptoge S., Thompson A., di Angelantonio E., Gao P., Sarwar N., Whincup P.H., Mukamal K.J., Gillum R.F., Holme I., et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011;364:829–841. doi: 10.1056/NEJMoa1008862.
    1. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) Lancet. 1998;352:837–853. doi: 10.1016/S0140-6736(98)07019-6.
    1. Holman R.R., Paul S.K., Bethel M.A., Matthews D.R., Neil H.A. 10-Year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008;359:1577–1589. doi: 10.1056/NEJMoa0806470.
    1. Patel A., MacMahon S., Chalmers J., Neal B., Billot L., Woodward M., Marre M., Cooper M., Glasziou P., Grobbee D., et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008;358:2560–2572. doi: 10.1056/NEJMoa0802987.
    1. Gerstein H.C., Miller M.E., Byington R.P., Goff D.C., Jr., Bigger J.T., Buse J.B., Cushman W.C., Genuth S., Ismail-Beigi F., Grimm R.H., et al. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med. 2008;358:2545–2559. doi: 10.1056/NEJMoa0802743.
    1. Duckworth W., Abraira C., Moritz T., Reda D., Emanuele N., Reaven P.D., Zieve F.J., Marks J., Davis S.N., Hayward R., et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009;360:129–139. doi: 10.1056/NEJMoa0808431.
    1. Frier B.M., Schernthaner G., Heller S.R. Hypoglycemia and cardiovascular risks. Diabetes Care. 2011;34:S132–S137. doi: 10.2337/dc11-s220.
    1. Desouza C.V., Bolli G.B., Fonseca V. Hypoglycemia, diabetes, and cardiovascular events. Diabetes Care. 2010;33:1389–1394. doi: 10.2337/dc09-2082.
    1. Inzucchi S.E., Bergenstal R.M., Buse J.B., Diamant M., Ferrannini E., Nauck M., Peters A.L., Tsapas A., Wender R., Matthews D.R. Management of hyperglycemia in type 2 diabetes: A patient-centered approach: Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2012;35:1364–1379. doi: 10.2337/dc12-0413.
    1. UK Prospective Diabetes Study (UKPDS) Group Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) Lancet. 1998;352:854–865.
    1. Saenz A., Fernandez-Esteban I., Mataix A., Ausejo M., Roque M., Moher D. Metformin monotherapy for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2005;3 doi: 10.1002/14651858.CD002966.pub3.
    1. McDonagh M.S., Selph S., Ozpinar A., Foley C. Systematic review of the benefits and risks of metformin in treating obesity in children aged 18 years and younger. JAMA Pediatr. 2014;168:178–184. doi: 10.1001/jamapediatrics.2013.4200.
    1. Wang H., Ni Y., Yang S., Li H., Li X., Feng B. The effects of gliclazide, metformin, and acarbose on body composition in patients with newly diagnosed type 2 diabetes mellitus. Curr. Ther. Res. Clin. Exp. 2013;75:88–92. doi: 10.1016/j.curtheres.2013.10.002.
    1. Kostev K., Rex J., Rockel T., Heilmaier C. Effects of selected antidiabetics on weight loss—A retrospective database analysis. Prim. Care Diabetes. 2014 doi: 10.1016/j.pcd.2014.04.001.
    1. Karagiannis T., Paschos P., Paletas K., Matthews D.R., Tsapas A. Dipeptidyl peptidase-4 inhibitors for treatment of type 2 diabetes mellitus in the clinical setting: Systematic review and meta-analysis. BMJ. 2012;344 doi: 10.1136/bmj.e5129.
    1. Russell-Jones D., Cuddihy R.M., Hanefeld M., Kumar A., Gonzalez J.G., Chan M., Wolka A.M., Boardman M.K. Efficacy and safety of exenatide once weekly vs. metformin, pioglitazone, and sitagliptin used as monotherapy in drug-naive patients with type 2 diabetes (DURATION-4): A 26-week double-blind study. Diabetes Care. 2012;35:252–258. doi: 10.2337/dc11-1107.
    1. Apovian C.M. The clinical and economic consequences of obesity. Am. J. Manag. Care. 2013;19:S219–S228.
    1. Hemkens L.G., Grouven U., Bender R., Gunster C., Gutschmidt S., Selke G.W., Sawicki P.T. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogues: A cohort study. Diabetologia. 2009;52:1732–1744. doi: 10.1007/s00125-009-1418-4.
    1. Currie C.J., Poole C.D., Gale E.A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52:1766–1777. doi: 10.1007/s00125-009-1440-6.
    1. Jonasson J.M., Ljung R., Talback M., Haglund B., Gudbjornsdottir S., Steineck G. Insulin glargine use and short-term incidence of malignancies—A population-based follow-up study in Sweden. Diabetologia. 2009;52:1745–1754. doi: 10.1007/s00125-009-1444-2.
    1. Colhoun H.M. Use of insulin glargine and cancer incidence in Scotland: A study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia. 2009;52:1755–1765. doi: 10.1007/s00125-009-1453-1.
    1. Rosenstock J., Fonseca V., McGill J.B., Riddle M., Halle J.P., Hramiak I., Johnston P., Davis M. Similar risk of malignancy with insulin glargine and neutral protamine Hagedorn (NPH) insulin in patients with type 2 diabetes: Findings from a 5 year randomised, open-label study. Diabetologia. 2009;52:1971–1973. doi: 10.1007/s00125-009-1452-2.
    1. Tang X., Yang L., He Z., Liu J. Insulin glargine and cancer risk in patients with diabetes: A meta-analysis. PLoS One. 2012;7:e51814. doi: 10.1371/journal.pone.0051814.
    1. Sturmer T., Marquis M.A., Zhou H., Meigs J.B., Lim S., Blonde L., Macdonald E., Wang R., Lavange L.M., Pate V., et al. Cancer incidence among those initiating insulin therapy with glargine vs. human NPH insulin. Diabetes Care. 2013;36:3517–3525. doi: 10.2337/dc13-0263.
    1. Habel L.A., Danforth K.N., Quesenberry C.P., Capra A., van den Eeden S.K., Weiss N.S., Ferrara A. Cohort study of insulin glargine and risk of breast, prostate, and colorectal cancer among patients with diabetes. Diabetes Care. 2013;36:3953–3960. doi: 10.2337/dc13-0140.
    1. Currie C.J., Peters J.R., Tynan A., Evans M., Heine R.J., Bracco O.L., Zagar T., Poole C.D. Survival as a function of HbA(1c) in people with type 2 diabetes: A retrospective cohort study. Lancet. 2010;375:481–489. doi: 10.1016/S0140-6736(09)61969-3.
    1. Dandona P., Chaudhuri A., Ghanim H., Mohanty P. Insulin as an anti-inflammatory and antiatherogenic modulator. J. Am. Coll. Cardiol. 2009;53:S14–S20. doi: 10.1016/j.jacc.2008.10.038.
    1. Smith U., Gale E.A. Does diabetes therapy influence the risk of cancer? Diabetologia. 2009;52:1699–1708. doi: 10.1007/s00125-009-1441-5.
    1. Rensing K.L., von der Thusen J.H., Weijers E.M., Houttuijn Bloemendaal F.M., van Lammeren G.W., Vink A., van der Wal A.C., van Hinsbergh V.W., van der Loos C.M., Stroes E.S., et al. Endothelial insulin receptor expression in human atherosclerotic plaques: Linking micro- and macrovascular disease in diabetes? Atherosclerosis. 2012;222:208–215. doi: 10.1016/j.atherosclerosis.2012.01.035.
    1. Gamble J.M., Simpson S.H., Eurich D.T., Majumdar S.R., Johnson J.A. Insulin use and increased risk of mortality in type 2 diabetes: A cohort study. Diabetes Obes. Metab. 2010;12:47–53. doi: 10.1111/j.1463-1326.2009.01125.x.
    1. Gerstein H.C., Bosch J., Dagenais G.R., Diaz R., Jung H., Maggioni A.P., Pogue J., Probstfield J., Ramachandran A., Riddle M.C., et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 2012;367:319–328. doi: 10.1056/NEJMoa1203858.
    1. Monnier L., Hanefeld M., Schnell O., Colette C., Owens D. Insulin and atherosclerosis: How are they related? Diabetes Metab. 2013;39:111–117. doi: 10.1016/j.diabet.2013.02.001.
    1. The DECODE Study Group on behalf of the European Diabetes Epidemiology Group Glucose tolerance and cardiovascular mortality: Comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 2001;161:397–405. doi: 10.1001/archinte.161.3.397.
    1. Nakagami T. Hyperglycaemia and mortality from all causes and from cardiovascular disease in five populations of Asian origin. Diabetologia. 2004;47:385–394. doi: 10.1007/s00125-004-1334-6.
    1. Tominaga M., Eguchi H., Manaka H., Igarashi K., Kato T., Sekikawa A. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose. The Funagata Diabetes Study. Diabetes Care. 1999;22:920–924. doi: 10.2337/diacare.22.6.920.
    1. Risso A., Mercuri F., Quagliaro L., Damante G., Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am. J. Physiol. Endocrinol. Metab. 2001;281:E924–E930.
    1. Monnier L., Mas E., Ginet C., Michel F., Villon L., Cristol J.P., Colette C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295:1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Raz I., Wilson P.W., Strojek K., Kowalska I., Bozikov V., Gitt A.K., Jermendy G., Campaigne B.N., Kerr L., Milicevic Z., et al. Effects of prandial vs. fasting glycemia on cardiovascular outcomes in type 2 diabetes: The HEART2D trial. Diabetes Care. 2009;32:381–386. doi: 10.2337/dc08-1671.
    1. Raz I., Ceriello A., Wilson P.W., Battioui C., Su E.W., Kerr L., Jones C.A., Milicevic Z., Jacober S.J. Post hoc subgroup analysis of the HEART2D trial demonstrates lower cardiovascular risk in older patients targeting postprandial vs. fasting/premeal glycemia. Diabetes Care. 2011;34:1511–1513. doi: 10.2337/dc10-2375.
    1. Kilpatrick E.S., Rigby A.S., Atkin S.L. Effect of glucose variability on the long-term risk of microvascular complications in type 1 diabetes. Diabetes Care. 2009;32:1901–1903. doi: 10.2337/dc09-0109.
    1. Cavalot F., Pagliarino A., Valle M., di Martino L., Bonomo K., Massucco P., Anfossi G., Trovati M. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: Lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care. 2011;34:2237–2243. doi: 10.2337/dc10-2414.
    1. Munshi M.N., Pandya N., Umpierrez G.E., DiGenio A., Zhou R., Riddle M.C. Contributions of basal and prandial hyperglycemia to total hyperglycemia in older and younger adults with type 2 diabetes mellitus. J. Am. Geriatr. Soc. 2013;61:535–541. doi: 10.1111/jgs.12167.
    1. Miller M.E., Williamson J.D., Gerstein H.C., Byington R.P., Cushman W.C., Ginsberg H.N., Ambrosius W.T., Lovato L., Applegate W.B. Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older vs. younger adults in the ACCORD Trial. Diabetes Care. 2014;37:634–643. doi: 10.2337/dc13-1545.
    1. Knowler W.C., Barrett-Connor E., Fowler S.E., Hamman R.F., Lachin J.M., Walker E.A., Nathan D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002;346:393–403. doi: 10.1056/NEJMoa012512.
    1. DeFronzo R.A., Tripathy D., Schwenke D.C., Banerji M., Bray G.A., Buchanan T.A., Clement S.C., Henry R.R., Hodis H.N., Kitabchi A.E. Pioglitazone for diabetes prevention in impaired glucose tolerance. N. Engl. J. Med. 2011;364:1104–1115. doi: 10.1056/NEJMoa1010949.
    1. Gerstein H.C., Yusuf S., Bosch J., Pogue J., Sheridan P., Dinccag N., Hanefeld M., Hoogwerf B., Laakso M., Mohan V., et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: A randomised controlled trial. Lancet. 2006;368:1096–1105. doi: 10.1016/S0140-6736(06)69420-8.
    1. Knowler W.C., Hamman R.F., Edelstein S.L., Barrett-Connor E., Ehrmann D.A., Walker E.A., Fowler S.E., Nathan D.M., Kahn S.E. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes. 2005;54:1150–1156. doi: 10.2337/diabetes.54.4.1150.
    1. Weng J., Li Y., Xu W., Shi L., Zhang Q., Zhu D., Hu Y., Zhou Z, Yan X, Tian H., et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: A multicentre randomised parallel-group trial. Lancet. 2008;371:1753–1760. doi: 10.1016/S0140-6736(08)60762-X.
    1. Pennartz C., Schenker N., Menge B.A., Schmidt W.E., Nauck M.A., Meier J.J. Chronic reduction of fasting glycemia with insulin glargine improves first- and second-phase insulin secretion in patients with type 2 diabetes. Diabetes Care. 2011;34:2048–2053. doi: 10.2337/dc11-0471.
    1. Holman R.R., Haffner S.M., McMurray J.J., Bethel M.A., Holzhauer B., Hua T.A., Belenkov Y., Boolell M., Buse J.B., Buckley B.M., et al. Effect of nateglinide on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 2010;362:1463–1476. doi: 10.1056/NEJMoa1001122.
    1. Wing R.R., Bolin P., Brancati F.L., Bray G.A., Clark J.M., Coday M., Crow R.S., Curtis J.M., Egan C.M., Espeland M.A., et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 2013;369:145–154. doi: 10.1056/NEJMoa1212914.
    1. Williamson D.A., Rejeski J., Lang W., van Dorsten B., Fabricatore A.N., Toledo K. Impact of a weight management program on health-related quality of life in overweight adults with type 2 diabetes. Arch. Intern. Med. 2009;169:163–171. doi: 10.1001/archinternmed.2008.544.
    1. Wing R.R., Lang W., Wadden T.A., Safford M., Knowler W.C., Bertoni A.G., Hill J.O., Brancati F.L., Peters A., Wagenknecht L. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–1486. doi: 10.2337/dc10-2415.
    1. Gregg E.W., Chen H., Wagenknecht L.E., Clark J.M., Delahanty L.M., Bantle J., Pownall H.J., Johnson K.C., Safford M.M., Kitabchi A.E., et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308:2489–2496. doi: 10.1001/jama.2012.67929.
    1. Breyer B.N., Phelan S., Hogan P.E., Rosen R.C., Kitabchi A.E., Wing R.R., Brown J.S. Intensive lifestyle intervention reduces urinary incontinence in overweight/obese men with type 2 diabetes: Results from the Look AHEAD trial. J. Urol. 2014 doi: 10.1016/j.juro.2014.02.036.
    1. Gerstein H.C. Do lifestyle changes reduce serious outcomes in diabetes? N. Engl. J. Med. 2013;369:189–190. doi: 10.1056/NEJMe1306987.
    1. Garber A.J., Abrahamson M.J., Barzilay J.I., Blonde L., Bloomgarden Z.T., Bush M.A., Dagogo-Jack S., Davidson M.B., Einhorn D., Garvey W.T., et al. AACE comprehensive diabetes management algorithm 2013. Endocr. Pract. 2013;19:327–336.
    1. DeFronzo R.A., Barzilai N., Simonson D.C. Mechanism of metformin action in obese and lean noninsulin-dependent diabetic subjects. J. Clin. Endocrinol. Metab. 1991;73:1294–1301. doi: 10.1210/jcem-73-6-1294.
    1. Kim C.H., Han K.A., Oh H.J., Tan K.E., Sothiratnam R., Tjokroprawiro A., Klein M. Safety, tolerability, and efficacy of metformin extended-release oral antidiabetic therapy in patients with type 2 diabetes: An observational trial in Asia. J. Diabetes. 2012;4:395–406. doi: 10.1111/j.1753-0407.2012.00220.x.
    1. Nissen S.E., Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007;356:2457–2471. doi: 10.1056/NEJMoa072761.
    1. FDA places greater restrictions on access to rosiglitazone. BMJ. 2010;341 doi: 10.1136/bmj.c5287.
    1. Blind E., Dunder K., de Graeff P.A., Abadie E. Rosiglitazone: A European regulatory perspective. Diabetologia. 2011;54:213–218. doi: 10.1007/s00125-010-1992-5.
    1. McCarthy M. US regulators relax restrictions on rosiglitazone. BMJ. 2013;347 doi: 10.1136/bmj.f7144.
    1. Dormandy J.A., Charbonnel B., Eckland D.J., Erdmann E., Massi-Benedetti M., Moules I.K., Skene A.M., Tan M.H., Lefebvre P.J., Murray G.D., et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial in macroVascular Events): A randomised controlled trial. Lancet. 2005;366:1279–1289. doi: 10.1016/S0140-6736(05)67528-9.
    1. Tzoulaki I., Molokhia M., Curcin V., Little M.P., Millett C.J., Ng A., Hughes R.I., Khunti K., Wilkins M.R., Majeed A., et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: Retrospective cohort study using UK general practice research database. BMJ. 2009;339 doi: 10.1136/bmj.b4731.
    1. Loke Y.K., Kwok C.S., Singh S. Comparative cardiovascular effects of thiazolidinediones: Systematic review and meta-analysis of observational studies. BMJ. 2011;342 doi: 10.1136/bmj.f5934.
    1. Nissen S.E., Nicholls S.J., Wolski K., Nesto R., Kupfer S., Perez A., Jure H., De Larochelliere R., Staniloae C.S., Mavromatis K., et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: The PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–1573. doi: 10.1001/jama.299.13.1561.
    1. Meier C., Kraenzlin M.E., Bodmer M., Jick S.S., Jick H., Meier C.R. Use of thiazolidinediones and fracture risk. Arch. Intern. Med. 2008;168:820–825. doi: 10.1001/archinte.168.8.820.
    1. Lewis J.D., Ferrara A., Peng T., Hedderson M., Bilker W.B., Quesenberry C.P., Jr., Vaughn D.J., Nessel L., Selby J., Strom B.L. Risk of bladder cancer among diabetic patients treated with pioglitazone: Interim report of a longitudinal cohort study. Diabetes Care. 2011;34:916–922. doi: 10.2337/dc10-1068.
    1. Neumann A., Weill A., Ricordeau P., Fagot J.P., Alla F., Allemand H. Pioglitazone and risk of bladder cancer among diabetic patients in France: A population-based cohort study. Diabetologia. 2012;55:1953–1962. doi: 10.1007/s00125-012-2538-9.
    1. Colmers I.N., Bowker S.L., Majumdar S.R., Johnson J.A. Use of thiazolidinediones and the risk of bladder cancer among people with type 2 diabetes: A meta-analysis. CMAJ. 2012;184 doi: 10.1503/cmaj.112102.
    1. Saisho Y. Obesity, type 2 diabetes and beta cell failure: An Asian perspective. J. Mol. Genet. Med. 2014 doi: 10.4172/1747-0862.S1-008.
    1. Chiasson J.L., Josse R.G., Gomis R., Hanefeld M., Karasik A., Laakso M. Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. Lancet. 2002;359:2072–2077. doi: 10.1016/S0140-6736(02)08905-5.
    1. Kawamori R., Tajima N., Iwamoto Y., Kashiwagi A., Shimamoto K., Kaku K. Voglibose for prevention of type 2 diabetes mellitus: A randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373:1607–1614. doi: 10.1016/S0140-6736(09)60222-1.
    1. Chiasson J.L., Josse R.G., Gomis R., Hanefeld M., Karasik A., Laakso M. Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: The STOP-NIDDM trial. JAMA. 2003;290:486–494. doi: 10.1001/jama.290.4.486.
    1. Hanefeld M., Chiasson J.L., Koehler C., Henkel E., Schaper F., Temelkova-Kurktschiev T. Acarbose slows progression of intima-media thickness of the carotid arteries in subjects with impaired glucose tolerance. Stroke. 2004;35:1073–1078. doi: 10.1161/01.STR.0000125864.01546.f2.
    1. Hanefeld M., Cagatay M., Petrowitsch T., Neuser D., Petzinna D., Rupp M. Acarbose reduces the risk for myocardial infarction in type 2 diabetic patients: Meta-analysis of seven long-term studies. Eur. Heart J. 2004;25:10–16. doi: 10.1016/S0195-668X(03)00468-8.
    1. Drucker D.J., Nauck M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–1705. doi: 10.1016/S0140-6736(06)69705-5.
    1. Kendall D.M., Cuddihy R.M., Bergenstal R.M. Clinical application of incretin-based therapy: Therapeutic potential, patient selection and clinical use. Am. J. Med. 2009;122:S37–S50. doi: 10.1016/j.amjmed.2009.03.015.
    1. Aroda V.R., Henry R.R., Han J., Huang W., DeYoung M.B., Darsow T., Hoogwerf B.J. Efficacy of GLP-1 receptor agonists and DPP-4 inhibitors: Meta-analysis and systematic review. Clin. Ther. 2012;34 doi: 10.1016/j.clinthera.2012.04.013.
    1. Rolin B., Larsen M.O., Gotfredsen C.F., Deacon C.F., Carr R.D., Wilken M., Knudsen L.B. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am. J. Physiol. Endocrinol. Metab. 2002;283:E745–E752.
    1. Lamont B.J., Li Y., Kwan E., Brown T.J., Gaisano H., Drucker D.J. Pancreatic GLP-1 receptor activation is sufficient for incretin control of glucose metabolism in mice. J. Clin. Investig. 2012;122:388–402. doi: 10.1172/JCI42497.
    1. Farilla L., Bulotta A., Hirshberg B., Li Calzi S., Khoury N., Noushmehr H., Bertolotto C., Di Mario U., Harlan D.M., Perfetti R. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology. 2003;144:5149–5158. doi: 10.1210/en.2003-0323.
    1. Bunck M.C., Corner A., Eliasson B., Heine R.J., Shaginian R.M., Taskinen M.R., Smith U., Yki-Jarvinen H., Diamant M. Effects of exenatide on measures of beta-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care. 2011;34:2041–2047. doi: 10.2337/dc11-0291.
    1. Foley J.E., Bunck M.C., Moller-Goede D.L., Poelma M., Nijpels G., Eekhoff E.M., Schweizer A., Heine R.J., Diamant M. Beta cell function following 1 year vildagliptin or placebo treatment and after 12 week washout in drug-naive patients with type 2 diabetes and mild hyperglycaemia: A randomised controlled trial. Diabetologia. 2011;54:1985–1991. doi: 10.1007/s00125-011-2167-8.
    1. Kohro T., Yamazaki T., Sato H., Harada K., Ohe K., Komuro I., Nagai R. Trends in antidiabetic prescription patterns in Japan from 2005 to 2011. Int. Heart J. 2013;54:93–97. doi: 10.1536/ihj.54.93.
    1. Kodani N., Saisho Y., Tanaka K., Kawai T., Itoh H. Effects of mitiglinide, a short-acting insulin secretagogue, on daily glycemic variability and oxidative stress markers in Japanese patients with type 2 diabetes mellitus. Clin. Drug Investig. 2013;33:563–570.
    1. Del Prato S., Tiengo A. The importance of first-phase insulin secretion: Implications for the therapy of type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 2001;17:164–174. doi: 10.1002/dmrr.198.
    1. Unger R.H. Reinventing type 2 diabetes: Pathogenesis, treatment, and prevention. JAMA. 2008;299:1185–1187. doi: 10.1001/jama.299.10.1185.
    1. Tahrani A.A., Barnett A.H., Bailey C.J. SGLT inhibitors in management of diabetes. Lancet Diabetes Endocrinol. 2013;1:140–151. doi: 10.1016/S2213-8587(13)70050-0.
    1. Vasilakou D., Karagiannis T., Athanasiadou E., Mainou M., Liakos A., Bekiari E., Sarigianni M., Matthews D.R., Tsapas A. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013;159:262–274. doi: 10.7326/0003-4819-159-4-201308200-00007.
    1. Riser Taylor S., Harris K.B. The clinical efficacy and safety of sodium glucose cotransporter-2 inhibitors in adults with type 2 diabetes mellitus. Pharmacotherapy. 2013;33:984–999. doi: 10.1002/phar.1303.
    1. Gloy V.L., Briel M., Bhatt D.L., Kashyap S.R., Schauer P.R., Mingrone G., Bucher H.C., Nordmann A.J. Bariatric surgery vs. non-surgical treatment for obesity: A systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347 doi: 10.1136/bmj.f5934.
    1. Saisho Y., Tanaka K., Abe T., Shimada A., Kawai T., Itoh H. Effect of obesity on declining beta cell function after diagnosis of type 2 diabetes: A possible link suggested by cross-sectional analysis. Endocr. J. 2012;59:187–195. doi: 10.1507/endocrj.EJ11-0206.
    1. Dixon J.B., Chuang L.M., Chong K., Chen S.C., Lambert G.W., Straznicky N.E., Lambert E.A., Lee W.J. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36:20–26. doi: 10.2337/dc12-0779.
    1. Lee Y.C., Lee W.J., Liew P.L. Predictors of remission of type 2 diabetes mellitus in obese patients after gastrointestinal surgery. Obes. Res. Clin. Pract. 2013;7 doi: 10.1016/j.orcp.2012.08.190.

Source: PubMed

3
Tilaa